# FREE QUASI-SYMMETRIC FUNCTIONS OF ARBITRARY LEVEL 

JEAN-CHRISTOPHE NOVELLI AND JEAN-YVES THIBON


#### Abstract

We introduce analogues of the Hopf algebra of Free quasi-symmetric functions with bases labelled by colored permutations. As applications, we recover in a simple way the descent algebras associated with wreath products $\Gamma \imath \mathfrak{S}_{n}$ and the corresponding generalizations of quasi-symmetric functions. Finally, we obtain Hopf algebras of colored parking functions, colored non-crossing partitions and parking functions of type $B$.


## 1. Introduction

The Hopf algebra of Free quasi-symmetric functions FQSym [3] is a certain algebra of noncommutative polynomials associated with the sequence $\left(\mathfrak{S}_{n}\right)_{n \geq 0}$ of all symmetric groups. It is connected by Hopf homomorphisms to several other important algebras associated with the same sequence of groups: Free symmetric functions (or coplactic algebra) FSym [19, 3], Non-commutative symmetric functions (or descent algebras) Sym [4, Quasi-Symmetric functions QSym [5], Symmetric functions Sym, and also, Planar binary trees PBT 11, 7, Matrix quasi-symmetric functions MQSym [3, 6], Parking functions PQSym [9, 16, and so on.

Among the many possible interpretations of Sym, we can mention the identification as the representation ring of the tower of algebras

$$
\begin{equation*}
\mathbb{C} \rightarrow \mathbb{C} \mathfrak{S}_{1} \rightarrow \mathbb{C} \mathfrak{S}_{2} \rightarrow \cdots \rightarrow \mathbb{C} \mathfrak{S}_{n} \rightarrow \cdots, \tag{1}
\end{equation*}
$$

that is

$$
\begin{equation*}
\text { Sym } \simeq \oplus_{n \geq 0} R\left(\mathbb{C} \mathfrak{S}_{n}\right), \tag{2}
\end{equation*}
$$

where $R\left(\mathbb{C} \mathfrak{S}_{n}\right)$ is the vector space spanned by isomorphism classes of irreducible representations of $\mathfrak{S}_{n}$, the ring operations being induced by direct sum and outer tensor product of representations (13].

Another important interpretation of Sym is as the support of Fock space representations of various infinite dimensional Lie algebras, in particular as the level 1 irreducible highest weight representations of $\widehat{\mathfrak{g} l_{\infty}}$ (the infinite rank Kac-Moody algebra of type $A_{\infty}$, with Dynkin diagram $\mathbb{Z}$, see [8]).

The analogous level $l$ representations of this algebra can also be naturally realized with products of $l$ copies of $S y m$, or as symmetric functions in $l$ independent sets of variables

$$
\begin{equation*}
(\operatorname{Sym})^{\otimes l} \simeq \operatorname{Sym}\left(X_{0} ; \ldots ; X_{l-1}\right)=: \operatorname{Sym}^{(l)}, \tag{3}
\end{equation*}
$$

and these algebras are themselves the representation rings of wreath product towers $\left(\Gamma \mathfrak{S _ { n }}\right)_{n \geq 0}$, $\Gamma$ being a group with $l$ conjugacy classes [13] (see also [26, 25]).

We shall therefore call for short $\operatorname{Sym}\left(X_{0} ; \ldots ; X_{l-1}\right)$ the algebra of symmetric functions of level $l$. Our aim is to associate with $S y m^{(l)}$ analogues of the various Hopf algebras mentionned at the beginning of this introduction.

We shall start with a level $l$ analogue of FQSym, whose bases are labelled by $l$-colored permutations. Imitating the embedding of Sym in FQSym, we obtain a Hopf subalgebra of level $l$ called $\mathbf{S y m}^{(l)}$, which turns out to be dual to Poirier's quasi-symmetric functions, and whose homogenous components can be endowed with an internal product, providing an analogue of Solomon's descent algebras for wreath products.

The Mantaci-Reutenauer descent algebra arises as a natural Hopf subalgebra of Sym ${ }^{(l)}$ and its dual is computed in a straightforward way by means of an appropriate Cauchy formula.

Finally, we introduce a Hopf algebra of colored parking functions, and use it to define Hopf algebras structures on parking functions and non-crossing partitions of type $B$.

Acknowledgements This research has been partially supported by EC's IHRP Programme, grant HPRN-CT-2001-00272, "Algebraic Combinatorics in Europe".

## 2. Free quasi-symmetric functions of Level $l$

2.1. l-colored standardization. We shall start with an $l$-colored alphabet

$$
\begin{equation*}
A=A^{0} \sqcup A^{1} \sqcup \cdots \sqcup A^{l-1}, \tag{4}
\end{equation*}
$$

such that all $A^{i}$ are of the same cardinality $N$, which will be assumed to be infinite in the sequel. Let $C$ be the alphabet $\left\{c_{0}, \ldots, c_{l-1}\right\}$ and $B$ be the auxiliary ordered alphabet $\{1,2, \ldots, N\}$ (the letter $C$ stands for colors and $B$ for basic) so that $A$ can be identified to the cartesian product $B \times C$ :

$$
\begin{equation*}
A \simeq B \times C=\{(b, c), b \in B, c \in C\} \tag{5}
\end{equation*}
$$

Let $w$ be a word in $A$, represented as $(v, u)$ with $v \in B^{*}$ and $u \in C^{*}$. Then the colored standardized word $\operatorname{Std}(w)$ of $w$ is

$$
\begin{equation*}
\operatorname{Std}(w):=(\operatorname{Std}(v), u) \tag{6}
\end{equation*}
$$

where $\operatorname{Std}(v)$ is the usual standardization on words.
Recall that the standardization process sends a word $w$ of length $n$ to a permutation $\operatorname{Std}(w) \in \mathfrak{S}_{n}$ called the standardized of $w$ defined as the permutation obtained by iteratively scanning $w$ from left to right, and labelling $1,2, \ldots$ the occurrences of its smallest letter, then numbering the occurrences of the next one, and so on. Alternatively, $\operatorname{Std}(w)$ is the permutation having the same inversions as $w$.
2.2. $\mathbf{F Q S y m}^{(l)}$ and FQSym $^{(\Gamma)}$. A colored permutation is a pair $(\sigma, u)$, with $\sigma \in \mathfrak{S}_{n}$ and $u \in C^{n}$, the integer $n$ being the size of this permutation.
Definition 2.1. The dual free l-quasi-ribbon $\mathbf{G}_{\sigma, u}$ labelled by a colored permutation $(\sigma, u)$ of size $n$ is the noncommutative polynomial

$$
\begin{equation*}
\mathbf{G}_{\sigma, u}:=\sum_{w \in A^{n} ; \mathbf{S t d}(w)=(\sigma, u)} w \in \mathbb{Z}\langle A\rangle . \tag{7}
\end{equation*}
$$

Recall that the convolution of two permutations $\sigma$ and $\mu$ is the set $\sigma * \mu$ (identified with the formal sum of its elements) of permutations $\tau$ such that the standardized word of the $|\sigma|$ first letters of $\tau$ is $\sigma$ and the standardized word of the remaining letters of $\tau$ is $\mu$ (see [21]).

Theorem 2.2. Let ( $\sigma^{\prime}, u^{\prime}$ ) and ( $\sigma^{\prime \prime}, u^{\prime \prime}$ ) be colored permutations. Then

$$
\begin{equation*}
\mathbf{G}_{\sigma^{\prime}, u^{\prime}} \mathbf{G}_{\sigma^{\prime \prime}, u^{\prime \prime}}=\sum_{\sigma \in \sigma^{\prime} * \sigma^{\prime \prime}} \mathbf{G}_{\sigma, u^{\prime} \cdot u^{\prime \prime}} \tag{8}
\end{equation*}
$$

where $w_{1} \cdot w_{2}$ is the word obtained by concatenating $w_{1}$ and $w_{2}$. Therefore, the dual free l-quasi-ribbons span a $\mathbb{Z}$-subalgebra of the free associative algebra.

Moreover, one defines a coproduct on the $\mathbf{G}$ functions by

$$
\begin{equation*}
\Delta \mathbf{G}_{\sigma, u}:=\sum_{i=0}^{n} \mathbf{G}_{(\sigma, u)_{[1, i]}} \otimes \mathbf{G}_{(\sigma, u)_{[i+1, n]}} \tag{9}
\end{equation*}
$$

where $n$ is the size of $\sigma$ and $(\sigma, u)_{[a, b]}$ is the standardized colored permutation of the pair $\left(\sigma^{\prime}, u^{\prime}\right)$ where $\sigma^{\prime}$ is the subword of $\sigma$ containing the letters of the interval $[a, b]$, and $u^{\prime}$ the corresponding subword of $u$.

For example,

$$
\begin{align*}
\Delta \mathbf{G}_{3142,2412}= & 1 \otimes \mathbf{G}_{3142,2412}+\mathbf{G}_{1,4} \otimes \mathbf{G}_{231,212}+\mathbf{G}_{12,42} \otimes \mathbf{G}_{12,21}  \tag{10}\\
& +\mathbf{G}_{312,242} \otimes \mathbf{G}_{1,1}+\mathbf{G}_{3142,2412} \otimes 1
\end{align*}
$$

Theorem 2.3. The coproduct is an algebra homomorphism, so that $\mathbf{F Q S y m}{ }^{(l)}$ is a graded bialgebra. Moreover, it is a Hopf algebra.

Definition 2.4. The free l-quasi-ribbon $\mathbf{F}_{\sigma, u}$ labelled by a colored permutation ( $\sigma, u$ ) is the noncommutative polynomial

$$
\begin{equation*}
\mathbf{F}_{\sigma, u}:=\mathbf{G}_{\sigma^{-1}, u \cdot \sigma^{-1}} \tag{11}
\end{equation*}
$$

where the action of a permutation on the right of a word permutes the positions of the letters of the word.

For example,

$$
\begin{equation*}
\mathbf{F}_{3142,2142}=\mathbf{G}_{2413,1422} . \tag{12}
\end{equation*}
$$

The product and coproduct of the $\mathbf{F}_{\sigma, u}$ can be easily described in terms of shifted shuffle and deconcatenation of colored permutations.

Let us define a scalar product on FQSym $^{(l)}$ by

$$
\begin{equation*}
\left\langle\mathbf{F}_{\sigma, u}, \mathbf{G}_{\sigma^{\prime}, u^{\prime}}\right\rangle:=\delta_{\sigma, \sigma^{\prime}} \delta_{u, u^{\prime}}, \tag{13}
\end{equation*}
$$

where $\delta$ is the Kronecker symbol.
Theorem 2.5. For any $U, V, W \in \mathbf{F Q S y m}^{(l)}$,

$$
\begin{equation*}
\langle\Delta U, V \otimes W\rangle=\langle U, V W\rangle \tag{14}
\end{equation*}
$$

so that, $\mathbf{F Q S y m}{ }^{(l)}$ is self-dual: the map $\mathbf{F}_{\sigma, u} \mapsto \mathbf{G}_{\sigma, u}{ }^{*}$ is an isomorphism from FQSym ${ }^{(l)}$ to its graded dual.

Note 2.6. Let $\phi$ be any bijection from $C$ to $C$, extended to words by concatenation. Then if one defines the free $l$-quasi-ribbon as

$$
\begin{equation*}
\mathbf{F}_{\sigma, u}:=\mathbf{G}_{\sigma^{-1}, \phi(u) \cdot \sigma^{-1}} \tag{15}
\end{equation*}
$$

the previous theorems remain valid since one only permutes the labels of the basis $\left(\mathbf{F}_{\sigma, u}\right)$.

Moreover, if $C$ has a group structure, the colored permutations $(\sigma, u) \in \mathfrak{S}_{n} \times C^{n}$ can be interpreted as elements of the semi-direct product $H_{n}:=\mathfrak{S}_{n} \ltimes C^{n}$ with multiplication rule

$$
\begin{equation*}
\left(\sigma ; c_{1}, \ldots, c_{n}\right) \cdot\left(\tau ; d_{1}, \ldots, d_{n}\right):=\left(\sigma \tau ; c_{\tau(1)} d_{1}, \ldots, c_{\tau(n)} d_{n}\right) \tag{16}
\end{equation*}
$$

In this case, one can choose $\phi(\gamma):=\gamma^{-1}$ and define the scalar product as before, so that the adjoint basis of the $\left(\mathbf{G}_{h}\right)$ becomes $\mathbf{F}_{h}:=\mathbf{G}_{h^{-1}}$. In the sequel, we will be mainly interested in the case $C:=\mathbb{Z} / l \mathbb{Z}$, and we will indeed make that choice for $\phi$.
2.3. Algebraic structure. Recall that a permutation $\sigma$ of size $n$ is connected [15, 3] if, for any $i<n$, the set $\{\sigma(1), \ldots, \sigma(i)\}$ is different from $\{1, \ldots, i\}$.

We denote by $\mathcal{C}$ the set of connected permutations, and by $c_{n}:=\left|\mathcal{C}_{n}\right|$ the number of such permutations in $\mathfrak{S}_{n}$. For later reference, we recall that the generating series of $c_{n}$ is

$$
c(t):=\sum_{n \geq 1} c_{n} t^{n}=1-\left(\sum_{n \geq 0} n!t^{n}\right)^{-1}=t+t^{2}+3 t^{3}+13 t^{4}+71 t^{5}+461 t^{6}+O\left(t^{7}\right) .
$$

Let the connected colored permutations be the $(\sigma, u)$ with $\sigma$ connected and $u$ arbitrary. Their generating series is given by $c(l t)$.

It follows from [3] that $\mathbf{F Q S y m}{ }^{(l)}$ is free over the set $\mathbf{G}_{\sigma, u}$ (or $\mathbf{F}_{\sigma, u}$ ), where $(\sigma, u)$ is connected.

Since FQSym ${ }^{(l)}$ is self-dual, it is also cofree.
2.4. Primitive elements. Let $\mathcal{L}^{(l)}$ be the primitive Lie algebra of $\mathbf{F Q S y m}{ }^{(l)}$. Since $\Delta$ is not cocommutative, FQSym $^{(l)}$ cannot be the universal enveloping algebra of $\mathcal{L}^{(l)}$. But since it is cofree, it is, according to [12], the universal enveloping dipterous algebra of its primitive part $\mathcal{L}^{(l)}$. Let $d_{n}=\operatorname{dim} \mathcal{L}_{n}^{(l)}$.

Recall that the shifted concatenation $w \bullet w^{\prime}$ of two elements $w$ and $w^{\prime}$ of $\mathbb{N}^{*}$, is the word obtained by concatenating to $w$ the word obtained by shifting all letters of $w^{\prime}$ by the length of $w$. We extend it to colored permutations by simply concatenating the colors and concatenating with shift the permutations. Let $\mathbf{G}^{\sigma, u}$ be the multiplicative basis defined by $\mathbf{G}^{\sigma, u}=\mathbf{G}_{\sigma_{1}, u_{1}} \cdots \mathbf{G}_{\sigma_{r}, u_{r}}$ where $(\sigma, u)=\left(\sigma_{1}, u_{1}\right) \bullet \cdots \bullet\left(\sigma_{r}, u_{r}\right)$ is the unique maximal factorization of $(\sigma, u) \in \mathfrak{S}_{n} \times C^{n}$ into connected colored permutations.

Proposition 2.7. Let $\mathbf{V}_{\sigma, u}$ be the adjoint basis of $\mathbf{G}^{\sigma, u}$. Then, the family $\left(\mathbf{V}_{\alpha, u}\right)_{\alpha \in \mathcal{C}}$ is a basis of $\mathcal{L}^{(l)}$. In particular, we have $d_{n}=l^{n} c_{n}$.

As in [3], we conjecture that $\mathcal{L}^{(l)}$ is free.

## 3. Non-COMmutative symmetric functions of level $l$

Following McMahon [14, we define an l-partite number $\mathbf{n}$ as a column vector in $\mathbb{N}^{l}$, and a vector composition of $\mathbf{n}$ of weight $|\mathbf{n}|:=\sum_{1}^{l} n_{i}$ and length $m$ as a $l \times m$ matrix I of nonnegative integers, with row sums vector $\mathbf{n}$ and no zero column.

For example,

$$
\mathbf{I}=\left(\begin{array}{llll}
1 & 0 & 2 & 1  \tag{17}\\
0 & 3 & 1 & 1 \\
4 & 2 & 1 & 3
\end{array}\right)
$$

is a vector composition (or a 3-composition, for short) of the 3-partite number $\left(\begin{array}{c}4 \\ 5 \\ 10\end{array}\right)$ of weight 19 and length 4.

For each $\mathbf{n} \in \mathbb{N}^{l}$ of weight $|\mathbf{n}|=n$, we define a level $l$ complete homogeneous symmetric function as

$$
\begin{equation*}
S_{\mathbf{n}}:=\sum_{u ;|u|_{i}=n_{i}} \mathbf{G}_{1 \cdots n, u} \tag{18}
\end{equation*}
$$

It is the sum of all possible colorings of the identity permutation with $n_{i}$ occurrences of color $i$ for each $i$.

Let $\mathbf{S y m}^{(l)}$ be the subalgebra of $\mathbf{F Q S y m}{ }^{(l)}$ generated by the $S_{\mathbf{n}}$ (with the convention $S_{\mathbf{0}}=1$ ). The Hilbert series of $\mathbf{S y m}{ }^{(l)}$ is easily found to be

$$
\begin{equation*}
S_{l}(t):=\sum_{n} \operatorname{dim} \operatorname{Sym}_{n}^{(l)} t^{n}=\frac{(1-t)^{l}}{2(1-t)^{l}-1} \tag{19}
\end{equation*}
$$

Theorem 3.1. $\mathbf{S y m}^{(l)}$ is free over the set $\left\{S_{\mathbf{n}},|\mathbf{n}|>0\right\}$. Moreover, $\mathbf{S y m}^{(l)}$ is a Hopf subalgebra of FQSym ${ }^{(l)}$.

The coproduct of the generators is given by

$$
\begin{equation*}
\Delta S_{\mathbf{n}}=\sum_{\mathbf{i}+\mathbf{j}=\mathbf{n}} S_{\mathbf{i}} \otimes S_{\mathbf{j}} \tag{20}
\end{equation*}
$$

where the sum $\mathbf{i}+\mathbf{j}$ is taken in the space $\mathbb{N}^{l}$. In particular, $\mathbf{S y m}^{(l)}$ is cocommutative.
We can therefore introduce the basis of products of level $l$ complete function, labelled by l-compositions

$$
\begin{equation*}
S^{\mathbf{I}}=S_{\mathbf{i}_{1}} \cdots S_{\mathbf{i}_{m}} \tag{21}
\end{equation*}
$$

where $\mathbf{i}_{1}, \cdots, \mathbf{i}_{m}$ are the columns of $\mathbf{I}$.
Theorem 3.2. If $C$ has a group structure, $\mathbf{S y m}_{n}^{(l)}$ becomes a subalgebra of $\mathbb{C}\left[C \imath \mathfrak{S}_{n}\right]$ under the identification $\mathbf{G}_{h} \mapsto h$.

This provides an analogue of Solomon's descent algebra for the wreath product $C \imath \mathfrak{S}_{n}$. The proof amounts to check that the Patras descent algebra of a graded bialgebra [17] can be adapted to $\mathbb{N}^{l}$-graded bialgebras.

As in the case $l=1$, we define the internal product $*$ as being opposite to the law induced by the group algebra. It can be computed by the following splitting formula, which is a straightforward generalization of the level 1 version.

Proposition 3.3. Let $\mu_{r}:\left(\mathbf{S y m}^{(l)}\right)^{\otimes r} \rightarrow \mathbf{S y m}^{(l)}$ be the product map. Let $\Delta^{(r)}$ : $\left(\mathbf{S y m}^{(l)}\right) \rightarrow\left(\mathbf{S y m}^{(l)}\right)^{\otimes r}$ be the $r$-fold coproduct, and $*_{r}$ be the extension of the internal product to $\left(\mathbf{S y m}^{(l)}\right)^{\otimes r}$. Then, for $F_{1}, \ldots, F_{r}$, and $G \in \mathbf{S y m}^{(l)}$,

$$
\begin{equation*}
\left(F_{1} \cdots F_{r}\right) * G=\mu_{r}\left[\left(F_{1} \otimes \cdots \otimes F_{r}\right) *_{r} \Delta^{(r)} G\right] \tag{22}
\end{equation*}
$$

The group law of $C$ is needed only for the evaluation of the product of one-part complete functions $S_{\mathbf{m}} * S_{\mathbf{n}}$.

Example 3.4. With $l=2$ and $C=\mathbb{Z} / 2 \mathbb{Z}$,

$$
\begin{aligned}
& \left.{ }_{S}\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) ~ * S ~\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right)=\mu_{2}\left[\left(S_{\binom{1}{1}}^{\otimes S} \text { ( } \begin{array}{l}
0 \\
1
\end{array}\right)\right) *_{2} \Delta S\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right)\right] \\
& =\left({ }_{S}\binom{1}{1}_{* S}\binom{2}{0}\right)\left({ }_{S}\binom{0}{1}_{* S}\binom{1}{0}\right)+\left({ }_{S}\binom{1}{1}_{* S}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)\left({ }_{S}\binom{0}{1}_{* S}\binom{1}{0}\right)
\end{aligned}
$$

Recall that the underlying colored alphabet $A$ can be seen as $A^{0} \sqcup \cdots \sqcup A^{l-1}$, with $A^{i}=\left\{a_{j}^{(i)}, j \geq 1\right\}$. Let $\mathbf{x}=\left(x^{(0)}, \ldots, x^{(l-1)}\right)$, where the $x^{(i)}$ are $l$ commuting variables. In terms of $A$, the generating function of the complete functions can be written as

$$
\begin{equation*}
\sigma_{\mathbf{x}}(A)=\prod_{i \geq 0}^{\overrightarrow{ }}\left(1-\sum_{0 \leq j \leq l-1} x^{(j)} a_{i}^{(j)}\right)^{-1}=\sum_{\mathbf{n}} S_{\mathbf{n}}(A) \mathbf{x}^{\mathbf{n}} \tag{23}
\end{equation*}
$$

where $\mathbf{x}^{\mathbf{n}}=\left(x^{(0)}\right)^{n_{0}} \cdots\left(x^{(l-1)}\right)^{n_{l-1}}$.
This realization gives rise to a Cauchy formula (see 10 for the $l=1$ case), which in turn allows one to identify the dual of $\mathbf{S y m}^{(l)}$ with an algebra introduced by S . Poirier in [18].

## 4. Quasi-symmetric functions of Level $l$

4.1. Cauchy formula of level $l$. Let $X=X^{0} \sqcup \cdots \sqcup X^{l-1}$, where $X^{i}=\left\{x_{j}^{(i)}, j \geq 1\right\}$ be an $l$-colored alphabet of commutative variables, also commuting with $A$. Imitating the level 1 case (see [3), we define the Cauchy kernel

$$
\begin{equation*}
K(X, A)=\prod_{j \geq 1} \sigma_{\left(x_{j}^{(0)}, \ldots, x_{j}^{(l-1)}\right)}(A) \tag{24}
\end{equation*}
$$

Expanding on the basis $S^{\mathbf{I}}$ of $\mathbf{S y m}^{(l)}$, we get as coefficients what can be called the level l monomial quasi-symmetric functions $M_{\mathbf{I}}(X)$

$$
\begin{equation*}
K(X, A)=\sum_{\mathbf{I}} M_{\mathbf{I}}(X) S^{\mathbf{I}}(A), \tag{25}
\end{equation*}
$$

defined by

$$
\begin{equation*}
M_{\mathbf{I}}(X)=\sum_{j_{1}<\cdots<j_{m}} \mathbf{x}_{j_{1}}^{\mathbf{i}_{1}} \cdots \mathbf{x}_{j_{m}}^{\mathbf{i}_{m}}, \tag{26}
\end{equation*}
$$

with $\mathbf{I}=\left(\mathbf{i}_{1}, \ldots, \mathbf{i}_{m}\right)$.
These last functions form a basis of a subalgebra $Q S^{(l)}{ }^{(l)}$ of $\mathbb{C}[X]$, which we shall call the algebra of quasi-symmetric functions of level l.
4.2. Poirier's Quasi-symmetric functions. The functions $M_{\mathbf{I}}(X)$ can be recognized as a basis of one of the algebras introduced by Poirier: the $M_{\mathrm{I}}$ coincide with the $M_{(C, v)}$ defined in [18], p. 324, formula (1), up to indexation.

Following Poirier, we introduce the level $l$ quasi-ribbon functions by summing over an order on $l$-compositions: an $l$-composition $C$ is finer than $C^{\prime}$, and we write $C \leq C^{\prime}$, if $C^{\prime}$ can be obtained by repeatedly summing up two consecutive columns of $C$ such that no non-zero element of the left one is strictly below a non-zero element of the right one.

This order can be described in a much easier and natural way if one recodes an $l$ composition $\mathbf{I}$ as a pair of words, the first one $d(\mathbf{I})$ being the set of sums of the elements of the first $k$ columns of $\mathbf{I}$, the second one $c(\mathbf{I})$ being obtained by concatenating the words $i^{\mathbf{I}_{i, j}}$ while reading of $\mathbf{I}$ by columns, from top to bottom and from left to right. For example, the 3-composition of Equation (17) satisfies

$$
\begin{equation*}
d(\mathbf{I})=\{5,10,14,19\} \quad \text { and } \quad c(\mathbf{I})=1333322233112312333 \tag{27}
\end{equation*}
$$

Moreover, this recoding is a bijection if the two words $d(\mathbf{I})$ and $c(\mathbf{I})$ are such that the descent set of $c(\mathbf{I})$ is a subset of $d(\mathbf{I})$. The order previously defined on $l$-compositions is in this context the inclusion order on sets $d:\left(d^{\prime}, c\right) \leq(d, c)$ iff $d^{\prime} \subseteq d$.

It allows us to define the level $l$ quasi-ribbon functions $F_{\mathbf{I}}$ by

$$
\begin{equation*}
F_{\mathbf{I}}=\sum_{\mathbf{I}^{\prime} \leq \mathbf{I}} M_{\mathbf{I}^{\prime}} \tag{28}
\end{equation*}
$$

Notice that this last description of the order $\leq$ is reminiscent of the order $\leq^{\prime}$ on descent sets used in the context of quasi-symmetric functions and non-commutative symmetric functions: more precisely, since it does not modify the word $c(\mathbf{I})$, the order $\leq$ restricted to $l$-compositions of weight $n$ amounts for $l^{n}$ copies of the order $\leq^{\prime}$. The computation of its Möbius function is therefore straightforward.

Moreover, one can directly obtain the $F_{\mathbf{I}}$ as the commutative image of certain $\mathbf{F}_{\sigma, u}$ : any pair $(\sigma, u)$ such that $\sigma$ has descent set $d(\mathbf{I})$ and $u=c(\mathbf{I})$ will do.

## 5. The Mantaci-Reutenauer algebra

Let $\mathbf{e}_{i}$ be the canonical basis of $\mathbb{N}^{l}$. For $n \geq 1$, let

$$
\begin{equation*}
S_{n}^{(i)}=S_{n \cdot \mathbf{e}_{i}} \in \mathbf{S y m}^{(l)} \tag{29}
\end{equation*}
$$

be the monochromatic complete symmetric functions.
Proposition 5.1. The $S_{n}^{(i)}$ generate a Hopf-subalgebra $\mathrm{MR}^{(l)}$ of $\mathbf{S y m}^{(l)}$, which is isomorphic to the Mantaci-Reutenauer descent algebra of the wreath products $\mathfrak{S}_{n}^{(l)}=$ $(\mathbb{Z} / l \mathbb{Z})$ て $\mathfrak{S}_{n}$.

It follows in particular that $\mathrm{MR}^{(l)}$ is stable under the composition product induced by the group structure of $\mathfrak{S}_{n}^{(l)}$. The bases of $\mathrm{MR}^{(l)}$ are labelled by colored compositions (see below).

The duality is easily worked out by means of the appropriate Cauchy kernel. The generating function of the complete functions is

$$
\begin{equation*}
\sigma_{\mathbf{x}}^{\mathrm{MR}}(A):=1+\sum_{j=0}^{l-1} \sum_{n \geq 1} S_{n}^{(j)} \cdot\left(x^{(j)}\right)^{n} \tag{30}
\end{equation*}
$$

and the Cauchy kernel is as usual

$$
\begin{equation*}
K^{\mathrm{MR}}(X, A)=\prod_{i \geq 1}^{\overrightarrow{ }} \sigma_{\mathbf{x}_{i}}^{\mathrm{MR}}(A)=\sum_{(I, u)} M_{(I, u)}(X) S^{(I, u)}(A) \tag{31}
\end{equation*}
$$

where $(I, u)$ runs over colored compositions $(I, u)=\left(\left(i_{1}, \ldots, i_{m}\right),\left(u_{1}, \ldots, u_{m}\right)\right)$ that is, pairs formed with a composition and a color vector of the same length. The $M_{I, u}$ are called the monochromatic monomial quasi-symmetric functions and satisfy

$$
\begin{equation*}
M_{(I, u)}(X)=\sum_{j_{1}<\cdots<j_{m}}\left(x_{j_{1}}^{\left(u_{1}\right)}\right)^{i_{1}} \cdots\left(x_{j_{m}}^{\left(u_{m}\right)}\right)^{i_{m}} . \tag{32}
\end{equation*}
$$

Proposition 5.2. The $M_{(I, u)}$ span a subalgebra of $\mathbb{C}[X]$ which can be identified with the graded dual of $\mathrm{MR}^{(l)}$ through the pairing

$$
\begin{equation*}
\left\langle M_{(I, u)}, S^{(J, v)}\right\rangle=\delta_{I, J} \delta_{u, v} \tag{33}
\end{equation*}
$$

where $\delta$ is the Kronecker symbol.
Note that this algebra can also be obtained by assuming the relations

$$
\begin{equation*}
x_{i}^{(p)} x_{i}^{(q)}=0, \text { for } p \neq q \tag{34}
\end{equation*}
$$

on the variables of $Q S y m^{(l)}$.
Baumann and Hohlweg have another construction of the dual of $\mathrm{MR}^{(l)}$ [2] (implicitly defined in [18, Lemma 11).

## 6. Level $l$ Parking quasi-Symmetric functions

6.1. Usual parking functions. Recall that a parking function on $[n]=\{1,2, \ldots, n\}$ is a word $\mathbf{a}=a_{1} a_{2} \cdots a_{n}$ of length $n$ on $[n]$ whose nondecreasing rearrangement $\mathbf{a}^{\uparrow}=a_{1}^{\prime} a_{2}^{\prime} \cdots a_{n}^{\prime}$ satisfies $a_{i}^{\prime} \leq i$ for all $i$. Let $\mathrm{PF}_{n}$ be the set of such words. It is well-known that $\left|\mathrm{PF}_{n}\right|=(n+1)^{n-1}$.

Gessel introduced in 1997 (see [24]) the notion of prime parking function. One says that a has a breakpoint at $b$ if $\left|\left\{\mathbf{a}_{i} \leq b\right\}\right|=b$. The set of all breakpoints of $\mathbf{a}$ is denoted by $B P(\mathbf{a})$. Then, $\mathbf{a} \in \mathrm{PF}_{n}$ is prime if $B P(\mathbf{a})=\{n\}$.

Let $\mathrm{PPF}_{n} \subset \mathrm{PF}_{n}$ be the set of prime parking functions on $[n]$. It can easily be shown that $\left|\mathrm{PPF}_{n}\right|=(n-1)^{n-1}$ (see [24]).

We will finally need one last notion: a has a match at $b$ if $\left|\left\{\mathbf{a}_{i}<b\right\}\right|=b-1$ and $\left|\left\{\mathbf{a}_{i} \leq b\right\}\right| \geq b$. The set of all matches of $\mathbf{a}$ is denoted by $M a(\mathbf{a})$.

We will now define generalizations of the usual parking functions to any level in such a way that they build up a Hopf algebra in the same way as in [16].
6.2. Colored parking functions. Let $l$ be an integer, representing the number of allowed colors. A colored parking function of level $l$ and size $n$ is a pair composed of a parking function of length $n$ and a word on $[l]$ of length $l$.

Since there is no restriction on the coloring, it is obvious that there are $l^{n}(n+1)^{n-1}$ colored parking functions of level $l$ and size $n$.

It is known that the convolution of two parking functions contains only parking functions, so one easily builds as in [16] an algebra PQSym ${ }^{(l)}$ indexed by colored parking functions:

$$
\begin{equation*}
\mathbf{G}_{\left(\mathbf{a}^{\prime}, u^{\prime}\right)} \mathbf{G}_{\left(\mathbf{a}^{\prime \prime}, u^{\prime \prime}\right)}=\sum_{\mathbf{a} \in \mathbf{a}^{\prime} * \mathbf{a}^{\prime \prime}} \mathbf{G}_{\left(\mathbf{a}, u^{\prime} \cdot u^{\prime \prime}\right)} \tag{35}
\end{equation*}
$$

Moreover, one defines a coproduct on the $\mathbf{G}$ functions by

$$
\begin{equation*}
\Delta \mathbf{G}_{(\mathbf{a}, u)}=\sum_{i \in B P(\mathbf{a})} \mathbf{G}_{(\mathbf{a}, u)_{[1, i]}} \otimes \mathbf{G}_{(\mathbf{a}, u)_{[i+1, n]}} \tag{36}
\end{equation*}
$$

where $n$ is the size of $\mathbf{a}$ and $(\mathbf{a}, u)_{[a, b]}$ is the parkized colored parking function of the pair $\left(\mathbf{a}^{\prime}, u^{\prime}\right)$ where $\mathbf{a}^{\prime}$ is the subword of a containing the letters of the interval $[a, b]$, and $u^{\prime}$ the corresponding subword of $u$.
Theorem 6.1. The coproduct is an algebra homomorphism, so that $\mathbf{P Q S y m}{ }^{(l)}$ is a graded bialgebra. Moreover, it is a Hopf algebra.
6.3. Parking functions of type $B$. In [20], Reiner defined non-crossing partitions of type $B$ by analogy to the classical case. In our context, he defined the level 2 case. It allowed him to derive, by analogy with a simple representation theoretical result, a definition of parking functions of type $B$ as the words on $[n]$ of size $n$.

We shall build another set of words, also enumerated by $n^{n}$ that sheds light on the relation between type- $A$ and type- $B$ parking functions and provides a natural Hopf algebra structure on the latter.

First, fix two colors $0<1$. We say that a pair of words $(\mathbf{a}, u)$ composed of a parking function and a binary colored word is a level 2 parking function if

- the only elements of a that can have color 1 are the matches of a.
- for all element of a of color 1, all letters equal to it and to its left also have color 1,
- all elements of a have at least once the color 0 .

For example, there are 27 level 2 parking functions of size 3: there are the 16 usual ones all with full color 0 , and the eleven new elements

$$
\begin{align*}
& (111,100),(111,110),(112,100),(121,100),(211,010) \\
& (113,100),(131,100),(311,010),(122,010),(212,100),(221,100) \tag{37}
\end{align*}
$$

The first time the first rule applies is with $n=4$, where one has to discard the words $(1122,0010)$ and $(1122,1010)$ since 2 is not a match of 1122 . On the other hand, both words $(1133,0010)$ and $(1133,1010)$ are $B_{4}$-parking functions since 1 and 3 are matches of 1133.

Theorem 6.2. The restriction of $\mathbf{P Q S y m}^{(2)}$ to the $\mathbf{G}$ elements indexed by level 2 parking functions is a Hopf subalgebra of PQSym ${ }^{(2)}$.
6.4. Non-crossing partitions of type $B$. Remark that in the level 1 case, noncrossing partitions are in bijection with non-decreasing parking functions. To extend this correspondence to type $B$, let us start with a non-decreasing parking function $\mathbf{b}$ (with no color). We factor it into the maximal shifted concatenation of prime nondecreasing parking functions, and we choose a color, here 0 or 1 , for each factor. We obtain in this way $\binom{2 n}{n}$ words $\pi$, which can be identified with type $B$ non-crossing partitions.

Let

$$
\begin{equation*}
\mathbf{P}^{\pi}=\sum_{\mathbf{a} \sim \pi} \mathbf{F}_{\mathbf{a}} \tag{38}
\end{equation*}
$$

where $\sim$ denotes equality up to rearrangement of the letters. Then,
Theorem 6.3. The $\mathbf{P}^{\pi}$, where $\pi$ runs over the above set of non-decreasing signed parking functions, form the basis of a cocommutative Hopf subalgebra of PQSym ${ }^{(2)}$.

All this can be extended to higher levels in a straightforward way: allow each prime non-decreasing parking function to choose any color among $l$ and use the factorization as above. Since non-decreasing parking functions are in bijection with Dyck words, the choice can be described as: each block of a Dyck word with no return-to-zero, chooses one color among $l$. In this version, the generating series is obviously given by

$$
\begin{equation*}
\frac{1}{1-l \frac{1-\sqrt{1-4 t}}{2}} . \tag{39}
\end{equation*}
$$

For $l=3$, we obtain the sequence A007854 of [22].

## References

[1] P. Biane, Parking functions of types $A$ and B, Electronic J. Combin. 9 (2002), \# 7.
[2] P. Baumann and C. Hohlweg, A Solomon-type epimorphism for Mantaci-Reutenauer's algebra of a wreath product $G \imath \mathfrak{S}_{n}$, in preparation.
[3] G. Duchamp, F. Hivert, and J.-Y. Thibon, Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras, Internat. J. Alg. Comput. 12 (2002), 671-717.
[4] I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, and J.-Y. Thibon, Noncommutative symmetric functions, Adv. in Math. 112 (1995), 218-348.
[5] I. Gessel, Multipartite P-partitions and inner products of skew Schur functions, [in "Combinatorics and algebra", C. Greene, Ed.], Contemporary Mathematics, 34 (1984), 289-301.
[6] F. Hivert, Combinatoire des fonctions quasi-symétriques, Thèse de Doctorat, Marne-LaVallée, 1999.
[7] F. Hivert, J.-C. Novelli, and J.-Y. Thibon, Un analogue du monoïde plaxique pour les arbres binaires de recherche, C. R. Acad. Sci. Paris Sér I Math. 332 (2002), 577-580.
[8] V. G. KAC, Infinite-dimensional Lie algebras, Cambridge Univ. Press, 1991.
[9] A. G. Konheim and B. Weiss, An oocupancy discipline and applications, SIAM J. Applied Math. 14 (1966), 1266-1274.
[10] D. Krob, B. Leclerc, and J.-Y. Thibon, Noncommutative symmetric functions II: Transformations of alphabets, Internal J. Alg. Comput. 7 (1997), 181-264.
[11] J.-L. Loday and M.O. Ronco, Hopf algebra of the planar binary trees, Adv. Math. 139 (1998) n. 2, 293-309.
[12] J.-L. Loday and M.O. Ronco, Algèbres de Hopf colibres, C. R. Acad. Sci. Paris Sér I Math. 337 (2003), 153-158.
[13] I.G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford University Press, 1995.
[14] P.A. McMahon, Combinatory analysis, Cambridge University Press, 1915, 1916; Chelsea reprint, 1960.
[15] R. Malvenuto and C. Reutenauer, A generalization of Solomon's descent algebra for hyperoctahedral groups and wreath products, Comm. Algebra 23 (1995), 27-56.
[16] J.-C. Novelli and J.-Y. Thibon, A Hopf Algebra of Parking Functions Proc. FPSAC'04 Conf., Vancouver.
[17] F. Patras, L'algèbre des descentes d'une bigèbre graduée, J. Algebra 170 ( 1994), 547-566.
[18] S. Poirier, Cycle type and descent set in wreath products, Disc. Math., 180 (1998), 315-343.
[19] S. Poirier and C. Reutenauer, Algèbre de Hopf des tableaux, Ann. Sci. Math. Québec 19 (1995), 79-90.
[20] V. Reiner, Non-crossing partitions for classical reflection groups, Preprint available at ftp://s6.math.umn.edu/pub/papers/reiner/
[21] C. Reutenauer, Free Lie algebras, Oxford University Press, 1993.
[22] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/
[23] R. P. Stanley, Parking functions and noncrossing partitions, Electronic J. Combin. 4 (1997), \# 2.
[24] R. P. Stanley, Enumerative combinatorics, vol. 2, Cambridge University Press, 1999.
[25] W. Wang, Vertex algebras and the class algebras of wreath products, Proc. London Math. Soc. 88 (2004), 381-404.
[26] A. V. Zelevinsky, Representations of finite classical groups. A Hopf algebra approach, Springer LNM 869, Springer-Verlag, Heidelberg, 1981.

Institut Gaspard Monge, Université de Marne-La-Vallée, 5 Boulevard Descartes, Champs-sur-Marne, 77454 Marne-La-Vallée cedex 2, FRANCE

E-mail address, Jean-Christophe Novelli: novelli@univ-mlv.fr
E-mail address, Jean-Yves Thibon: jyt@univ-mlv.fr

