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Abstract

Let P be a polygon whose vertices have been colored (labeled) cyclically
with the numbers 1, 2, . . . , c. Motivated by conjectures of Propp, we are led
to consider partitions of P into k-gons which are proper in the sense that
each k-gon contains all c colors on its vertices. Counting the number of
proper partitions involves a generalization of the k-Catalan numbers. We
also show that in certain cases, any proper partition can be obtained from
another by a sequence of moves called flips.

1 Introduction

Let N denote the nonnegative integers. In September of 2003, James Propp [8]
proposed a series of related problems to the Domino List, an email group discussing
matters related to tiling. One of the problems was as follows.

Conjecture 1.1 Suppose the vertices of a convex polygon P are labeled cyclically
1, 2, 1, 2, . . . Call a triangulation of P proper if no triangle is monochromatic and
let aN be the number of such triangulations if P has N + 2 vertices. Then

aN =























2n

2n + 1

(

3n

n

)

if N = 2n where n ∈ N,

2n+1

2n + 2

(

3n + 1

n

)

if N = 2n + 1 where n ∈ N.
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Figure 1: Two triangulations

Note that these counts are closely connected with the k-Catalan numbers defined
by

Cn,k =
1

(k − 1)n + 1

(

kn

n

)

for n, k ∈ N. The ordinary Catalan numbers are obtained when k = 2. More
information about Cn,k can be found in Stanley’s text [11, pp. 168-173].

We will prove Propp’s conjectures below. We will also generalize them to par-
titions of P involving k-gons for k ≥ 4. First, however, we need some terminology.
Let P be a convex polygon whose vertices have been colored (labeled) counter-
clockwise with the sequence 1, 2, . . . , c, 1, 2, . . . , c, . . . We will always draw P with
a horizontal edge at the top and start the coloring with the left endpoint of that
edge.

A partition of P is the graph π obtained by drawing some straight line segments
(chords) between vertices of P in a plane fashion, i.e., so that no two chords
intersect in P ’s interior. If all the bounded regions of this graph are k-gons then
it will be called a k-partition. A 3-partition will be referred to as a triangulation.
If a k-gon contains the top edge, then its standard reading will be the sequence of
its vertices read counterclockwise starting with the left vertex of the top edge.

A k-partition is proper if each k-gon contains all of the c colors among its
vertices. In the case of a triangulation with two colors, this means that no triangle
is monochromatic. Two triangulations of a pentagon are shown in Figure 1. The
one on the left is proper but the one on the right is not.

In the next section we will prove Propp’s triangulation conjectures. In fact, in
all cases we will give two proofs. One will involve generating functions and the
Lagrange Inversion Formula [11, Section 5.4]. The other will be combinatorial,
using objects counted by a generalization of the k-Catalan numbers. In Section 3,
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we will derive analogous formulae for partitions of P into k-gons for k ≥ 4.
Section 4 concerns flips. Suppose that two k-gons in a partition π share an edge

so that their union is a (2k− 2)-gon, Q. Then a partition π is connected to π by a
flip, written π ∼ π, if it agrees with π everywhere except that the chord of Q has
been replaced by another chord connecting two opposite vertices of Q. The two
triangulations in Figure 1 are connected by a flip where Q is the quadrilateral with
standard reading 1, 1, 2, 1. We will say that π and π are connected by a sequence
of flips if there is a sequence π = π0 ∼ π1 ∼ . . . ∼ πl = π. A well-known theorem
of K. Wagner [15] states that any two triangulations of a polygon (uncolored) are
connected by flips. In fact, Wagner’s theorem applies to the more general case
where one allows the set of vertices of the triangulations to include points interior
to the polygon. In Section 4 we show that any two k-partitions of P are connected
by a sequence of flips. However, if we insist that all the partitions in the sequence
be proper, called a proper flip sequence, only triangulations with two colors can
necessarily be connected. This answers a question of Propp [8]. We should note
that D. Thurston [14] has considered flips of two hexagons sharing two edges which
is equivalent to flipping a pair of dominos in a domino tiling.

The final section is devoted to comments and open questions.

2 Triangulations

We first prove Conjecture 1.1 which we restate here for convenience.

Theorem 2.1 Let aN be the number of proper triangulations of an (N + 2)-gon,
P, whose vertices have been colored cyclically with 1 and 2. Then

aN =























2n

2n + 1

(

3n

n

)

if N = 2n,

2n+1

2n + 2

(

3n + 1

n

)

if N = 2n + 1.

Proof We consider a single edge as a proper partition of itself so a0 = 1. Now
suppose N = 2n+1 > 0 and consider a proper triangulation π of P . The top edge
of P is labeled 11. So for π to be proper, that edge must be in a triangle with one
of the vertices labeled 2. Say this is the ith 2 in the standard reading of P , where
i ≥ 0 (so we start numbering with zero). Then the two sides of the triangle split
P into a (2i + 2)-gon and a (2n − 2i + 2)-gon which are properly triangulated by
π. This gives us the recursion

a2n+1 =

n
∑

i=0

a2ia2n−2i.
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Similarly if N = 2n > 0 we get

a2n =
2n−1
∑

i=0

aia2n−1−i.

Let x be a variable and consider the generating functions

A0 = A0(x) =
∑

n≥1

a2nxn,

A1 = A1(x) =
∑

n≥0

a2n+1x
n.

Converting the two recursions into generating function equations gives

A0 = 2x(1 + A0)A1,

A1 = (1 + A0)
2.

Plugging the second equation into the first we obtain A0 = 2x(1+A0)
3 which is easy

to solve by Lagrange Inversion. We use the notation [xn]A(x) for the coefficient of
xn in the generating function A(x). Then, for n ≥ 1, we get

a2n = [xn]A0 =
1

n
[xn−1]2n(1 + x)3n =

2n

n

(

3n

n − 1

)

which is equivalent to the first formula in the statement of the theorem. Similarly,
we can now use Lagrange Inversion on the formula for A1 in terms of A0 to obtain

a2n+1 = [xn]A1 =
1

n
[xn−1]2n(1 + x)3n · 2(1 + x) =

2n+1

n

(

3n + 1

n − 1

)

which again can be manipulated into the form given above.

When there are three colors, one can also compute the number of proper tri-
angulations. However, if the number of vertices of P is congruent to one modulo
three, then the cyclical labeling will result in the top edge being labeled 11 and
so there can be no proper triangulations. So in that case, we modify the labeling
so that the last vertex in the standard reading of P is labeled 2. The proof of the
next result is so similar to the one just given, we omit it.

Theorem 2.2 Let bN be the number of proper triangulations of an (N + 2)-gon,
P , whose vertices have been colored cyclically with 1, 2, and 3 (with the last vertex
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colored 2 if N + 2 is congruent to one modulo 3). Then

bN =











































1

3n + 1

(

4n

n

)

if N = 3n,

2

3n + 2

(

4n + 1

n

)

if N = 3n + 1,

3

3n + 3

(

4n + 2

n

)

if N = 3n + 2.

We would now like to give combinatorial proofs of these results. To do this, we
recall one of the standard combinatorial interpretations of the k-Catalan numbers.
If P is a polygon with N + 2 uncolored vertices then Cn,k is just the number
of partitions of P into n polygons each having k + 1 vertices provided such a
partition is possible, i.e., when N = n(k−1). We now show that certain uncolored
partitions are related to proper partitions. (Trivially, uncolored partitions are just
proper partitions with only one color, but we seek something more substantial.)
This proof in the case k = 3 was discovered independently by Yuliy Baryshnikov
(as communicated by Propp [8]).

Theorem 2.3 We have

a2n = 2nCn,3,

b3n = Cn,4.

Proof Of course these results follow immediately from the previous two theorems,
but we wish to give a combinatorial proof.

First consider the statement abou a2n. It suffices to give a 2n-to-1 map from
proper triangulations π of a 2-colored N -gon P , where N = 2n + 2, to partitions
of P into quadrilaterals. Since π is proper, every triangle has exactly one edge
whose endpoints are the same color. It follows that if we remove these edges then
the result is a partition π′ of P into n quadrilaterals.

Now take an arbitrary 4-partition π′ of P . To show that π′ occurs 2n times in
the image of our map, note that any quadrilateral Q appearing in P must have
the colors on its vertices alternate. This is because if some edge of Q had both
endpoints of the same color, then that chord would cut off a subpolygon of P with
an odd number of vertices and it would be impossible to partition that part of P
into quadrilaterals. It follows that the inverse image of π′ consists of all π which
can be obtained by adding back either of the two diagonals in each quadrilateral.
Since there are n quadrilaterals, the map is 2n-to-1 as claimed.
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To obtain the formula for b3n we need a bijection between proper triangulations
π of a 3-colored N -gon P , where N = 3n + 2, to partitions of P into pentagons.
Given π, consider the triangle T containing the top edge which is colored 12. Then
the third vertex of T must be colored 3. Now there is a unique second triangle
T ′ containing the 13 edge and a unique third triangle T ′′ containing the 23 edge.
The union of these three triangles forms a pentagon whose standard reading is
1, 2, 3, 1, 2. Furthermore, each of the subpolygons of P outside this pentagon have
3n′+2 vertices for some n′ (depending on the subpolygon) and are cyclically labeled
in the same way as P up to a permutation of the colors. It follows that we can
iterate this construction to find a partition π′ of P into pentagons.

To construct the inverse map, suppose we are given a pentagon partition π′.
Then in each pentagon R of π′ will have its vertices colored cyclically as i, i+1, i+
2, i+3, i+4 for some 1 ≤ i ≤ 3 where we are adding modulo three. It follows that
there will be a single color j which appears only once among the vertices of R and
the other two colors will both appear twice. So there is a unique way of making a
proper triangulation of R, namely by adding the two chords containing the vertex
colored j. Doing this in each pentagon, produces the inverse map.

We would also like to have noncolored analogues of the aN ’s and bN ’s which do
not correspond to k-Catalan numbers. Let d ∈ N. Let P be a polygon rooted at
an edge which we will always take to be the top edge. A (k, d)-partition of P is
a partition such that all the regions are k-gons except for the one containing the
root edge which is a d-gon. By convention if d = 2 then, since the root edge is the
only edge containing itself, we just have an ordinary k-partition of P . Define the
(k, d)-Catalan number to be

Cn,k,d =
d

(k − 1)n + d

(

kn + d − 1

n

)

.

Note that Cn,k,1 = Cn,k. The numbers Cn,3,d have appeared in the work of Brown
on nonseparable planar maps [2]; Deutsch, Feretic and Noy on directed polyomi-
noes [3]; and of Noy on noncrossing trees [7]. As far as we know, combinatorial
interpretations have not been given to the other Cn,k,d.

The following result generalizes the k-partition interpretation of Cn,k. Similar
generalizations can be given for other interpretations of the k-Catalan numbers.

Theorem 2.4 For n ≥ 0, d ≥ 1 and k ≥ 2, let P be a rooted polygon with
n(k − 1) + d + 1 uncolored vertices. Then

Cn,k,d = number of (k + 1, d + 1)-partitions of P into n regions which are k-gons.
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Proof The proof is much like that of Theorem 2.1 so we will just sketch it. Con-
sidering the way the (d + 1)-gon splits P leads to a recursion for en,k,d which is
defined to be the right side of the above equation. Letting

E1 = E1(x) =
∑

n≥1

en(k−1)+2x
n,

Ed = Ed(x) =
∑

n≥0

en(k−1)+d+1x
n,

for d ≥ 2 we get functional equations

E1 = x(1 + E1)
k

Ed = (1 + E1)
d.

Using Lagrange Inversion completes the proof.

Now we can give a more definitive version of Theorem 2.3

Theorem 2.5 For d = 1, 2 we have

a2n+d−1 = 2nCn,3,d.

For d = 1, 2, 3 we have
b3n+d−1 = Cn,4,d.

Proof As before, we are done if we appeal to our previous theorems but we wish
to give a combinatorial proof. The proof is similar to that of Theorem 2.3. The
only difference for a2n+1 is that there are now an odd number of triangles. So
the triangle containing the root edge is not paired with anything, becoming the
triangle in the rooted partition counted by Cn,3,2.

The same idea works for b3n+1 and Cn,4,2. In the case of b3n+2, one notes that
the top edge is labeled 12 so that the triangle containing it has 13 as a chord of P .
Pairing this triangle with the one on the opposite side of the 13 chord gives the
necessary quadrilateral for Cn,4,3. Note that this quadrilateral must have vertices
1, 2, 3, 2 in the standard reading and the remaining triangles can be grouped in
triples to form pentagons as in the proof of Theorem 2.3. Now to construct the
inverse, the labeling of P forces the quadrilateral in the rooted partition to have
the standard reading just given in order for the rest of P to be partitionable into
pentagons. Finally, each pentagon can be dissected into triangles, again as in the
proof of Theorem 2.3.
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3 Partitions with k ≥ 4

Throughout this section we will assume that c = k ≥ 4. It will also simplify
notation to write the k-Catalan numbers as

Cn,k =
1

n

(

kn

n − 1

)

.

This is equivalent to the original definition except when n = 0 in which case the
latter is not well defined.

Theorem 3.1 Let cN be the number of proper k-partitions of an (N + 2)-gon,
P , whose vertices have been colored cyclically with 1, 2, . . . , k where k ≥ 4. Then
c0 = 1 and for N ≥ 1

cN =







































1

n

(

(k − 1)2n

n − 1

)

if N = (k − 2)kn,

k − 1

n

(

(k − 1)2n + (k − 2)

n − 1

)

if N = (k − 2)(kn + 1),

0 else.

Proof There does not exist any k-partition of P if k − 2 does not divide N , so
clearly cN = 0 in this case. Thus we may assume that M = N/(k−2) is an integer.
Dividing M by k we can write M = kn + r for some n ≥ 0 and 0 ≤ r < k.

We claim that cN = 0 if r 6= 0, 1. We prove this by induction. Proceeding as
in the proof of Theorem 2.1 we have

cN =
∑

N1+···Nk−1=N−(k−2)

cN1
· · · cNk−1

.

Suppose a term in the sum is nonzero, forcing Ni to be divisible by k − 2 for
1 ≤ i ≤ k − 1. So we write Ni/(k − 2) = Mi = kni + ri for each i. Also we may
assume that ri = 0 or 1 for each i, either by induction or by direct inspection in
the base case N = 2(k − 2). If we have both an ri = 0 and an rj = 1 then in
the sequence r1, . . . , rk−1 we must have a zero followed by a one or vice-versa. But
then in the k-gon containing the top edge, the edges corresponding to these two cNi

form a path of length two whose endpoints have the same color because they are
at a distance which is a multiple of k counterclockwise along P . So the partition
is not proper, contradicting the fact that the term is nonzero. So the only other
possibility is that ri = 0 for all i or ri = 1 for all i which correspond to r = 1 or
r = 0 since the Ni sum to N − (k − 2).

8



The rest of the proof proceeds as in Theorem 2.1. One defines generating
functions

C0 = C0(x) =
∑

n≥1

c(k−2)knxn,

C1 = C1(x) =
∑

n≥0

c(k−2)(kn+1)x
n

which satisfy functional equations

C0 = xCk−1
1 ,

C1 = (C0 + 1)k−1.

Lagrange Inversion completes the proof.

Again, we can give a combinatorial proof of the portion of the previous theorem
related to the (k, d)-Catalan numbers.

Theorem 3.2 We have

c(k−2)kn = Cn,(k−1)2,1,
c(k−2)(kn+1) = Cn,(k−1)2,k−1.

Proof For the first equality, it suffices to find a bijection between proper k-
partitions π of a polygon P with (k − 2)kn + 2 vertices and uncolored partitions
π′ of P into subpolygons with (k − 1)2 + 1 = (k − 2)k + 2 vertices. Given π, con-
sider the k-gon, Q, containing the top edge. From the combinatorial part of the
proof of the previous theorem, cN is a sum of products of cNi

where the associated
remainders satisfy ri = 1 for all i. It follows that the vertices of Q read counter-
clockwise are 1, k, k − 1, . . . , 2. Now glue the k-gons sharing an edge with Q onto
Q to form a polygon R with (k−2)k+2 vertices. Similar considerations show that
R’s vertices read counterclockwise will be the same as the usual color ordering we
use for polygons. So we can remove R from P and iterate this construction. The
collection of R’s obtained form the desired partition π′.

To obtain the inverse map, consider a [(k−2)k+2]-partition π′ of P . Then each
subpolygon R will be labeled in the usual coloring order up to a permutation of the
colors. So there is a unique proper k-partition of R, namely the one obtained by
drawing a chord from the 1 of the top edge to the first k going counterclockwise,
then another chord from that k to the next possible k − 1 going in the same
direction, and so forth (assuming for the sake of the description that the color
permutation is the identity). Once all of the R’s have been partitioned in this
manner, one obtains a proper k-partition π of P . It is easy to see that this is
indeed the inverse, so we are done.
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Figure 2: From partitions to trees

For the second inequality, note that the number of k-gons in π will be one more
than a multiple of k. So we will be able to glue them together as before except
that one, the root polygon, will be left over. In other regards, we have essentially
the same bijection.

4 Flips

We will first consider uncolored partitions. It will be useful to use one of the
other combinatorial interpretations of Cn,k in terms of k-ary trees [11]. A k-ary
tree, T , is a rooted, plane tree where each vertex has either k children or no
children. The former vertices are called internal and the latter leaves. The subtree
Tv of T generated by a vertex v consists of v and all its descendants. If v is an
internal vertex then we let v′, v′′, . . . , v(k) be its children listed left to right and let
T ′

v, T
′′
v , . . . , T

(k)
v denote the trees the trees they generate, respectively. Vertex v′ is

called the first or leftmost child of v while v(k) is the last or rightmost.
It is well-known that Cn,k counts the number of k-ary trees with n internal

vertices. In fact, there is a bijection between the partitions and trees counted by
Cn,k which we will need. Given at partition π of polygon P , put a tree vertex in
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Figure 3: Flips when k = 3

every edge of π, including the edges of P . Now pick an edge of P to contain the root
vertex r of T . We will always pick the top edge. Start to build T by connecting r to
each of the vertices in the other edges bounding the face containing the root edge
of P . This process can be iterated, using the vertices currently adjacent to r as
roots of subtrees of T . An example of this construction applied to the partitions of
Figure 1 will be found in Figure 2. When the tree is superimposed on the partition,
it is shown in gray. It is not hard to construct the inverse for this map and thus
show it is a bijection.

We need to see what a flip does when translated into the language of trees via
this bijection. Let T be a tree and select a vertex v and one of its children x = v(i).
Consider the pairwise disjoint subtrees

T ′
v, T

′′
v , . . . , T (i−1)

v , T ′
x, T

′′
x , . . . , T (k)

x , T (i+1)
v , T (i+2)

v , . . . , T (k)
v

listed left to right in the order in which they are encountered in T (i.e., in depth-
first order). Then a tree T is a flip of T , written T ∼ T if it is isomorphic to T
outside of Tv and there is some child y of v such that when one makes the list
in T for y corresponding to the above list in T for x, then corresponding trees
in the two lists are isomorphic. For example, Figure 3 shows the situation when
k = 3. Notice that the vertices labeled 1, 2, 3, 4, 5 actually stand for the subtrees
generated by those vertices.

In order to show that all k-ary trees with n internal vertices are connected by
flips, we will need the following statistic on trees. The left path P of T will be
the unique path starting at r and continuing by always taking the leftmost child.
Let l(T ) denote the length of this path. The left comb, C, is the unique tree on
n internal vertices such that l(C) = n. The first tree in Figure 2 is the left comb
when n = 3.
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Theorem 4.1 Let T, T be two k-ary trees with n internal vertices. Then T and
T are connected by a sequence of flips.

Proof It suffices to show that any T can be connected to the left comb C by a
sequence of flips. We induct on n. If n = 1 there is nothing to prove. Notice that
l(T ) ≤ l(C) for all k-ary T with n internal vertices, with equality if and only if
T = C. So it suffices to prove that if T 6= C then there is a flip such that the
resulting T has l(T ) > l(T ). Since T 6= C there is some vertex v on the left path
of T having a child x such that x 6= v′ and x is internal. Using y = v′ for the flip
creates the desired T .

We will now show that when c = 2 then any two proper triangulations of P
are connect by a proper sequence of flips. This can be done by using the previous
result and our interpretation of colored triangulations in terms of noncolored ones.
But we prefer a direct proof which will entail a nice characterization of the corre-
sponding proper trees. Let a binary tree T be proper if it corresponds to a proper
triangulation under the bijection between all triangulations and all binary trees.
Then the following result is easy to prove by induction on the number of internal
nodes, so it’s proof is omitted. In it, m(T ) stands for the number of edges of T .

Lemma 4.2 A binary tree T is proper if and only if for each internal vertex v
either m(T ′

v) or m(T ′′
v ) is divisible by four.

We now get a flip connection result for proper binary trees.

Theorem 4.3 Let T, T be proper binary trees with n internal nodes. Then there
is a proper sequence of flips connecting them.

One can prove this by combining the ideas behind Theorems 2.5 and 4.1. Here we
will present an alternative direct proof. As in the demonstration of Theorem 4.1,
it suffices to show that given T 6= C then we can connect it by a proper sequence
to some tree U where l(U) > l(T ). Let x and y be the right and left children of the
root r, respectively. By induction, we can turn Tx and Ty into combs by a proper
sequence. Call the result V . If l(V ) > l(T ) then we are done.

Otherwise, note that x is internal and V ′′
x is a single vertex. If m(Vy) or m(V ′

x)
is divisible by four then, by the previous lemma, we can apply a flip with v = r
and x, y playing the same roles they did in the definition to obtain a proper tree
U with l(U) > l(T ). If both m(Vy) and m(V ′

x) have remainder two on division by
four, then do a flip with x, x′ and x′′ taking the roles of v, x and y, respectively.
The resulting tree W is proper and now doing the flip with v = r and x, y as usual
gives the desired tree V .
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Connectivity by a proper sequence of flips breaks down for c = k ≥ 3. For
example, c(k−2)(k+1) counts the (k − 1)-ary trees with k + 1 internal vertices where
the root has exactly one internal child and that child has k internal children.
Clearly none of these are connected by a flip.

5 Comments and open problems

5.1 Other labelings

Propp [8] also conjectured a formula for the number of proper triangulations of a
polygon colored so that the standard reading is m ones followed by n twos, denoted
1m, 2n. We prove it now.

Proposition 5.1 Let dm,n be the number of proper triangulations of a polygon P
colored 1m, 2n. Then

dm,n =

(

m + n − 2

m − 1

)

.

Proof If the triangle containing the top edge does not have one of the two nodes
adjacent to that edge as its third vertex, then it will split P into two parts one
of which will be monochromatic making further subdivision impossible. This ob-
servation leads to the recursion dm,n = dm−1,n + dm,n−1 which, in conjunction with
the boundary values d1,n = dm,1 = 1, yields the result.

This raises the possibility that there may be other colorings of P which will
lead to nice enumerations of the corresponding proper partitions. One can not
generalize the previous proposition directly because for c ≥ 3 colors arranged in c
blocks it is easy to see that there are no possible proper partitions. But it would
be interesting to find other arrangements of colors which do yield nice formulae.
Note that we had to modify the cyclical labeling to get b3n+2 to be nonzero in
Theorem 2.2. Perhaps there are also modifications which will do away with the
zero values in Theorem 3.1.

5.2 The case c < k

The reader will have noticed that, while we permit c < k in the definition of
proper, we only stated any results for this case when k = 3. This is because other
values lead to sequences which do not seem to be tractable. By way of illustration,
suppose c = 3 and k = 4. Then the recursions for the corresponding sequence
do not appear to translate into simple expressions for the associated generatiing
functions. Furthermore, the sequence is not in Sloane’s Encyclopedia of Integer
Sequences [10]. So this avenue does not look promising.
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5.3 Other definitions

Our definition of proper was carefully chosen to cover all cases found so far where
enumeration in closed form is possible. But it is conceivable that other definitions
would also yield interesting results. For example, one might try defining proper to
mean that no k-gon is monochromatic. Unfortunately, this does not seem to bear
fruit. For example, suppose that c = k = 3 and that P is an (N + 2)-gon with the
usual cyclic coloring. Let

b′N = number of triangulations of P with no triangle monochromatic.

Then proceeding in the usual way using recursions, one is led to solving the fol-
lowing system of generating function equations

B0 = 2x(1 + B0)B2 + xB2
1 ,

B1 = (1 + B0)
2 + 2xB1B2,

B2 = 2B1(1 + B0).

Handing the problem to Mathematica results in an output where the solution
depends on solving a quintic equation. And the sequence b′N is not in Sloane.

Another approach to obtaining more results would be to extend the definition
of proper to c > k by saying that in this case each k-gon needs to have k different
colors on its vertices. We have checked the case c = 4 and k = 3, but run up
against the same problem as in the previous paragraph. However, it seems that
there should be some definition of proper which would give colored versions of all
the (k, d)-Catalan numbers and not just those with parameters ((k − 1)2, 1) or
((k − 1)2, k − 1).

5.4 Eliminating induction

In the proof of Theorem 2.3 the proof that a2n = 2nCn,3 was a global construc-
tion involving flipping the diagonals of quadrilaterals. By contrast the proof of
b3n = Cn,4, while still combinatorial, was inductive. It would be pleasing to have
a noninductive proof of the later result. The same applies to the identities in
Theorem 3.2.

5.5 Proper flip sequences

It is disappointing that two proper trees can only be connected by a sequence of
proper flips in the case c = 2, k = 3. But perhaps there are some other simple
moves which would suffice to connect proper trees in more cases. The trees in the
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counterexample at the end of the previous section are all connected by rotations
about the root. There are still examples where even flipping and rotation are not
enough to connect all pairs of proper trees. But maybe a careful analysis would
lead to a small set of moves which would work.

5.6 Tamari lattices

One can put a partial order on the set of binary trees with a given number of nodes
by using the flips as the covering relations where T is covered by U if the flip taking
T to U has x = v′ and y = v′′ (in the notation of the flip definition). These posets
are in fact lattices and have have been the object of study of a number of authors,
including Blass and Sagan [1], Edelman and Reiner [4], Friedman and Tamari [5],
Geyer [6], Reading [9], and Thomas [12]. Thomas and Armstrong [13] have been
looking at the analogous structure for k-ary trees.
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