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Abstract. We consider the transformation properties of integer sequences arising

from the normal ordering of exponentiated boson ([a, a†] = 1) monomials of the form

exp[λ(a†)ra], r = 1, 2, . . ., under the composition of their exponential generating

functions (egf). They turn out to be of Sheffer-type. We demonstrate that two

key properties of these sequences remain preserved under substitutional composition:

a) the property of being the solution of the Stieltjes moment problem; and b) the

representation of these sequences through infinite series (Dobiński-type relations). We

present a number of examples of such composition satisfying properties a) and b).

We obtain new Dobiński-type formulas and solve the associated moment problem for

several hierarchically defined combinatorial families of sequences.
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1. Introduction

In a recent series of articles [1],[2],[3],[4],[5],[6] we investigated the properties of integer

sequences appearing in the process of the normal ordering of powers of boson monomials

[(a†)ras]n, with n, r, s -integers, where a and a† are the boson annihilation and creation

operators respectively, satisfying [a, a†] = 1. They are extensions of earlier works [7],[8].

We observed that the normal form of [(a†)ras]n, with all the annihilation operators to

the right, denoted by N
(

[(a†)ras]n
)

, can be written in the form (r ≥ s):

[(a†)ras]n ≡ N
(

[(a†)ras]n
)

= (a†)n(r−s)
ns
∑

k=s

Sr,s(n, k)(a†)kak (1)

where Sr,s(n, k) are generalizations of the conventional (r = s = 1) Stirling numbers of

the second kind and

Br,s(n) =
ns
∑

k=s

Sr,s(n, k) (2)

generalize the conventional (r = s = 1) Bell numbers.

For general r ≥ s we have worked out a complete theory of the numbers Sr,s(n, k)

and Br,s(n), including their recurrence relations, generating functions and closed-form

formulas. In particular, the generalized Bell numbers Br,s(n) can be expressed as infinite

series, thereby extending the celebrated Dobiński relation valid for r = s = 1 [9]:

B1,1(n) =
1

e

∞
∑

k=0

kn

k!
, n = 0, 1, 2, . . . (3)

Here are some examples of such relations:

Br,1(n) =
1

e

∞
∑

k=1

1

k!

n
∏

j=1

[k + (j − 1)(r − 1)] (4)

Br,r(n) =
1

e

∞
∑

k=0

1

k!

[

(k + r)!

k!

]n−1

(5)

they are all derived from the general polynomial-type formula (n = 1, 2, . . .)

Br,s(n, y) =
ns
∑

k=s

Sr,s(n, k)yk

= e−y

∞
∑

k=s

1

k!

n
∏

j=1

[(k + (j − 1)(r − s)) · (k + (j − 1)(r − s) − 1) ·

. . . · (k + (j − 1)(r − s) − s + 1)] yk. (6)

We may associate a Generating Function C(x) with a given sequence {cn} by [9]

C(x) =

∞
∑

n=0

cn
xn

n!
. (7)

This particular form of Generating Function is known as a Generating Function of

Exponential Type or egf for short, due to the n! denominators. Of particular interest for
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us here are those sequences {Br,s(n)} for which the egf can in fact be expressed as an

exponential function; they include Br,1(n), r = 1, 2, ... for which

eex−1 =

∞
∑

n=0

B1,1(n)
xn

n!
(8)

and [1],[2],[10]

exp

(

1
r−1
√

1 − (r − 1)xr−1
− 1

)

=

∞
∑

n=0

Br,1(n)
xn

n!
. r = 2, 3, . . . (9)

The numbers Sr,s(n, k) appear when in Eqs.(8) and (9) an indeterminate y is introduced

through

ey(ex−1) =
∞
∑

n=0

(

n
∑

k=1

S1,1(n, k)yk

)

xn

n!
(10)

and

exp

[

y

(

1
r−1
√

1−(r−1)xr−1
− 1

)]

=

∞
∑

n=0

(

n
∑

k=1

Sr,1(n, k)yk

)

xn

n!
, (11)

r = 2, 3, . . .

Eqs.(10) and (11) define polynomials of order n:

Br,1(n, y) =

n
∑

k=1

Sr,1(n, k)yk. r = 1, 2, . . . . (12)

Evidently, Br,1(n) = Br,1(n, 1). The polynomials of Eqs.(12) share another characteristic

property: they can be written as ratios of two infinite series in y. These are the so-called

Dobiński-type relations [1],[2], which for r = 1 and r > 1 respectively are:

1

ey

∞
∑

k=1

kn

k!
yk =

n
∑

k=1

S1,1(n, k)yk, n = 0, 1, . . . (13)

and

(r − 1)n

ey

∞
∑

k=1

Γ(n + k
r−1

)

k!Γ( k
r−1

)
yk =

n
∑

k=1

Sr,1(n, k)yk, n = 1, 2, . . . . (14)

By setting y = 1 in Eqs.(10) and (11) we obtain a representation of the integers Br,1(n)

as an infinite series (compare Eqs.(3)-(5)); this constitutes a fertile ground for their

probabilistic interpretation [11],[12]. The numbers Br,1(n) can also be given various

combinatorial intepretations [13],[14]. The second consequence of Eqs.(13) and (14)

(and of the more general formulas for s > 1, see [1],[2] ) is the fact, that Br,1(n, y) for

y > 0 is the n-th Stieltjes moment of a non-negative probability distribution, which is

either discrete (for r = 1, giving a so called Dirac comb [3]) or continuous (for r > 1).

This fact permits one to use the Br,s(n, y) to construct various quantum collective states

called coherent states [4],[15]. The interpretation of combinatorial sequences as moments

[5] has led to new calculational approaches to hyperdeterminants [16]. Another aspect of

Eqs.(13) and (14) which deserves mention here is that the numbers Sr,1(n, k) (1 ≤ k ≤ n)
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form a non-singular lower-triangular matrix with ones on the diagonal. Such matrices

form a group, called the Riordan group, which has important applications in enumerative

combinatorics [17],[18].

The purpose of this note is to place Eqs.(10)-(14) in the more general context of

Sheffer-type polynomials and to address the question of compositional substitution and

its implication for the existence of Dobiński-type relations as solutions of the Stieltjes

moment problem.

We first recall the known fact [19],[20],[21] that a compositional substitution

corresponds to multiplication of the matrices Sr,1(n, k). Then we go on to demonstrate

that if two polynomial sequences BF (n, y) and BG(n, y) generated by eyF (x) and eyG(x)

respectively are solutions of the associated Stieltjes moment problems, then the sequence

BF (G)(n, y) is also a solution of another, closely related, Stieltjes moment problem. We

further prove that if BF (n, y) and BG(n, y) are both given by Dobiński-type relations, see

Eqs.(13) and (14), then the sequence BF (G)(n, y) is also given by an analogous formula.

We then illustrate these reproducing properties of Dobiński-type relations and moment

problem solutions by some specific examples. They comprise multiple compositions of

standard Bell numbers with themselves (composing discrete with discrete distributions),

compositions of Lah numbers (related to Laguerre polynomials) with themselves and

finally composing discrete with continuous distributions and vice versa.

2. Sheffer-type polynomials

A polynomial B(n, y) of order n in the variable y is of Sheffer-type if the associated egf

can be written in the form [22]

1 +

∞
∑

n=1

B(n, y)
xn

n!
= A(x)eyF (x) (15)

with A(0) = 1 and F (0) = 0. Many such families of polynomials have been thoroughly

investigated. Among the polynomials encountered in Quantum Mechanics, the Hermite

and Laguerre polynomials are of Sheffer-type, whereas the Legendre and Gegenbauer are

not. Comparing Eq.(15) with Eqs.(10) and (11) we observe that Br,1(n, y) are Sheffer-

type polynomials with A(x) = 1. In fact B1,1(n, y) are the so-called Bell (or exponential)

polynomials [22] and B2,1(n, y) are the generalized Laguerre polynomials. The numbers

S1,1(n, k) are the conventional Stirling numbers of the second kind and the numbers

S2,1(n, k) =
n!

k!

(

n − 1

k − 1

)

(16)

are the so-called unsigned Lah numbers [1],[10].

More generally, consider two families of Sheffer-type polynomials BF (n, y) and

BG(n, y) generated by

eyF (x) = 1 +
∞
∑

n=1

(

n
∑

k=1

SF (n, k)yk

)

xn

n!
(17)
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and

eyG(x) = 1 +

∞
∑

n=1

(

n
∑

k=1

SG(n, k)yk

)

xn

n!
, (18)

respectively, where F (0) = G(0) = 0 and

BF (n, y) =
n
∑

k=1

SF (n, k)yk and BG(n, y) =
n
∑

k=1

SG(n, k)yk. (19)

We now consider the polynomials generated by F (G(x)), i.e.

eyF (G(x)) = 1 +
∞
∑

n=1

(

n
∑

k=1

SF (G)(n, k)yk

)

xn

n!
(20)

Before we calculate this sum we note the relation resulting from the change of summation

in Eq.(18):

eyG(x) = 1 +
∞
∑

k=1

( ∞
∑

n=k

SG(n, k)
xn

n!

)

yk. (21)

Now comparison with the direct expansion of the left hand side of Eq.(21)

eyG(x) = 1 +
∞
∑

k=1

(G(x))k yk/k! (22)

yields

(G(x))k

k!
=

∞
∑

n=k

SG(n, k)
xn

n!
. (23)

Proceeding to the direct calculation of Eq.(20) we recall that the matrices SF (n, k) and

SG(n, k) are lower triangular (i.e. the entries for k > n are zero):

eyF (G(x)) = 1 +
∞
∑

n=1

(

n
∑

k=1

SF (n, k)yk

)

(G(x))n

n!
(24)

= 1 +
∞
∑

n=1

(

n
∑

k=1

SF (n, k)yk

) ∞
∑

p=n

SG(p, n)
xp

p!
(25)

= 1 +
∞
∑

p=1

(

p
∑

k=1

(

p
∑

n=1

SG(p, n)SF (n, k)

)

yk

)

xp

p!
. (26)

Comparison with Eq.(20) yields

SF (G)(n, k) =

n
∑

p=1

SG(n, p)SF (p, k) (27)

This last equality means that compositional substitution within the Sheffer-type

polynomial families is equivalent to the matrix product of the corresponding Stirling

matrices [19],[20]

SF (G) = SG · SF . (28)
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A direct consequence of Eq.(27) is the formula

BF (G)(n, y) =

n
∑

p=1

SF (G)(n, p)yp =

n
∑

p=1

yp
n
∑

k=1

SG(n, k)SF (k, p) (29)

=

n
∑

k=1

SG(n, k)

k
∑

p=1

SF (k, p)yp =

n
∑

k=1

SG(n, k)BF (k, y). (30)

The last equation can be seen as the generalized Stirling transform [23] of the

polynomials BF (k, y) which for y = 1 reduces to the generalized Stirling transform

of the sequence BF (k):

BF (G)(n) =

n
∑

k=1

SG(n, k)BF (k). (31)

3. Compositional moment problem

The formulas (27) and (30) lead to important consequences if the initial Sheffer-type

polynomials are solutions of the Stieltjes moment problems, i.e. if for x, y > 0 there

exist positive weight functions WF (x, y) and WG(x, y) such that

BF (n, y) =

∫ ∞

0

xnWF (x, y)dx, (32)

BG(n, y) =

∫ ∞

0

xnWG(x, y)dx . (33)

Then the following equalities follow:

BF (G)(n, y) =

n
∑

k=1

SG(n, k)BF (k, y)

=

n
∑

k=1

SG(n, k)

∫ ∞

0

xkWF (x, y)dx =

∫ ∞

0

WF (x, y)

n
∑

k=1

SG(n, k)xk dx

=

∫ ∞

0

WF (x, y)BG(n, x)dx =

∫ ∞

0

dx WF (x, y)

∫ ∞

0

znWG(z, x)dz

=

∫ ∞

0

zn

(
∫ ∞

0

WF (x, y)WG(z, x)dx

)

dz (34)

and this implies that

BF (G)(n, y) =

∫ ∞

0

xnWF (G)(x, y)dx (35)

where WF (G)(x, y) is a positive function given by

WF (G)(x, y) =

∫ ∞

0

WF (z, y)WG(x, z)dz. (36)

We remark that the arguments of the weight functions in Eq.(36) need not satisfy any

particular symmetry properties.



Hierarchical Dobiński-type relations via substitution and the moment problem 7

More generally, for p-fold substitution F1(F2(. . . (Fp) . . .)) one obtains

WF1(F2(...(Fp)...))(x, y) =

∫ ∞

0

dz1 WF1
(z1, y)

∫ ∞

0

dz2 WF2
(z2, z1) . . .

. . .

∫ ∞

0

dzp WFp−1
(zp, zp−1)WFp

(x, zp). (37)

Eq.(37) reveals a typical structure appearing in the iterated-kernel method of solving

integral equations [24],[25].

In other words; for the Sheffer-type polynomials the property of being a solution

of the Stieltjes moment problem is reproduced by the mechanism of compositional

substitution, under the evident condition that the integrals in Eqs.(36) and (37) exist.

In the following section we provide a number of examples of substitutions F (G(x)) for

which an explicit evaluation of WF (G)(x, y) and BF (G)(n, y) can be carried through.

4. Compositional Dobiński-type relations

A rather large reservoir of solutions of the Stieltjes moment problem is contained in

the formulas (13) and (14). For any r = 1, 2, . . . Br,1(n, y) is the moment of a positive

function Wr(x, y), which can be written down explicitly, for instance by extending to

y 6= 1 the results given in [4],[5], [6]. The examples are:

W1(x, y) = e−y
∞
∑

k=1

ykδ(x − k)

k!
(38)

W2(x, y) = ye−(x+y) I1(2
√

xy)
√

xy
(39)

W3(x, y) =
1

12
√

πx
e−

x

2
−yy

(

6
√

2x + 3xy
√

π 0F2(
3
2
, 2; xy2

8
)

+
√

2x3/2y2
1F3(1; 3

2
, 2, 5

2
; xy2

8
)
)

, (40)

where δ(z) is the Dirac delta function, Iν(z) is the modified Bessel function of first

kind and 0F2 and 1F3 are hypergeometric functions. Eqs.(39) and (40) were obtained

using the inverse Mellin transform. See [26] for its exposition and [27] for examples of

applications.

Note, that whereas W1(x, y) is a discrete distribution in the form of a Dirac comb

concentrated on positive integers, the functions Wr(x, y) for r > 1 are continuous

distributions [6]. Observe also that they are not normalized, in the sense of their zero

moments:
∫∞
0

W1(x, 1)dx = 1 whereas
∫∞
0

Wr(x, 1)dx 6= 1, r > 1.

In this section we demonstrate that the reproducing character of the compositional

moment problem, see Eq.(36), implies the reproducing character of the Dobiński-type

relations. In the following paragraph, with given F (x) and G(x) of Eqs.(17) and (18) we

will carry out explicit substitutions F (G(x)) and analyze the weight functions WF (G)(x)

obtained from Eq.(36) and the resulting Dobiński-type relations.
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4.1. F (x) = G(x) = ex − 1

In the following the subscript B(B) stands for “substitute Bell into Bell”. We investigate

the polynomials BB(B)(n, y) resulting from

ey
(

eex−1 − 1
)

=

∞
∑

n=0

BB(B)(n, y)
xn

n!
(41)

which correspond to the ordinary Stirling transform [23] of the Bell polynomials

B1,1(n, y)

BB(B)(n, y) =

n
∑

k=1

S(n, k)B1,1(k, y) (42)

where S(n, k) are the conventional Stirling numbers of the second kind. The polynomial

B1,1(n, y) is the n-th moment of the Dirac comb [3],

WB(x, y) = e−y
∞
∑

k=1

ykδ(x − k)

k!
, (43)

and the weight function resulting from the substitution F (F (x)) is through Eq.(36)

equal to

WB(B)(x, y) =

∫ ∞

0

WB(z, y)WB(x, z)dz =

=

∫ ∞

0

(

e−y
∞
∑

k=1

ykδ(z − k)

k!

)(

e−z
∞
∑

p=1

zpδ(x − p)

p!

)

dz

= e−y
∞
∑

p=1

δ(x − p)

p!

( ∞
∑

k=1

kp

k!
(ye−1)k

)

= ey(e−1−1)
∞
∑

p=1

δ(x − p)

p!

(

p
∑

r=1

S(p, r)(ye−1)r

)

, (44)

where the last equality results from the original Dobiński formula Eq.(13). This result

shows that

BB(B)(n) = BB(B)(n, 1) = e(e
−1 − 1)

∞
∑

k=1

kn

k!

(

p
∑

r=1

S(k, r)e−r

)

, (45)

with the initial terms BB(B)(n) = 1, 1, 3, 12, 60, 358, 2471, 19302, . . ., for n = 0, 1, . . . .

BB(B)(n) counts the number of partitions of a set of n distinguishable elements, in which

every part is again partitioned [19].

Multiple substitutions of Bell egf’s into themselves result in hierarchical, chain-

like formulas for corresponding partition numbers, i.e. for F (F (F (x))) one obtains for

n = 0, 1, . . .

BB(B(B))(n) = e(e
(e−1−1) − 1)

∞
∑

k=1

kn

k!
·

·
(

k
∑

p=1

S(k, p)e−p

(

p
∑

r=1

S(p, r)er(e−1−1)

))

. (46)
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For example, BB(B(B))(n) = 1, 1, 4, 22, 154, 1304, 12915, 146115, . . ., for n = 0, 1 . . .,

which counts the number of “triple” partitions of an n-set.

We conclude that the substitution F (F (x)) results in a formula for BB(B)(n) which

conserves the original Dobiński-type structure of BB(n) as in Eq.(3); and also gives

a Dirac comb type of weight function with modified weights concentrated on positive

integers. These results also hold good for higher order substitutions.

4.2. F (x) = G(x) = x
1−x

This case corresponds to B2,1(n, y) which from Eq.(14) is

B2,1(n, y) =
1

ey

∞
∑

k=1

Γ(n + k)

k!Γ(k)
yk = n!

n
∑

k=1

1

k!

(

n − 1

k − 1

)

yk, (47)

and can be also written as

B2,1(n, y) = (n − 1)! yL
(1)
n−1(−y) (48)

by using the standard form of the generating function of generalized Laguerre

polynomials L
(λ)
n (x). With the notational convention introduced above we rewrite

Eq.(48) as (here L stands for Laguerre)

BL(n, y) =

n
∑

k=1

SL(n, k)yk (49)

where SL(n, k) are the unsigned Lah numbers, see Eq.(16). For y = 1, the integers

BL(n, 1) ≡ BL(n) count binary ordered forests of n nodes [13] (the initial terms are

BL(n) = 1, 3, 13, 73, 501, 4051 . . . , n = 1, 2, . . .). For other combinatorial interpretations

see [28].

The polynomial BL(n, y) is the n-th moment of [6] (see Eq.(40) ):

WL(x, y) = ye−(x+y) I1(2
√

xy)
√

xy
(50)

By F (F (x))-type composition the function exp
(

yx
1−2x

)

generates BL(L)(n, y) through

ey x

1−2x =

∞
∑

n=0

BL(L)(n, y)
xn

n!
(51)

where L(L) stands for “substitute Laguerre into Laguerre”, which are the n-th moments

of

WL(L)(x, y) =

∫ ∞

0

WL(z, y)WB(x, z)dz =

=

∫ ∞

0

(

ye−(z+y) I1(2
√

zy)
√

zy

)

·
(

ze−(x+z) I1(2
√

xz)√
xz

)

dz. (52)

By virtue of the entry 2.15.20.8 of [29], this yields a continuous distribution

WL(L)(x, y) = ye−
x+y

2

I1(
√

xy)

2
√

xy
=

1

2
WL(x

2
, y

2
), (53)



Hierarchical Dobiński-type relations via substitution and the moment problem 10

thus preserving the original structure encountered in Eq.(50). In addition, simple use

of the generating function of the generalized Laguerre polynomials yields

BL(L)(n, y) =

∫ ∞

0

xnWL(L)(x, y)dx = 2n−1(n − 1)! yL
(1)
n−1(−y

2
) (54)

whose initial terms for y = 1 are BL(L)(n) = 1, 5, 37, 361, 4361, 62701 . . ., n = 1, 2, . . . .

The p-fold substitution, p = 1, 2, . . . , gives in this case the compact expression:

BL(L(...(L)...))(n) = pn−1(n − 1)!L
(1)
n−1(−1

p
), n = 1, 2, . . . (55)

4.3. F (x) = ex − 1, G(x) = x
1−x

Here we substitute Laguerre (continuous distribution) into Bell (discrete distribution)

and vice versa.

The calculations are analogous to those in 4.1 and 4.2 with repeated use of integrals

listed in [29]. We only quote the final results:

BB(L)(n, y) =

∫ ∞

0

xnWB(L)(x, y)dx, (56)

where

WB(L)(x, y) =
e−(x+y)

√
x

∞
∑

k=1

yk

k!

√
ke−kI1(2

√
kx) (57)

which is a continuous distribution. The polynomials BB(L)(n, y) are generated by

ey(e
x

1−x −1) =

∞
∑

n=0

BB(L)(n, y)
xn

n!
. (58)

The initial terms of BB(L)(n) are 1, 4, 23, 171, 1552, 16583 . . . for n = 1, 2, . . .. These

integers count structures called sets of sets of lists, where list means an ordered subset

[28]. A closed-form Dobiński-type formula for BB(L)(n) can be obtained by calculating

the moments of WB(L)(x, 1). A longer but straightforward calculation gives

BB(L)(n) = e−1

∞
∑

k=1

(n − 1)!L
(1)
n−1(−k)

(k − 1)!
. (59)

Higher order substitutions yield formulas of similar type.

For the opposite substitution (“Bell into Laguerre” denoted L(B) ) generated by

e
y

ex−1
2−ex =

∞
∑

n=0

BL(B)(n, y)
xn

n!
. (60)

we obtain

BL(B)(n, y) =

∫ ∞

0

xnWL(B)(x, y)dx, (61)

where

WL(B)(x, y) =
y

2
e−

y

2

∞
∑

k=1

δ(x − k)

2k · k L
(1)
k−1(−y

2
) (62)
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which is a discrete (Dirac comb) distribution, with moments

BL(B)(n) = BL(B)(n, 1) =
1

2
e−

1

2

∞
∑

k=1

kn−1

2k
L

(1)
k−1(−1

2
) (63)

and initial terms BB(L)(n) = 1, 4, 23, 173, 1602, 17575 . . ., for n = 1, 2, . . . .

4.4. Bell numbers vs. “ordered” Bell numbers

As the last example we shall consider a slightly more general substitution problem in

which only the “internal” egf G(x) is of Sheffer-type. In other words, the egf of one of

the sequences is not an exponential. A case in point is given by the so called “ordered”

Bell numbers [3],[9] BO(n) defined through

BO(n) =
n
∑

k=1

S(n, k) k! . (64)

Their extension to polynomials BO(n, y) =
∑n

k=1 S(n, k) k! yk is generated by [21]

1

1 − y(ex − 1)
=

∞
∑

n=0

BO(n, y)
xn

n!
. (65)

Thus the BO(n, y) are not of Sheffer-type.

We now perform the substitution “Bell into ordered Bell”, denoted by the subscript

O(B). Although Eq.(30) is no longer valid, we can still define the numbers BO(B)(n)

through Eq.(31):

BO(B)(n) =
n
∑

k=1

S(n, k)BO(k), (66)

or equivalently by

1

2 − eex−1
=

∞
∑

n=0

BO(B)(n)
xn

n!
. (67)

Recalling the Dobiński-type expression for BO(n) [3], [9]

BO(n) =
1

2

∞
∑

k=0

kn

2k
, (68)

the formula Eq.(36), now for y = 1 only, carries over and after straightforward

calculation we obtain the Dobiński-type formula for BO(B)(n):

BO(B)(n) =
1

2

∞
∑

k=0

kn

k!
Li−k(

1
2e

) (69)

where Lim(y) is the polylogarithm of order m of y. The initial terms are BO(B)(n) =

1, 4, 23, 175, 1662, 18937, . . ., n = 1, 2, . . . .

Similarly, from the substitution “double Bell into ordered Bell” (denoted by

O(B(B)) below) we obtain

BO(B(B))(n) =
1

2

∞
∑

k=0

kn

k!

( ∞
∑

r=1

e−rrk

r!
Li−r(

1
2e

)

)

(70)
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where

1

2 − eeex
−1−1

=

∞
∑

n=0

BO(B(B))(n)
xn

n!
, etc. (71)

Clearly, Eqs.(69) and (70) again give rise to Dirac comb weight functions.

5. Discussion and conclusions

The main result of this work can be viewed from different perspectives. It is primarily

a method for the generation of new solutions of moment problems. As such it is of

potential importance for the construction of new generalized coherent states. Refs. [5]

and [4] should be considered as first steps in this direction. The iterative method based

on Eqs.(36) and (37) appears to be straightforward under the condition of the existence

of the relevant integrals. This will definitely extend and enrich the families of currently

known solutions of the moment problem.

A closer look at the examples above based on Eq.(36) leads to the conclusion that

if eG(x) generates the moments of a discrete distribution then the moments generated

by eF (G(x)) are those of a discrete distribution. Similarly, when eG(x) gives a continuous

distribution, the composition eF (G(x)) gives rise to a continuous distribution.

We are dealing here with Sheffer-type polynomials which are also solutions of the

moment problem; it should be borne in mind that these are quite strong restrictions.

It is easy to construct Sheffer-type polynomials which are not solutions of the moment

problem. For example, the polynomials pn(y), which are related to Bessel polynomials

[22], are generated by

ey(
√

1+2x−1) = 1 +
∞
∑

n=1

pn(y)
xn

n!
(72)

and can take on negative values for y = 1; they are therefore not acceptable solutions of

the moment problem. On the other hand, for s > 1, the polynomials Br,s(n, y) defined

by Eq.(6) are solutions of the moment problem [6] but are not of Sheffer-type [1],[2].

Referring to various Dirac comb-type distributions obtained by compositions (see

Eqs.(43), (45), (46), (63), (68), (69) and (70) ) we observe that the substitution B(n) →
B(αn2 + βn + γ), (α, β, γ - integers, α > 0) gives sequences B̃(n) = B(αn2 + βn + γ)

which are the n-th moments of continuous measures; they are infinite, weighted sums

of log-normal distributions [3].

The reproducing nature of Dobiński-type relations under composition also follows

from the scheme presented here. It has already provided a number of new closed-form

expressions for combinatorial numbers, Eqs.(54),(55),(59),(63),(69) and (70), together

with the associated weight functions. It seems that this method can be also applied to

various generalizations of combinatorial numbers, e.g. q-deformations [30] and to more

involved substitution schemes such as those considered in [31].
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