
ar
X

iv
:m

at
h.

C
O

/0
31

04
23

 v
1 

  2
8 

O
ct

 2
00

3

Acyclic Digraphs and Eigenvalues of (0, 1)–Matrices

Brendan D. McKay, Department of Computer Science, Australian National University,
Canberra, ACT 0200, AUSTRALIA

Frédérique E. Oggier1, Département de Mathématiques,
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Abstract

We show that the number of acyclic directed graphs with n labeled vertices is equal to the
number of n × n (0, 1)–matrices whose eigenvalues are positive real numbers.
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1. Weisstein’s conjecture

A calculation was recently made by Eric W. Weisstein of Wolfram Research, Inc., to count the real
n× n matrices of 0’s and 1’s all of whose eigenvalues are real and positive. The resulting sequence
of values, viz.,

1, 3, 25, 543, 29281

(for n = 1, 2, . . . , 5) was then observed to coincide with the beginning of sequence A003024 in [7],
which counts acyclic digraphs with n labeled vertices. Weisstein conjectured that the sequences
were in fact identical, and we prove this here.
Notation. A “digraph” means a graph with at most one edge directed from vertex i to vertex j,
for 1 ≤ i ≤ n, 1 ≤ j ≤ n. Loops and cycles of length two are permitted, but parallel edges are
forbidden. “Acyclic” means there are no cycles of any length.

Theorem 1. For each n = 1, 2, 3, . . ., the number of acyclic directed graphs with n labeled vertices
is equal to the number of n×n matrices of 0’s and 1’s whose eigenvalues are positive real numbers.

1This work was carried out during F. E. Oggier’s visit to AT&T Shannon Labs during the summer of 2003. She
thanks the Fonds National Suisse, Bourses et Programmes d’Échange for support.

2To whom correspondence should be addressed. [Email: njas@research.att.com, phone: 973 360 8415, fax: 973
360 8178.]
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Proof. Suppose we are given an acyclic directed graph G. Let A = A(G) be its vertex adjacency
matrix. Then A has only 0’s on the diagonal, else cycles of length 1 would be present. So define
B = I+A, and note that B is also a matrix of 0’s and 1’s. We claim B has only positive eigenvalues.

Indeed, the eigenvalues will not change if we renumber the vertices of the graph G consistently
with the partial order that it generates. But then A = A(G) would be strictly upper triangular,
and B would be upper triangular with 1’s on the diagonal. Hence all of its eigenvalues are equal
to 1.

Conversely, let B be a (0, 1)–matrix whose eigenvalues are all positive real numbers. Then we
have

1 ≥
1

n
Trace(B) (since all Bi,i ≤ 1)

=
1

n
(λ1 + λ2 + . . . + λn)

≥ (λ1λ2 . . . λn)
1

n (by the arithmetic-geometric mean inequality)

= (detB)
1

n

≥ 1 (since detB is a positive integer). (1)

Since the arithmetic and geometric means of the eigenvalues are equal, the eigenvalues are all equal,
and in fact all λi(B) = 1.

Now regard B as the adjacency matrix of a digraph H, which has a loop at each vertex. Since

Trace(Bk) =

n
∑

i=1

λk
i =

n
∑

i=1

1 = n,

for all k, the number of closed walks in H, of each length k, is n.
Since the trace of B is equal to n, all diagonal entries of B are 1’s. Thus we account for all n

of the closed walks of length k that exist in the graph H by the loops at each vertex. There are no
closed walks of any length that use an edge of H other than the loops at the vertices.

Put A = B − I. Then A is a (0, 1)–matrix that is the adjacency matrix of an acyclic digraph.
2

Remark. The only related result we have found in the literature is the theorem [3, p. 81] that
a digraph G contains no cycle if and only if all eigenvalues of the adjacency matrix are 0.

2. Corollaries.

The proof also establishes the following results.
(i) Let B be a (0, 1)–matrix whose eigenvalues are all positive real numbers. Then the eigenvalues

are in fact all equal to 1. The only symmetric (0, 1)–matrix with positive eigenvalues is the identity.
(ii) Let B be an n×n matrix with integer entries and Trace(B) ≤ n. Then B has all eigenvalues

real and positive if and only if B = I + N , where N is nilpotent.
(iii) If a digraph contains a cycle, then its adjacency matrix has an eigenvalue which is zero,

negative, or strictly complex. In fact, a more detailed argument, not given here, shows that if the
length of the shortest cycle is at least 3, then there is a strictly complex eigenvalue.

(iv) The eigenvalues of a digraph consist of n − k 0’s and k 1’s if and only if the digraph is
acyclic apart from k loops.

(v) Define two matrices B1, B2 to be equivalent if there is a permutation matrix P such that
P ′B1P = B2. Then the number of equivalence classes of n×n (0,1)–matrices with all eigenvalues

2



positive is equal to the number of acyclic digraphs with n unlabeled vertices. (These numbers form
sequence A003087 in [7].)
Proof. Two labeled graphs G1, G2 with adjacency matrices A(G1), A(G2) correspond to the same
unlabeled graph if and only if there is a permutation matrix P such that P ′A(G1)P = A(G2).
The result now follows immediately from the theorem. 2

(vi) Let B be an n×n (−1,+1)–matrix with all eigenvalues real and positive. Then n = 1 and
B = [1].
Proof. The argument that led to (1) still applies and shows that all the eigenvalues are 1, det B = 1
and Trace(B) = n. By adding or subtracting the first row of B from all other rows we can clear
the first column, obtaining a matrix

C =

[

1 ∗

0 D

]

,

where 0 is a column of 0’s and D is an n − 1 × n − 1 matrix with entries −2, 0,+2 and det D =
detC = det B = 1. Hence 2n−1 divides 1, so n = 1. 2

It would be interesting to investigate the connections between matrices and graphs in other
cases–for example if the eigenvalues are required only to be real and nonnegative (see sequences
A086510, A087488 in [7] for the initial values), or if the entries are −1, 0 or 1 (A085506).

3. Bibliographic remarks

Acyclic digraphs were first counted by Robinson [5, 6], and independently by Stanley [8]: if Rn is
the number of acyclic digraphs with n labeled vertices, then

Rn =

n
∑

k=1

(−1)k+1

(

n

k

)

2k(n−k)Rn−k ,

for n ≥ 1, with R0 = 1, and

∞
∑

n=0

Rn

xn

2(
n

2
)n!

=

[

∞
∑

n=0

(−1)n
xn

2(
n

2
)n!

]

−1

.

The asymptotic behavior is

Rn ∼ n!
2(

n

2
)

Mpn
,

where p = 1.488 . . . and M = 0.474 . . ..
The asymptotic behavior of R(n, q), the number of these graphs that have q edges, was found

by Bender et al. [1, 2], and the number that have specified numbers of sources and sinks has been
found by Gessel [4].
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