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Abstract

In this paper1, we generalize 2-trees by replacing triangles by quadrilaterals, pentagons or k-sided
polygons (k-gons), where k ≥ 3 is given. This generalization, to k-gonal 2-trees, is natural and is
closely related, in the planar case, to some specializations of the cell-growth problem. Our goal is the
labelled and unlabelled enumeration of k-gonal 2-trees according to the number n of k-gons. We give
explicit formulas in the labelled case, and, in the unlabelled case, recursive and asymptotic formulas.

1 Introduction

Essentially, a 2-tree (or bidimensional tree) is a connected simple graph composed of triangles glued along
their edges in a tree-like fashion, that is, without cycles (of triangles). This definition can be extended by
replacing the triangles by quadrilaterals, pentagons or k-sided polygons (k-gons), where k ≥ 3 is fixed.
Such 2-trees, built on k-gons, are called k-gonal 2-trees. Figures 1a, 1b, and 2a show examples of k-gonal
2-trees, for k = 3, 5 and 4, respectively. Of course the usual 2-trees correspond to k = 3.

b)a)

Figure 1: k-gonal 2-trees with k = 3 and k = 5

The enumeration of 2-trees is extensively studied in the literature. The first results in this direction
are found in 1970, in Palmer [22] for the labelled enumeration of 2-trees (see also Beineke and Moon [2])
and in Harary and Palmer [9] (1973) for the unlabelled enumeration. During the same period, Palmer and
Read [23] enumerated labelled and unlabelled outerplanar 2-trees, that is, 2-trees which can be embedded
in the plane in such a way that each vertex belongs to the external face. The term planar is also used in
this sense. See also Labelle, Lamathe and Leroux [17, 18].

∗With the support of FCAR (Québec) and NSERC (Canada).
1This is the full version of a paper presented at the International Colloquium on “Mathematics and Computer Science“

held in Versailles, France, in September 2002 (see [19]).
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Two years later, together with Harary, these authors generalized their results in [10] by considering
for the first time k-gonal 2-trees and enumerating them in the outerplanar case, in the context of a
cell-growth problem.

In his 1993 Ph.D. Thesis [13, 14], Ton Kloks enumerated unlabelled biconnected partial 2-trees, that
is, 2-trees in which some edges have been deleted without however losing the 2-connectedness. He calls
these graphs 2-partials. This class strictly contains that of k-gonal 2-trees since, in a 2-partial, polygons
of different sizes can occur and some edges can be missing, provided that they are incident to at least
three polygons. In principle Kloks’ method, which extends the traditional dissimilarity characteristic
of Otter [21] to 2-partials, could be used to enumerate k-gonal 2-trees (with k fixed). However, to our
knowledge, this work has not been done.

More recently, in 2000, Fowler, Gessel, Labelle and Leroux [7, 8], have proposed some new functional
equations for the class of (ordinary) 2-trees, which yield recurrences and asymptotic formulas for their
unlabelled enumeration. Their approach, which is based on the theory of combinatorial species of Joyal
(see [12, 4]), is more structural, replacing a potential dissimilarity characteristic formula for each individ-
ual 2-tree by a Dissymmetry Theorem for the species of 2-trees. Such a theorem can be formulated for
most classes of tree-like stuctures, for example ordinary (one-dimensional, Cayley) trees or more generaly
simple graphs, all of whose 2-connected components are in a given class (see [4]), plane embedded trees
(see [16]), various classes of cacti (see [5], etc.

In the present paper, we extend to k-gonal 2-trees the work of Fowler et als, which corresponds to the
case k = 3. In particular, we label the 2-trees at their k-gons. Our goal is their labelled and unlabelled
enumeration, according to the number of k-gons. We will give explicit formulas in the labelled case and
recursive and asymptotic formulas in the unlabelled case, emphasizing the dependency on k. Special
attention must be given to the cases where k is even.

b)a)

Figure 2: Unoriented and oriented 4-gonal 2-trees

We say that a k-gonal 2-tree is oriented if its edges are oriented in such a way that each k-gon forms
an oriented cycle; see Figure 2 b). In fact, for any k-gonal 2-tree s, the orientation of any one of its edges
can be extended uniquely to all of s by first orienting all the polygons to which the edge belongs and
then continuing recursively on all adjacent polygons. The coherence of the extension is ensured by the
arborescent (acyclic) nature of 2-trees.

We denote by a and ao the species of k-gonal 2-trees and of oriented k-gonal 2-trees. For these
species, we use the symbols −, ⋄ and ⋄ as upper indices to indicate that the structures are pointed at an
edge, at a k-gon, and at a k-gon having itself a distinguished edge, respectively.

A first step is the extension to the k-gonal case of the Dissymmetry Theorem for 2-trees, which links
together these various pointed species. The proof is similar to the case k = 3 and is omitted (see [7, 8]).
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Theorem 1. Dissymmetry theorem for k-gonal 2-trees. The species ao and a of oriented and
unoriented k-gonal 2-trees, respectively, satisfy the following isomorphisms of species:

a
−
o + a

⋄
o = ao + a

⋄
o , (1)

a
− + a

⋄ = a + a
⋄. (2)

There is yet another species to introduce, which plays an essential role in the process. It is the species
B = a

→ of oriented-edge rooted (k-gonal) 2-trees, that is of 2-trees where an edge is selected and oriented.
As mentionned above, the orientation of the rooted edge can be extended uniquely to an orientation of
the 2-tree so that there is a canonical isomorphism B = a

−
o . However, it is often useful not to perform

this extension and to consider that only the rooted edge is oriented.
In the next section, we characterize the species B = a

→ by a combinatorial functional equation and
give some of its consequences. The goal is then to express the various pointed species occuring in the
Dissymmetry Theorem in terms of B and to deduce enumerative results for the species ao and a. The
oriented case is simpler and carried out first, in Section 3. The unoriented case is analyzed in Section 4,
where a is viewed as a quotient species of ao and two cases are distinguished, according to the parity of
the integer k. Finally, asymptotic results are presented in Section 5.

For our purposes, the main tool of species theory is the Pólya-Robinson-Joyal Composition Theorem
which can be stated as follows (see [4], Th. 1.4.2): let the species F be the (partitionnal) composition of
two species, F = G ◦ H = G(H). Then, the exponential generating function

F (x) =
∑

n≥0

fn
xn

n!
,

where fn = |F [n]| is the number of labelled F -structures over a set of cardinality n, and the tilde
generating function

F̃ (x) =
∑

n≥0

f̃nxn,

where f̃n = |F [n]/Sn| is the number of unlabelled F -structures of order n, satisfy the following equations:

F (x) = G(H(x)), (3)

F̃ (x) = ZG(H̃(x), H̃(x2), . . .), (4)

where ZG(x1, x2, . . .) is the cycle index series of G. Moreover, we have

ZF (x1, x2, . . .) = ZG ◦ ZH = ZG(ZH(x1, x2, . . .), ZH(x2, x4, . . .), . . .). (5)

Here the operation ◦ is the plethystic composition of symmetric functions when the x1, x2, . . . are inter-
preted as power sum symmetric functions in some other set of variables s = (s1, s2, s3, . . .): xi = pi =
pi(s1, s2, . . .) :=

∑
j≥1 si

j .
This interpretation of the cycle index series as symmetric functions can be taken as an alternate

definition, as follows (see [4], Example 2.3.15 and Rem. 4.3.8). An F -structure is said to be colored if
the elements of its underlying set are assigned colors in the set {1, 2, 3, . . .}. Such a colored structure has
a weight w given by its color distribution monomial in the variables s = (s1, s2, s3, . . .). Let us denote
by F (1s) the weighted set of unlabelled colored F -structures. Its total weight (or inventory) |F (1s)|w
is a symmetric function in the variables s and thus has a unique expression in terms of the power sums
xi = pi(s1, s2, . . .) given precisely by ZF :

|F (1s)|w = ZF (x1, x2, . . .). (6)

For example, for the species E2, of 2-element sets, and E, of sets, we have

ZE2(x1, x2, . . .) =
∑

i<j

sisj +
∑

i

s2
i =

1

2

(
(
∑

i

si)
2 +

∑

i

s2
i

)
=

1

2
(x2

1 + x2) (7)
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and

ZE(x1, x2, . . .) = h(s1, s2, . . .) = exp




∑

i≥1

xi

i



 , (8)

where h =
∑

n≥0 hn denotes the complete homogeneous symmetric function.

2 The species B of oriented-edge rooted 2-trees

The species B = a
→ plays a central role in the study of k-gonal 2-trees. The following theorem is an

extension to a general k of the case k = 3. Note that formula (9) below also makes sense for k = 2 and
corresponds to edge-labelled (ordinary) rooted trees.

Theorem 2. The species B = a
→ of oriented-edge rooted k-gonal 2-trees satisfies the following functional

equation (isomorphism):
B = E(XBk−1), (9)

where E represents the species of sets and X is the species of singleton k-gons.

Proof. We decompose an a
→-structure as a set of pages, that is, of maximal subgraphs sharing only

one k-gon with the rooted edge. For each page, the orientation of the rooted edge permits to define a
linear order and an orientation on the k − 1 remaining edges of the polygon having this edge, in some
conventional way, for example in the fashion illustrated in Figure 3a, for the odd case, and 3b, for the
even case. These edges being oriented, we can glue on them some B-structures. We then deduce relation
(9).

b)

B

B
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B B

B
1

2

3

4

B

B

B

Figure 3: A page of an oriented-edge rooted 2-tree, for a) k = 5, b) k = 6

Among the possible edge orientations of an oriented-edge rooted k-gon, the one illustrated in Figure
3a, ”away from the root edge”, has the advantage of remaining valid if the root edge is not oriented, for
k odd. If k is even, we see a difference caused by the existence of an opposite edge whose orientation will
remain ambiguous.

We can easily relate the species B = a
→ to that of (ordinary) rooted trees, denoted by A, characterized

by the functional equation A = XE(A), where X now represents the sort of vertices. Indeed from (9),
we deduce

(k − 1)XBk−1 = (k − 1)XE((k − 1)XBk−1), (10)

knowing that Em(X) = E(mX). By the Implicit Species Theorem of Joyal (see [4]), there exists a unique
(up to isomorphism) species Y such that Y = (k − 1)XE(Y ), namely Y = A((k − 1)X). It follows that

(k − 1)XBk−1 = A((k − 1)X) (11)
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and

Bk−1 =
A((k − 1)X)

(k − 1)X
. (12)

In analogy with formal power series, it can be shown that for any rational number r 6= 0, any species F
with constant term equal to 1 (that is F (0) = 1) admits a unique rth-root with constant term 1, that
is a unique species G such that Gr = F and G(0) = 1; here G may be a virtual species, with rational
coefficients (see Rem. 2.6.16 of [4]). In the present case, since both B and A((k − 1)X)/(k − 1)X have
constant term 1, we obtain the following expression for the species B in terms of the species of rooted
trees. This expression can be used to compute the first terms of the molecular expansion of B, using
Newton’s Binomial Theorem; see [1].

Proposition 1. The species B = a
→ of oriented-edge-rooted k-gonal 2-trees satisfies

B = k−1

√
A((k − 1)X)

(k − 1)X
. (13)

Corollary 1. The numbers a→
n , a→

n1,n2,..., and bn = ã→
n of k-gonal 2-trees pointed at an oriented edge

and having n k-gons, respectively labelled, fixed by a permutation of cycle type 1n12n2 . . . and unlabelled,
satisfy the following formulas and recurrence:

a→
n = ((k − 1)n + 1)n−1 = mn−1, (14)

where m = (k − 1)n + 1 is the number of edges,

a→
n1,n2,... =

∞∏

i=1

(1 + (k − 1)
∑

d|i

dnd)
ni−1(1 + (k − 1)

∑

d|i,d<i

dnd), (15)

and

bn =
1

n

∑

1≤j≤n

∑

α

(|α| + 1)bα1bα2 . . . bαk−1
bn−j, b0 = 1, (16)

the last sum running over (k − 1)-tuples of integers α = (α1, α2, . . . , αk−1) such that |α| + 1 divides the
integer j, where |α| = α1 + α2 + · · · + αk−1.

Proof. Formulas (14) and (15) are obtained by specializing with µ = (k − 1)−1 the following formulas,
given by Fowler et al. in [7, 8],

(
A(x)

x

)µ

=
∑

n≥0

µ(µ + n)n−1 xn

n!
, (17)

Z(A(X/µ)
X/µ )

µ =

∑

n1,n2,...

xn1
1 xn2

2 . . .

1n1n1!2n2n2! . . .

∞∏

i=1

(1 +
1

µ

∑

d|i

dnd)
ni−1(1 +

1

µ

∑

d|i,d<i

dnd). (18)

Formula (14) can also be established by a Prüfer-like bijection; see [24, 20]. To obtain the recurrence
(16), it suffices to take the logarithmic derivative of the equation

B̃(x) = exp




∑

i≥1

xiB̃k−1(xi)

i



, (19)

where B̃(x) =
∑

n≥0 bnxn, which follows from relation (9), using (4) and (8).
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The sequences {bn}n∈N, for k = 2, 3, 4, 5, 6, are listed in the Encyclopedia of Integer Sequences [25, 26].
Respectively: A000081, for the number of rooted trees with n nodes, A005750, in relation with planted
matched trees with n nodes and 2-trees, A052751, A052773, A052781, in relation with equation (19).
Also, equation (9), is referenced in the Encyclopedia of Combinatorial Structures [11].

Observe that for each n ≥ 1, bn is a polynomial in k of degree n − 1. This follows from (15) and the
following explicit formula for bn,

bn =
∑

n1+2n2+···=n

a→
n1,n2,...

1n1n1!2n2n2! . . .
, (20)

which is a consequence of Burnside’s lemma. The asymptotic behavior of the numbers bn as n → ∞, is
studied, in particular as a function of k, in Section 7.

3 Oriented k-gonal 2-trees

We begin by determining relations for the pointed species appearing in the Dissymmetry Theorem. These
relations are quite direct and the proof is left to the reader.

Proposition 2. The species a
−
o , a ⋄

o , and a
⋄
o are characterized by the following isomorphisms:

a
−
o = B, a

⋄
o = XCk(B), a

⋄
o = XBk, (21)

where B = a
→ and Ck represents the species of oriented cycles of length k.

Recall that the cycle index series of Ck is given by ZCk
= 1

k

∑
d|k φ(d)x

n/d
d where φ is the Euler

function. The Dissymmetry Theorem then permits us to express the ordinary (tilde) generating series
ão(x) of unlabelled oriented k-gonal 2-trees in terms of the corresponding series for the rooted species:

ão(x) = ã
−

o (x) + ã
⋄

o (x) − ã
⋄

o(x). (22)

By Proposition 2, we can now express ão(x) as function of B̃(x) = ã
→

(x).

Proposition 3. The ordinary generating series ão(x) of unlabelled oriented k-gonal 2-trees is given by

ão(x) = B̃(x) +
x

k

∑

d|k
d>1

φ(d)B̃
k
d (xd) − k − 1

k
xB̃k(x). (23)

Corollary 2. The numbers ao,n and ão,n of oriented k-gonal 2-trees labelled and unlabelled, over n
k-gons, respectively, are given by

ao,n = ((k − 1)n + 1)n−2 = mn−2, n ≥ 2, (24)

ão,n = bn − k − 1

k
b
(k)
n−1 +

1

k

∑

d|k
d>1

φ(d)b
( k

d )
n−1

d

, (25)

where
b
(j)
i = [xi]B̃j(x) =

∑

i1+···+ij=i

bi1bi2 . . . bij ,

denotes the coefficient of xi in the series B̃j(x), with b
(j)
r = 0 if r is non-integral or negative.

Proof. For the labelled case, it suffices to remark that a→
n = mao,n. In the unlabelled case, equation

(25) is directly obtained from (23).
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4 Unoriented k-gonal 2-trees

For the enumeration of (unoriented) k-gonal 2-trees, we consider quotient species of the form F/Z2, where
F is a species of “oriented” structures, Z2 = {1, τ}, is a group of order 2 and the action of τ is to reverse
the structure orientations. A structure of such a quotient species then consists in an orbit {s, τ · s} of
F -structures under the action of Z2.

For instance, the different pointed species of unoriented k-gonal 2-trees a
−, a

⋄ and a
⋄, can be

expressed as quotient species of the corresponding species of oriented k-gonal 2-trees:

a
− =

a
→

Z2
, a

⋄ =
a

⋄
o

Z2
=

XCk(B)

Z2
, a

⋄ =
a

⋄
o

Z2
=

XBk

Z2
. (26)

The three basic generating series associated to such a quotient species, are given by

(F/Z2)(x) =
1

2
(F (x) +

∑

n≥0

|FixFn(τ)|x
n

n!
), (27)

(F/Z2)
∼(x) =

1

2
(F̃ (x) +

∑

n≥0

|FixF̃n
(τ)|xn), (28)

where FixFn(τ) and FixF̃n
(τ) denote the sets of labelled and unlabelled, respectively, F -structures left

fixed by the action of τ , that is, by orientation reversal, and

ZF/Z2
(x1, x2, . . .) =

1

2
(ZF (x1, x2, . . .) + |FixF (1s)(τ)|w), (29)

where FixF (1s)(τ) is the set of unlabelled colored F -structures left fixed by τ , weighted by the color
distribution monomials in the variables s = (s1, s2, s3, . . .) and where the inventory |FixF (1s)(τ)|w , being
a symmetric function in s, is expressed in terms of the power sums xi = pi(s). A simple example is
given by the species E2 = X2/Z2, the species of 2-element sets, where formula (29) yields immediately
ZE2 = 1

2 (x2
1 + x2).

However, some important differences appear in the computations, according to the parity of k. The
main difference comes from the existence of opposite edges in k-gons, when k is even. Accordingly, it is
better to treat the two cases separately.

4.1 Case k odd

If k is odd, it is quite simple to extend the method of Fowler et als [7, 8] where k = 3. For example, the
only labelled oriented k-gonal 2-tree left fixed by an orientation reversal, for a given number of polygons,
is the one in which all polygons share one common edge. Hence, from (27) and the fact that a = ao/Z2,
we deduce directly the following.

Proposition 4. If k is odd, the number an of labelled k-gonal 2-trees on n k-gons is given by

an =
1

2

(
mn−2 + 1

)
, n ≥ 2, (30)

where m = (k − 1)n + 1 is the number of edges.

For the unlabelled enumeration, notice from Figure 3a that in every k-gon containing the pointed
(but not oriented) edge of an a

−-structure, it is possible to orient the k − 1 other edges in a canonical
direction, ”away from the root edge”, when k is odd (but there remains an ambiguous opposite edge if k
is even). This phenomenon permits us to introduce skeleton species, when k is odd, in analogy with the
approach of Fowler et al. They are the two-sort quotient species Q(X, Y ), S(X, Y ) and U(X, Y ), where
X represents the sort of k-gons and Y the sort of oriented edges, defined by Figures 4a, b and c, where
k = 5.

In analogy with the case k = 3, we get the following propositions.

7



c)a) b)

Figure 4: Skeleton species a) Q(X, Y ), b) S(X, Y ) and c) U(X, Y )

Proposition 5. The skeleton species Q, S and U admit the following expressions in terms of quotients
species

Q(X, Y ) = E(XY 2)/Z2, (31)

S(X, Y ) = Ck(E(XY 2))/Z2, (32)

U(X, Y ) = (E(XY 2))k/Z2. (33)

Proposition 6. For k odd, k ≥ 3, we have the following expressions for the pointed species of k-gonal
2-trees, where B = a

→:

a
− = Q(X, B

k−1
2 ), a

⋄ = X · S(X, B
k−1
2 ), a

⋄ = X · U(X, B
k−1
2 ). (34)

In order to obtain enumerative formulas, we have to compute the cycle index series of the species Q,
S and U .

Proposition 7. The cycle index series of the species Q(X, Y ), S(X, Y ) and U(X, Y ) are given by

ZQ =
1

2

(
ZE(XY 2) + q

)
, (35)

ZS =
1

2

(
ZCk(E(XY 2)) + q · (p2 ◦ ZE(XY 2))

k−1
2

)
, (36)

ZU =
1

2

(
Z(E(XY 2))k + q · (p2 ◦ ZE(XY 2))

k−1
2

)
, (37)

where

q = h ◦ (x1y2 + p2 ◦ (x1
y2
1 − y2

2
)), (38)

p2 represents the power sum symmetric function of degree two, h the homogeneous symmetric function
and ◦, the plethystic substitution.

Proof. We use a two-sort extension of formula (29) but the sort Y is the important one here. The
variables s will keep track of the colored triangles and new variables t = (t1, t2, . . .), of the colored oriented
edges and we seek to express the inventory in terms of the power sums xi = pi(s) and yi = pi(t). Hence
the second terms of the right-hand-sides of formulas (35)–(37), represent the τ -symmetric unlabelled
colored F (X, Y )-structures. For example, for (35), the given formula (38) simply expresses the fact that
a τ -symmetric unlabelled colored Q(X, Y )-structure consists of a set of pages, where the τ symmetry
comes either from a page with identically colored oriented edges or from pairs of pages whose oriented
edges are oppositely colored. See [7, 8] for more details.

8



In the case of S, we have to leave fixed an unlabelled colored Ck(E(XY 2))-structure. For this, the
cycle of length k must possess (at least) one symmetry axis passing through the middle of one of its sides.
The attached structure on this distinguished edge must be globally left fixed; this gives the factor q. On
each side of the axis, each colored E(XY 2)-structure must have its mirror image; this contributes the

factor (p2 ◦ ZE(XY 2))
k−1
2 . It can be seen that in the case of higher degree of symmetry, the choice of the

symmetry axis is arbitrary. The reasoning is very similar for the species U and in fact the τ -symmetric
term is the same as in the previous case.

It is now a simple matter to combine the Dissymmetry Theorem with Propositions 6 and 7 and the
substitution rules of unlabelled enumeration in order to obtain ã(x). Note that the first terms of formulas
(35)–(37) will give rise to ão(x) and that a cancellation will occur in the τ -symmetric terms, leaving only

q(xi 7→ xi, yi 7→ B̃
k−1
2 (xi)) to compute.

Proposition 8. Let k ≥ 3 be an odd integer. The ordinary generating series ã(x) of unlabelled k-gonal
2-trees is given by

ã(x) =
1

2

(
ão(x) + exp

(∑

i≥1

1

2i
(2xiB̃

k−1
2 (x2i) + x2iB̃k−1(x2i) − x2iB̃

k−1
2 (x4i)

))
. (39)

Corollary 3. For k ≥ 3, odd, the number ãn of unlabelled k-gonal 2-trees over n k-gons, satisfy the
following recurrence

ãn =
1

2n

n∑

j=1

(∑

l|j

lωl

)(
ãn−j −

1

2
ão,n−j

)
+

1

2
ão,n, ã0 = 1, (40)

where, for all n ≥ 1,

ωn = 2b
( k−1

2 )
n−1

2

+ b
(k−1)
n−2

2

− b
( k−1

2 )
n−2

4

, (41)

and b
(j)
i is defined in Corollary 2.

4.2 Case k even

The case k even is more delicate. For example, as observed by one of the anonymous referees, there are
more than one labelled oriented k-gonal 2-tree left fixed by an orientation reversal. They can be obtained
by taking an edge labelled ordinary tree and replacing edges by k-gons attached at opposite edges. These
k-gonal 2-trees have no side decoration and this explains their symmetry with respect to orientation. It is
known (and follows from (14) for k = 2) that the number of edge-labelled trees with n edges is (n+1)n−2.
Hence we have the following:

Proposition 9. If k is even, the number an of labelled k-gonal 2-trees on n k-gons is given by

an =
1

2

(
mn−2 + (n + 1)n−2

)
, n ≥ 2, (42)

where m = (k − 1)n + 1 is the number of edges.

For the unlabelled enumeration of the three species a−, a ⋄ and a
⋄, we apply relation (28) to formulas

(26). For the species a
− = a

→/Z2, the action of τ consists in reversing the orientation of the rooted
edge. we have

ã
−

(x) =
1

2
(ã

→
(x) + ã

→

τ (x)), (43)

where ã
→

τ (x) is the tilde generating series of τ -symmetric (unlabelled) oriented-edge-rooted 2-trees. Let
aS denote the subspecies of B = a

→ consisting of a→-structures s which are isomorphic to their image
τ · s. We have to compute ãS(x) = ã

→

τ (x).

9



Let us introduce some auxiliary subspecies of aS which appear when we analyse these τ -symmetric
structures in terms of their pages that is their maximal sub-2-trees containing a unique triangle adjacent
to the rooted edge. We say that there is some crossed symmetry if we can find, inside the 2-tree, two
alternated pages, that is pages of the form {s, τ · s}, where s is not itself τ -symmetric, attached to the
same root edge. See Figure 5a Let PAL denote the subspecies of pairs of alternated pages. A mixed page
is a symmetric page having at least one crossed symmetry. See Figure 5b. Let PM denote the species of
mixed pages.

c)a) b)

Figure 5: a) A pair of alternated pages, b) a mixed page, c) a totally symmetric a
→-structure

Finally, we say that a page is totally symmetric or vertically symmetric if it contains no crossed
symmetries. Let PTS denote the species of totally symmetric pages and set

aTS = E(PTS), (44)

the subspecies of totally symmetric a
→-structures. See Figure 5c. We can characterize all these species

and their tilde generating series by functional equations. First, we have

PTS = X · X2
= < B

k−2
2 > ·aTS, (45)

where X2
= < F > represents the species of ordered pairs of isomorphic F -structures. Note that (X2

= <

F >)∼(x) = F̃ (x2). Translating equations (44) and (45) in terms of tilde generating series, we get

ãTS(x) = exp




∑

j≥1

P̃TS(xj)



 (46)

and
P̃TS(x) = x B̃

k−2
2 (x2)ãTS(x). (47)

Proposition 10. The numbers πn = |P̃TS[n]| and βn = |ãTS[n]| of unlabelled totally symmetric pages
and a

→-structures, respectively, on n polygons, satisfy the following system of recurrences: β0 = 1 and,
for n ≥ 1,

πn =
∑

i+j=n−1
i even

b
( k−2

2 )
i
2

βj, (48)

βn =
1

n

n−1∑

j=0

βj

∑

d|n−j

dπd. (49)

10



Proof. Formula (48) is obvious. For (49), it suffices to take x times the logarithmic derivative of (46).

Now, from the definition of the species PAL of pairs of alternated pages, we have

PAL = Φ2 < XBk−1 − (PTS + PM) >, (50)

where Φ2 < F > represents the species of unordered pairs of F -structures of the form {s, τ · s}. Note

that Φ2 < F >∼ (x) = 1
2 F̃ (x2) whenever the structures s and τ · s are guaranteed not to be isomorphic,

so that

P̃AL(x) =
1

2

(
x2B̃k−1(x2) − P̃TS(x2) − P̃M(x2)

)
. (51)

Also by definition, the species PM of mixed pages satisfies

PM = X · X2
= < B

k−2
2 > ·(aS − aTS)

= X · X2
= < B

k−2
2 > ·aS − PTS, (52)

so that
P̃M(x) = xB̃

k−2
2 (x2)ãS(x) − P̃TS(x). (53)

Finally, for the tilde generating series ãS(x) of unlabelled τ -symmetric a
→-structures, we have (see

Figure 6)

ãS(x) = E(PTS + PAL + PM)∼(x), (54)

= exp

(∑

i≥1

1

i
(P̃TS(xi) + P̃AL(xi) + P̃M(xi))

)
. (55)

From equations (51), (53) and (55) we deduce the following.

,,

Figure 6: Decomposition of a τ -symmetric ã
→

-structure

Proposition 11. The numbers αn = ãS,n of unlabelled τ -symmetric a
→-structures, P̃AL,n, of pairs of

alternated pages and P̃M,n of mixed pages, on n k-gons are characterized by the following system of
recurrences: α0 = 1, and for n ≥ 1,

P̃M,n =

n−1∑

i=0

b
( k−2

2 )
i
2

αn−1−i − πn, (56)

P̃AL,n =
1

2

(
b
(k−1)
n−2

2

− πn/2 − P̃M,n/2

)
, (57)

11



αn =
1

n

n∑

i=1

(∑

d|i

dωd

)
αn−i, (58)

where πn = P̃TS,n is given by Propositon 10 and

ωk = πk + P̃AL,k + P̃M,k. (59)

Proposition 12. If k is an even integer, then the number of unlabelled (unoriented) edge rooted k-gonal
2-trees over n k-gons is given by

ã−
n =

1

2
(bn + αn). (60)

Let us now turn to the species a
⋄ of k-gonal 2-trees rooted at an edge-pointed k-gon.

Proposition 13. We have

ã
⋄
(x) =

1

2

(
ã

⋄

o (x) + ã
⋄

o,τ (x)

)
, (61)

where
ã

⋄

o,τ (x) = xã
2

S(x)B̃
k−2
2 (x2).

Proof. An unlabelled τ -symmetric a
⋄
o -structure possesses an axis of symmetry which is, in fact, the

mediatrix of the distinguished edge of the root polygon, and also the mediatrix of its opposite edge;
see Figure 7. The two structures s and t glued on these two edges are thus symmetric, which leads to

the term (ãS(x))2. Then, on each side of the axis, are found two B
k−2
2 -structures α and β, which by

symmetry satisfy β = τ · α, contributing to the factor B̃
k−2
2 (x2).

τα α

t

s

Figure 7: A τ -symmetric unlabelled a
⋄
o-structures

Corollary 4. We have the following expression for the number ã
⋄
n of unlabelled a

⋄-structures,

ã ⋄
n =

1

2

(
ã ⋄

o,n +
∑

i+j=n−1

α
(2)
i · b( k−2

2 )
j
2

)
, (62)

where α
(2)
i = [xi]ã

2

S(x). 2

We proceed in a similar way for the species a
⋄, of k-gon rooted k-gonal 2-trees. Once again, we use

relation (28), giving

ã
⋄
(x) =

1

2

(
ã

⋄

o (x) + ã
⋄

o,τ (x)

)
. (63)

12



Proposition 14. Let ã
⋄

o,τ (x) be the generating series of unlabelled a
⋄
o -structures which are left fixed

by orientation reversing. Then, we have

ã
⋄

o,τ (x) =
x

2
ã

2

S(x)B̃
k−2
2 (x2) +

x

2
B̃

k
2 (x2). (64)

Proof. Notice first that in order to be left fixed by orientation reversing, an a
⋄
o -structure must admit

a reflective symmetry, along an axis which can either pass through the middle of two opposite edges, or
pass through opposite vertices of the pointed polygon. The enumeration is carried out by first orienting
the axis of symmetry. The first term of (64) then corresponds to an edge–edge symmetry, and the second
term to a vertex–vertex symmetry. The structures having both symmetries are precisely those which are
counted one half time in both of these terms. This is established for a general k by considering the unique
power of 2, 2m, such that k/2m is odd. We illustrate the proof in the following lines with k = 12; the
reader will easily convince himself of the validity of this argument for any k.

a)
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Figure 8: ã
⋄

o,τ -structures with an edge–edge symmetry

For k = 12, a general unlabelled τ -symmetric polygon-rooted oriented k-gonal 2-tree with an oriented
edge–edge axis will be of the form illustrated in Figure 8 a), where s1 and s2 represent unlabelled aS-
structures, a, b, c, d and e are general unlabelled B-structures and τx represents the opposite of the
B-structures x, obtained by reversing their orientation. Most of these structures are enumerated exactly

by 1
2xã

2

S(x)B̃5(x2). Indeed, the factor xã
2

S(x)B̃5(x2) is obtained in the same way as for a
⋄
o,τ -structures

and the division by two is justified in the following cases:

1. s1 6= s2 (two orientations of the axis),

2. s1 = s2 = s, (a, b, c) 6= (d, e, τ · c) (two orientations),

3. s1 = s2 = s, (a, b, c) = (d, e, τ · c), so that c = τ · c = t ∈ ãS, and either s 6= t or s = t and
(a, b) 6= (τ · b, τ · a) (two choices for the symmetry axis, see Figure 8 b)),

However, the structures with s = t and b = τ · a (see Figure 9) will occur only once and are counted only
one half time in the formula. But, notice that these structures also admit a vertex–vertex symmetry axis
and, as it will turn out, are also counted one half time in the second term of (64).

Similarly, an unlabelled a
⋄
o,τ -structure with an oriented vertex–vertex symmetry axis will be of the

form illustrated in Figure 10 a), where a, b, . . ., f are arbitrary unlabelled B-structures. Most of these

terms are enumerated exactly by 1
2xB̃6(x2), the division by two being justified in the following cases:

1. (a, b, c) 6= (d, e, f) (two orientations of the symmetry axis),

13
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Figure 9: An ã
⋄

o,τ -structure with edge–edge and vertex–vertex symmetries

2. (a, b, c) = (d, e, f) and (a, b, c) 6= (τ · c, τ · b, τ · a) (two choices for the symmetry axis, see Figure 10
b)),

b)
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Figure 10: ã
⋄

o,τ -structures with a vertex–vertex symmetry axis

However, the structures with (a, b, c) = (d, e, f), c = τ · a and b = τ · b = s ∈ ãS appear only once and
are counted one half time here. But they also have an edge-edge symmetry axis and were also counted
one half time in the first term of (64) (exchange a and τ · a in Figure 9).

The Dissymmetry Theorem yields, for k even,

ã(x) =
1

2
ão(x) +

1

2
ãS(x) +

1

2
ã

⋄

o,τ (x) − 1

2
ã

⋄

o,τ (x), (65)

and we have the following result.

Proposition 15. Let k be an even integer, k ≥ 4. Then the generating series ã(x) of unlabelled k-gonal
2-trees is given by

ã(x) =
1

2
ão(x) +

1

2
ãS(x) +

x

4
(B̃

k
2 (x2) − ã

2

S(x)B̃
k−2
2 (x2)). (66)

Corollary 5. Let k be an even integer, k ≥ 4. Then the number of unlabelled k-gonal 2-trees over n
k-gons is given by

ãn =
1

2
ão,n +

1

2
αn +

1

4
b
( k
2 )

n−1
2

− 1

4

∑

i+j=n−1

α
(2)
i · b( k−2

2 )
j
2

, (67)
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where
b
(m)
l = [xl]B̃m(x), α

(2)
i = [xi]ã

2

S(x).

Note that the case k = 2 corresponds to ordinary trees with n edges and that the formulas given here
are also valid when properly interpreted. Table 1 gives the exact values of the numbers ãn of unlabelled
k-gonal 2-trees with n k-gons, for k from 2 up to 12 and for n = 0, 1, . . . , 20.

k = 2

1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159, 7741, 19320, 48629, 123867, 317955, 823065, 2144505
k = 3

1, 1, 1, 2, 5, 12, 39, 136, 529, 2171, 9368, 41534, 188942, 874906, 4115060, 19602156, 94419351, 459183768, 2252217207,
11130545494, 55382155396
k = 4

1, 1, 1, 3, 8, 32, 141, 749, 4304, 26492, 169263, 1115015, 7507211, 51466500, 358100288, 2523472751, 17978488711,
129325796854, 938234533024, 6858551493579, 50478955083341
k = 5

1, 1, 1, 3, 11, 56, 359, 2597, 20386, 167819, 1429815, 12500748, 111595289, 1013544057, 9340950309, 87176935700,
822559721606, 7836316493485, 75293711520236, 728968295958626, 7105984356424859
k = 6

1, 1, 1, 4, 16, 103, 799, 7286, 71094, 729974, 7743818, 84307887, 937002302, 10595117272, 121568251909, 1412555701804,
16594126114458, 196829590326284, 2354703777373055, 28385225424840078, 344524656398655124
k = 7

1, 1, 1, 4, 20, 158, 1539, 16970, 199879, 2460350, 31266165, 407461893, 5420228329, 73352481577, 1007312969202,
14008437540003, 196963172193733, 2796235114720116, 40038505601111596, 577693117173844307, 8392528734991449808
k = 8

1, 1, 1, 5, 26, 245, 2737, 35291, 483819, 6937913, 102666626, 1558022255, 24133790815, 380320794122,
6081804068869, 98490990290897, 1612634990857755, 26660840123167203, 444560998431678554, 7469779489114328514,
126375763235359105446
k = 9

1, 1, 1, 5, 32, 343, 4505, 66603, 1045335, 17115162, 289107854, 5007144433, 88516438360, 1591949961503, 29053438148676,
536972307386326, 10034276171127780, 189331187319203010, 3603141751525175854, 69097496637591215442,
1334213677527481808220
k = 10

1, 1, 1, 6, 39, 482, 7053, 117399, 2070289, 38097139, 723169329, 14074851642, 279609377638, 5651139037570,
115901006038377, 2407291353219949, 50553753543016719, 1071971262516091572, 22926544048209731554,
494103705426160765546, 10722146465907412669810
k = 11

1, 1, 1, 6, 46, 636, 10527, 194997, 3823327, 78118107, 1646300388, 35570427615, 784467060622, 17601062294302,
400750115756742, 9240636709048733, 215435023547580882, 5071520482516388865, 120417032326341878672,
2881134828445365441407, 69410468220307148620226
k = 12

1, 1, 1, 7, 55, 840, 15189, 309607, 6671842, 149850849, 3471296793, 82442359291, 1998559329142, 49290785442796,
1233639304644946, 31268489727956101, 801335133177932829, 20736286803363051714, 541224489038545084067,
14234799536039481373552, 376974819516101224941091

Table 1: Values of ãn for k = 2, . . . , 12 and n = 0, . . . , 20

5 Asymptotics

Thanks to the Dissymmetry Theorem and to the various combinatorial equations related to it, the
asymptotic enumeration of unlabelled k-gonal 2-trees depends essentially on the asymptotic enumeration
of B-structures where B is the auxiliary species characterized by the functional equation (9).

We first give the following result, which is a consequence of the classical theorem of Bender (see [3])
and is inspired from the approach of Fowler et al. for 2-trees (see [7, 8]).

Proposition 16. Let p = k − 1. Let us write b(x) = B̃(x) =
∑

bn(p)xn. Let ξp be the smallest root of
the equation

ξ =
1

ep
ω−p(ξ), (68)
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where ω(x) is defined by

ω(x) = e
1
2x2bp(x2)+ 1

3x3bp(x3)+···. (69)

Then, there exist constants αp and βp such that

bn(p) ∼ αpβ
n
p n−3/2, as n → ∞. (70)

Moreover,

αp = α(ξp) =
1√
2π

1

p1+ 1
p

ξ
− 1

p
p

(
1 +

pξpω
′

(ξp)

ω(ξp)

) 1
2

(71)

and

βp =
1

ξp
, (72)

Proof. The functional equation (19) implies that y = b(x) satisfies the relation

y = exyp

ω(x). (73)

By Bender’s theorem applied to the function f(x, y) = y − exyp

ω(x), we have to find a solution (ξp, τp)
of the system

f(x, y) = 0 and fy(x, y) = 0. (74)

It is equivalent to say that ξp is solution of (68) and that pξpτ
p
p = 1. In fact, ξp is the radius of

convergence of b(x) and
√

ξp is radius of convergence of ω(x). It can be shown that 0 < ξp < 1 so

that 0 < ξp <
√

ξp < 1. Indeed, if ρp is the radius of convergence of the algebraic function θ(x)
defined by θ = 1 + xθp, then, using Lagrange Inversion Formula and Stirling’s Formula, we obtain
ρp = (p − 1)p−1/pp < 1, for p ≥ 2. Now, take a small fixed x > 0 and consider the two curves
z = ϕ1(y) = 1 + xyp and z = ϕ2 = exyp

ω(x) in the (y, z)-plane. Since ϕ1(y) < ϕ2(y), for y > 0, and
θ(x) = ϕ1(θ(x)) and b(x) = ϕ2(b(x)), we have that θ(x) < b(x). If x0 > ρp, we must have b(x0) = ∞ since
θ(x0) = ∞. This implies that ξp ≤ ρp. For p = 1 (k = 2), a similar argument with ϕ1(y) = 1+xy+xy2/2
shows that ξ1 ≤

√
2 − 1. Note also that from the recurrence (16) it follows that bn(p) is bounded by the

coefficient cn of the function c(x) defined by c = 1 + xck, so that we have ξp ≥ ρp+1 = pp/(p + 1)p+1, for
p ≥ 1.

Since fyy(ξp, τp) 6= 0, ξp is an algebraic singularity of degree 2 of b(x) and, for x near ξp, we have an
expression of the form

b(x) = τp,0 + τp,1(1 − x

ξp
)

1
2 + τp,2(1 − x

ξp
) + τp,3(1 − x

ξp
)

3
2 + · · · (75)

where

τp,0 = τp = b(ξp) =

(
1

pξp

) 1
p

, (76)

τp,1 = −
√

2

p1+ 1
p

ξ
− 1

p
p

(
1 +

pξpω
′

(ξp)

ω(ξp)

) 1
2

, (77)

τp,2 =
1

3p2+ 1
p

ξ
− 1

p
p

(
(2p + 3) − p(p − 3)

ξpω
′

(ξp)

ω(ξp)

)
. (78)

The asymptotic formula (70) with αp and βp given by (71) and (72) then follow from the fact that the
main term of the asymptotic behavior of the coefficients bn(p) of xn in (75) depends only on the term

τp,1(1 − x
ξp

)
1
2 in (75) and is given by

bn(p) ∼
(1

2

n

)
τp,1(−1)n 1

ξn
p

∼ αpβ
n
p n− 3

2 as n → ∞. (79)
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Note that numerical approximations of ξp, for fixed p, can be computed by iteration using (68), and a
suitable truncated polynomial approximation of b(x). We now state our main asymptotic result.

Proposition 17. Let p = k − 1. Then, the number ãn of k-gonal 2-trees on n unlabelled k-gons satisfy

ãn ∼ 1

2
ão,n, n → ∞, (80)

where ão,n is the number of oriented k-gonal 2-trees over n unlabelled polygons. Moreover,

ão,n ∼ αpβ
n
p n−5/2, n → ∞, (81)

where

αp = 2πp1+ 2
p ξ

2
p
p α3

p, (82)

=
1√
2π

1

p2+ 1
p

ξ
− 1

p
p

(
1 + p

ω
′

(ξp)

ω(ξp)

) 3
2

, (83)

and βp = 1
ξp

is the same growth as in Proposition 16.

Proof. The asymptotic formula (80) follows from the fact that the radius of convergence, ξp, of ã(x) is
equal to the radius of convergence of the dominating term 1

2 ão(x). This is due to the easily checked fact

that all terms in (39) and (66), except 1
2 ão(x), have a radius of convergence greater or equal to

√
ξp > ξp.

To establish (81), note first that, because of equation (23), the radius of convergence of ão(x) is equal to
the radius of convergence, ξp, of

b(x) − k − 1

k
xbk(x), (84)

where b(x) = B̃(x) and k = p + 1. This implies that the asymptotic behavior of the coefficients ão,n of
ão(x) is completely determined by that of (84). Substituting (75) into (84) and making use of (78) gives
the following expansion

b(x) − k − 1

k
xbk(x) = τp,0 + τp,1

(
1 − x

ξp

) 1
2

+ τp,2

(
1 − x

ξp

)
+ τp,3

(
1 − x

ξp

) 3
2

+ · · · (85)

where

τp,0 =
p

p + 1
τp,0, (86)

τp,1 = 0, (87)

τp,2 = −1

2

p(p + 1)τ2
p,1 − 2τ2

p,0

(p + 1)τp,0
, (88)

τp,3 = −1

6

τp,1(6pτp,0τp,2 + p(p − 1)τ2
p,1 − 6τ2

p,0)

τ2
p,0

, (89)

= −p

3

τ3
p,1

τ2
p,0

. (90)

This implies that the dominating term for the asymptotic behavior of the coefficients ãn,o of xn in ão(x)

depends only on the term τp,3

(
1 − x

ξp

) 3
2

in (85) and is given by

ãn,o ∼
(3

2

n

)
τp,3(−1)n 1

ξn
p

∼ αpβpn
− 5

2 , as n → ∞. (91)

Computations making use of (90), (76) and (77), show that αp is indeed given by (82) and (83).
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Our final result gives an explicit formula in terms of integer partitions for the common radius of
convergence ξp of the series B̃(x), ã(x) and ão(x) from which the growth constant βp = 1

ξp
is obtained.

We need the following special notations. If λ = (λ1 ≥ λ2 ≥ . . . ≥ λν) is a partition of an integer n in
ν parts, we write λ ⊢ n, n = |λ|, ν = l(λ), mi(λ) = |{j : λj = i}| = number of parts of size i in λ.
Furthermore, we put

σi(λ) =
∑

d|i

dmd(λ), σ∗
i (λ) =

∑

d|i,d<i

dmd(λ), (92)

λ̂ = 1 + |λ| + l(λ), ẑ(λ) = 2m1(λ)m1(λ)!3m2(λ)m2(λ)! . . . . (93)

Proposition 18. We have the convergent expansion

ξp =

∞∑

n=1

cn

pn
, (94)

where the coefficients cn are constants, independent of p, explicitely given by

cn =
∑

λ⊢n

e−λ̂

λ̂ẑ(λ)

∏

i≥1

(σi(λ) − λ̂)mi(λ)−1(σ∗
i (λ) − λ̂), (95)

where λ runs over the set of partitions of n.

Proof. We establish the explicit formulas (94) and (95) by applying first Lagrange inversion to the
equation ξ = zR(ξ) where z = 1

ep and R(t) = ω−p(t), to get

ξp = ξ =
∑

n≥1

γn

(
1

ep

)n

, and γn =
1

n
[tn−1]ω−np(t). (96)

Next, to explicitely evaluate ω−np(x), we use Labelle’s version ([15]) of the Good inversion formula in
the context of cycle index series as follows. We begin with

ωp(x) = exp(
1

2
px2bp(x2) +

1

3
px3bp(x3) + · · ·), (97)

= exp(
1

2
px2 +

1

3
px3 + · · ·) ◦ ZXBp(X)

∣∣∣∣
xi:=xi

(98)

where the ◦ denotes the plethystic substitution. Using (11), we can then write XBp(X) = A(pX)
p . This

implies that

ωp(x) = exp(
1

2
px2 +

1

3
px3 + · · ·) ◦ ZA(px1, px2, . . .)

p

∣∣∣∣
xi:=xi

, (99)

and we get

ω−np(x) = exp(−n

2
px2 −

n

3
px3 − · · ·) ◦

(
1

p
ZA(px1, px2, . . .)

) ∣∣∣∣
xi:=xi

(100)

= exp(−n

2
x2 −

n

3
x3 − · · ·) ◦ ZA(x1, x2, . . .)

∣∣∣∣
xi:=pxi

. (101)

Then, using Labelle’s inversion formula for cycle index series, we have, for any formal cycle index series
g(x1, x2, . . .)

[xn1
1 xn2

2 . . .] g ◦ ZA(x1, x2, . . .) = [tn1
1 tn2

2 . . .]g(t1, t2, . . .)

∞∏

i=1

(1 − ti) exp(ni(ti +
1

2
t2i + · · ·)), (102)
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and
∞∏

j=1

exp(nj(tj +
1

2
t2j + · · ·)) =

∞∏

i=1

exp(
∑

d|i

dnd
ti
i
). (103)

Taking g(x1, x2, . . .) = exp(− ν
2px2 − ν

3px3 − · · ·), gives, after some computations,

[xn1
1 xn2

2 . . .]
(
exp(−ν

2
x2 −

ν

3
x3 − · · ·) ◦ ZA

)
=






0 if n1 > 0,


∏

i≥2

(−ν +
∑

d|i

dnd)
ni−1(−ν +

∑

d|i,d<i

dnd)

2n2n2!3
n3n3! . . .


 if n1 = 0.

(104)

Making the substitution xi := pxi, for i = 1, 2, 3, . . ., gives the explicit formula

ω−νp(x) =
∑

n≥0




∑

2n2+3n3+···=n

pn2+n3+···

∏

i≥2

(−ν +
∑

d|i

dnd)
ni−1(−ν +

∑

d|i,d<i

dnd)

2n2n2!3n3n3! . . .


 xn.

This implies, taking ν = n and using (96), that

ξp =
∑

n≥1

1

n




∑

2n2+3n3+···=n−1

pn2+n3+···

∏

i≥2

(1 − n +
∑

d|i

dnd)
ni−1(1 − n +

∑

d|i,d<i

dnd)

2n2n2!3n3n3! . . .




(
1

ep

)n

,

=
∑

n≥1

cn

pn
,

where the coefficients cn, n ≥ 1, are given by (95).

Here are the first few values of the universal constants cn occuring in (94), for n = 1, . . . , 5.

c1 =
1

e
= 0.36787944117144232160,

c2 = −1

2

1

e3
= −0.02489353418393197149,

c3 =
1

8

1

e5
− 1

3

1

e4
= −0.00526296958802571004, (105)

c4 = − 1

48

1

e7
+

1

e6
− 1

4

1

e5
= 0.00077526788594593923,

c5 =
1

384

1

e9
− 4

3

1

e8
+

49

72

1

e7
− 1

5

1

e6
= 0.00032212622183609932.

Table 2 gives, to 12 decimal places, the constants ξp, αp, αp and βp = 1
ξp

for p = 1, . . . , 12.

Remark 1. The computations of this section are also valid for the case k = 2 (p = 1), corresponding to
the class of ordinary rooted trees (Cayley trees) defined by the functional equation A = XE(A). In this
case, the growth constant β = β1, in (70), is known as the Otter constant (see [21]). It is interesting to
note that this constant takes the explicit form β = 1

ξ1
, with

ξ1 =
∑

n≥1

cn. (106)
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p ξp αp αp βp

1 0.338321856899 1.300312124682 1.581185475409 2.955765285652
2 0.177099522303 0.349261381742 0.349261381742 5.646542616233
3 0.119674100436 0.191997258650 0.067390781222 8.356026879296
4 0.090334539604 0.131073637349 0.034020667269 11.069962877759
5 0.072539192528 0.099178841365 0.020427915489 13.785651110085
6 0.060597948397 0.079660456931 0.013601784466 16.502208844693
7 0.052031135998 0.066517090385 0.009699566188 19.219261329064
8 0.045585869619 0.057075912245 0.007262873797 21.936622211299
9 0.040561059517 0.049970993036 0.005640546218 24.654188324989
10 0.036533820306 0.044433135893 0.004506504206 27.371897918664
11 0.033233950789 0.039996691773 0.003682863427 30.089711763681

Table 2: Numerical values of ξp, αp, αp and βp, p = 1, . . . , 12

Acknowledgments

We thank the referees for correcting a mistake in Proposition 9 and for making many constructive sug-
gestions.

References

[1] P. Auger, G. Labelle and P. Leroux, Computing the molecular expansion of species with the
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Proceedings, Montréal, Québec, Lectures Notes in Mathematics, vol. 1234, Springer-Verlag, New-
York/Berlin, 160–176, (1985).

[16] G. Labelle and P. Leroux, Enumeration of (uni- or bi-colored) plane trees according to their degree
distribution, Discrete Mathematics, 157, 227–240, (1996).
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