
FORM Matters: Fast Symbolic Computation under UNIX

Michael M. Tung∗

Instituto de Mateḿatica Multidisciplinar
Universidad Polit́ecnica de Valencia

P.O. Box 22.012, Valencia, Spain

Abstract

We give a brief introduction to FORM, a symbolic programming language for massive batch operations, designed
by J.A.M. Vermaseren. In particular, we stress various methods to efficiently use FORM under the UNIX operating
system. Several scripts and examples are given, and suggestions on how to use the vim editor as development
platform.

Keywords: Computer algebra, FORM programming, UNIX

In the past few years, we have experienced rapid
progress in the field of computer algebra on desktop
PCs. Only two decades ago, many algebraic compu-
tations would have been thought impossible to perform
on machines other than supercomputer powerhorses. To-
day, every college student is accustomed to solving his
math or physics homework assignments with comfort-
able computer-algebra environments such as Mathemat-
ica, Maple V, Macsyma, and Reduce—just to name the
most prominent of such programs.

These modern computer-algebra systems incorporate
a vast amount of mathematical knowledge, ranging from
extensive integral tables, to obscure properties of special
functions and fancy graphical output. However, there are
some drawbacks. Although almost all of these mathemat-
ical geniuses contain high-precision routines to give nu-
merical output, very few people would seriously employ
them for full-scale number crunching in a larger project.
For maximum performance, they will rather choose FOR-
TRAN or C/C++ for efficient coding, and link only es-
sential libraries to their programs at runtime. This avoids
unwanted overhead and results in executable code which
is small and fast.

Similar conditions hold also for a certain class of alge-
bra problems: some algebraic computations rather rely on
processing large amounts of symbolic data than making
use of encyclopedic mathematical knowledge. For this
kind of formula crunching, we require an environment
with as little overhead as possible. Here, one has to sac-
rifice mathematical versatility and sophisticated graphical
user interfaces for brute speed and efficiency.

If you have to tackle such problems, consider to use
FORM, an algebraic programming language that was
specifically designed to manipulate large formulae. Jos
A.M. Vermaseren at NIKHEF (the Dutch Institute for Nu-
clear and High-Energy Physics) created FORM by the end
of the 80’s to perform large algebraic calculations in his
own research, based on a previous project by the Dutch
physicist and Nobel prize laureate Martinus J.G. Veltman.

Initially, only the FORM binaries of the first release
1.0 were available to the public for free. For some time
later versions 2.x of FORM (introduced in 1991) were
commercial and sold by Computer Algebra Netherlands.
Now, fortunately and to great benefit of the scientific com-
munity, release 3.1 (dated January 30, 2003) is again
available for download under the condition that it may not
be used for commercial purposes [1].

The latest release 3.1 has many new features and the
C code has been substantially rewritten improving speed
and efficiency.

In passing from FORM 1 to FORM 2 pattern match-
ing and manipulation was improved, and since then com-
pression is used to store intermediate and final results on
disk. With FORM 3 came many additional enhancements,
among them most notably dynamical variable administra-
tion (with an upper limit of 6000 variables for 32-bit sys-
tems!), recursive preprocessor variables and new charac-
ter string variables [2].

In the following, we guide you through a quick instal-
lation of FORM, give you a concise introduction to the ba-
sics of its programming language (common to all releases

∗email: mtung@mat.upv.es M.M. Tung: Computers & Mathematics with Applications 2004

mailto:mtung@mat.upv.es

M.M. Tung: Computers & Mathematics with Applications 2004

of FORM), and finally show you how to use the vim editor
as a powerful workbench for FORM development.

Installation

Installation of FORM is fairly easy. As FORM is written
in C, it has been compiled on many UNIX variants (e.g.
HP, SGI, Solaris, MacOSX, and Alpha architecture).The
latest executables for FORM are available for download at
NIKHEF’s FORM website [1]. The Linux executable is of
release 3.1, dated January 2003. It is statically linked for
GNU/Linux 2.2.5 and will normally run on older Linux
systems. Release versions prior to version 3 are to be
found at NIKHEF’s ftp site [3, 4]. However, these bi-
naries are dynamically linked to the older libc.so library
and will only execute on newer glibc2 systems with back-
wards compatibility.

After the download, place the binary somewhere into
your path, perhaps/usr/local/bin and don’t forget
to set itchmod 755 . In the following, we will assume
that you have named the binaryform3.1 . Test at this
stage that you get the following output, when entering
form3.1 :

Correct use is ’form [-options]
➯ inputfile’

FORM runs exclusively in batch mode working through
a list of commands given in the input file. Unfortunately,
there is no-h option to present you with more informa-
tion. The FORM Manual, which is also available in PDF
format at NIKHEF’s site, gives further details [5].

Fortunately, there are only a few important options
that are relevant for setting up things correctly: The op-
tion -s <filename> specifies where FORM should
look for parameter settings. The default filename is
form.set . If this file is placed in the current direc-
tory, where the FORM code to be run is located, it will
override all other settings. Thus, only if there is no lo-
cal form.set , it makes sense to use the-s option. If
no form.set file is present at all, FORM will assume
built-in defaults, which in most cases will work on stan-
dard hardware.

The second option,-t <pathname> , defines in
which directory FORM should store its temporary files.
As FORM can produce enormously huge intermediate
files, it is this way possible to redirect temporary output
to a partition or device where sufficient physical memory
is available. If you have one preferred place to store the
temporary file, you don’t need to specify this on the com-
mand line every time. Instead, use the entryTempDir in
form.set .

The structure of the configuration file is very simple.
First comes the keyword of the configuration parameter

that is followed by the desired corresponding value, which
can be a number, character or string.

The creation ofform.set is thus straightforward.
Here is the minimum configuration we use

*
* form.set - global FORM config
*

* setting up temporary directory
TempDir /tmp

* where to look for external code
IncDir /usr/share/form:/scratch

which means that one reserves/tmp for temporary stor-
age, and adds the directories/usr/share/form and
/scratch to the search path to look for additional input
files outside the execution directory. Commented lines
start with an asterisk character. The default comment
character could be changed by resetting the configuration
keywordCommentChar . However, this is not advisable
unless needed, since some editors may depend on this de-
fault setting.

In older versions of FORM, which assumed PCs with
lower memory, it was recommended to set the num-
ber of symbols one would work with at a time, and
also set the number of statements in one unit of execu-
tion. This simple setup should work on most machines.
On older PCs, perhaps you will have to tweak some of
the parameters that control buffer and heap sizes, most
notably WorkSpace , LargeSize , SmallSize , and
MaxTermSize . In chapter 9 of the user manual, you
find all 36 parameters cataloged and explained. If you
should have to change any of these parameters to tailor
your machine’s hardware, consult these guidelines first.

If you have worked out a parameter config-
uration that you want to make the system-wide
default, copy form.set to a standard directory
as /etc or /usr/local/share (or perhaps to
˜/local/share for an installation on a particular ac-
count without root privileges).

We have written the following wrapper program in the
Bourne-Again SHell to assist you when running FORM.
The program reads the system-wide parameter defaults
(with possible override from localform.set files) and
provides additional useful features that the FORM binary
does not directly implement:

2

M.M. Tung: Computers & Mathematics with Applications 2004

#!/bin/bash
#
form - simple wrapper for FORM
#

FORMBIN=form3.1
FORMSET=/etc/form.set

not necessary to modify
anything below this line

if ["$1" = ""]; then
echo "form: You must specify an
➯ input file."
echo "form <file1> <file2> ..."
exit

fi

for i in $@; do

FILE=‘echo $i | sed s/\.frm$//‘
BASE=‘basename $1‘
DIR=‘echo $i | sed s:/$BASE$::‘

echo ""

if [-f $DIR/form.set] ; then
$FORMBIN -s $DIR/form.set $i |
➯ tee $FILE.log

else
$FORMBIN -s $FORMSET $i |
➯ tee $FILE.log

fi

echo -e "\n FORM output to
➯ $FILE.log...\n"

Make sure that the two environment variablesFORMBIN
andFORMSETpoint to the FORM binary and parameter
file on your system, respectively. If the binary is placed
somewhere in the main path, it won’t be necessary to in-
clude the full path forFORMBIN. But, you always have
to specify the full path forFORMSET.

FORM cannot find a localform.set file when call-
ing an input file from an external directory, and will use
the built-in defaults instead. But, calling the wrapper pro-
gram with

form /work/new/inputfile

will automatically read a corresponding parameter file
form.set in the directory /work/new , if present.
The wrapper will also produce a log file in the same

directory as the input code, without making use of the
-l command-line option of FORM. This way name
handling of the log files is much more flexible. If
you enterform input.frm (using .frm as the stan-
dard extension for FORM) your log output will be
input.log . This ensures compatibility with the-l op-
tion of FORM 1, which would have produced the more
lengthyinput.frm.log .

One greater advantage of the wrapper over the naked
FORM binary is that it accepts multiple file input. For
example, the command line

form f1.frm /tmp/f2.frm ∼/f3.frm

creates log files distributed correctly over the file system,
always grouping source and output nicely together. Also
for multiple file input, local parameter settings will be
used instead of system-wide defaults. This check is done
individually for every input file on the command line.

Programming

FORM sets itself apart through its intentionally restricted
set of basic instructions and its terse syntax. Once ac-
customed to the general syntax principles, you can quite
easily extend your working knowledge by looking up
advanced or more specialized commands in the FORM
Manual and in various tutorials [5, 6, 7]. This section
is intended to get you started fast and introduce you to
the main features of FORM’s programming language. For
this purpose, we will treat various mathematical problems
and take a closer look on how FORM solves them. As
we go on, each problem will present you new aspects and
techniques of FORM programming.

Getting started: Tribonacci numbers

Let’s start with a slightly modified classic from computer
science that involves recursive programming: Tribonacci
numbers [8] are generalized Fibonacci numbers which
obey the following recursive relation

Tn = Tn−1 + Tn−2 + Tn−3,

where the three starting values areT1 = 1, T2 = 1, and
T3 = 2. Following this rule, we obtainT4 by taking the
sum of the three previous numbers in sequence, namely
T4 = 1+1+2 = 4. To build all higher numbers, we have
to proceed in a similar fashion. The FORM program to
computee.g. the first 100 Tribonacci numbers will work
in the same way. Here is the program that implements this
algorithm:

3

M.M. Tung: Computers & Mathematics with Applications 2004

* 1

* Tribonacci Numbers
*

nwrite statistics; 5

#define N "100"

Local T1 = 1;
Local T2 = 1; 10

Local T3 = 2;

#do i = 4, ’N’
.sort
drop T’i’-3; 15

skip T’i’-2;
skip T’i’-1;
Local T’i’ = T’i’-1+

T’i’-2+
T’i’-3; 20

print;
#enddo
.end

Note that as for the configuration file the comment char-
acter is ‘* ’. Wherever a line begins with an asterisk, the
remainder of the line is ignored. This does not conflict
with the multiplication sign, as there is always a factor in
front of the multiplication ‘* ’. Here, we have given the
program a short description at the beginning of the file.
Of course, comments can be included in all parts of the
coding.

The next observation is that all lines are terminated
with a semicolon, except for those with commands that
start with the prefixes ‘. ’ and ‘#’. FORM distinguishes
between three classes of commands which becomes evi-
dent from these punctuation rules. When running a pro-
gram, the behavior of commands of each class is funda-
mentally different:

• Statements and functions require a terminat-
ing semicolon. In our example, these are
nwrite statistics , local , drop , skip ,
andprint . A collection of such statements and
functions make up one logical unit in a FORM pro-
gram. In FORM jargon, such a logical unit is called
amodule.

• Directivesall start with a period. Hence, in the Tri-
bonacci example, we call.sort and.end direc-
tives. Contrary to statements and functions, direc-
tives do not build up the contents of a module, but
control modules themselves. All directives denote
the end of a module with certain effects. For ex-
ample, the.sort directive terminates the previous

module and causes all statements within this unit to
be executed. A FORM program is composed of a
sequence of modules, where the last module is al-
ways closed with the.end directive.

• Preprocessor commandsbegin with#, and are ex-
actly what we expect from other programming lan-
guages. They are commands to allow for code frag-
ments which are expanded before the actual com-
pilation or execution of a program. In our exam-
ple, the#define command declares thatN is to
be replaced by 100 at any further occurrence in
the remaining program. Note that the argument of
#define is a string: we have to assign"100" to
Nand later call the macro with’N’ .

Further important preprocessor commands are#do
and#enddo . These commands help to write your
code more compact. Both commands always come
in pairs and embrace a code fragment that is to be
run several times. In this case, lines14 to 19 are
expandedN − 3 times, starting withi = 4 and
incrementing up toi = N. After this expansion,
FORM actually executes the code. Without thedo-
loop, we would have required 6×(N −3) lines (not
counting additional blank lines) with the same final
result!

In FORM all commands are case-insensitive. So, in
lines 9–11 , we could have writtenlocal instead of
Local . Writing commands with initial major letters
serves to highlight certain program passages for the hu-
man reader. FORM will interpret the program in the same
manner, irrespective of the case used for the commands.

On the other hand, variable names and strings are
case-sensitive—for the sole purpose to offer the program-
mer more flexibility. Thus, changing the argument of the
#define macro in the Tribonacci example fromN to n
will inevitable result in an execution error.

Use your favorite editor to enter the code of
example1.frm . Then, run the program by entering
form example1.frm on the command line. The out-
put will be written to standard output and logged to the
file example1.log . This is what the log file should
contain:

FORM by J.Vermaseren,version 3.1
(Jan 24 2003)

Run at: Thu Jun 10 18:36:44 2004
*
* Tribonacci Numbers
*

nwrite statistics;

4

M.M. Tung: Computers & Mathematics with Applications 2004

#define N "100"

Local T1 = 1;
Local T2 = 1;
Local T3 = 2;

#do i = 4, ’N’
.sort
drop T{’i’-3};
skip T{’i’-2};
skip T{’i’-1};
Local T’i’ = T{’i’-1}+

T{’i’-2}+
T{’i’-3};

print;
#enddo

T4 =
4;

T5 =
7;

...

T99 =
53324762928098149064722658;

.end

T100 =
98079530178586034536500564;

All programming commands are echoed to output when
executed.

On our test hardware (an AMD Athlon XP, 1800
MHz, 1 GB RAM), the execution of the entire program
takes on the average about 3 milliseconds. You can
check your system’s timing by commenting outnwrite
statistics at the start of the program. Then, in ad-
dition to the total timing, FORM will also inform you
about the intermediate execution timings, and will pro-
vide statistics on the terms generated with their memory
usage.

If you have a conventional computer-algebra system at
home, try to run the same recursive algorithm and observe
how long it takes to obtain this result!

Amazingly, on the same hardware setup, Mathematica
5.0 requires already 28 minutes to calculateT35.1 This is
largely due to the memory management of the interme-
diate resultsT4 . . . T34 during the computation. Mathe-
matica and similar algebra systems will store all results in
memory, whereas FORM allows to handle memory con-
sumption in the intermediate steps more efficiently.

Let’s study the Tribonacci code in more detail and see
how FORM achieves such impressive results.

First, we see that the variableN is set equal to 100 (line
7), to make later changes more transparent. We could also
have supplemented the#define command with an ap-
propriate comment for later revisions of the code. In gen-
eral, it is good programming practice to isolate important
variables and document their meaning.

Next, we use in lines9–10 the local statement to
define the three local variablesT1 = 1, T2 = 1, and
T3 = 2. FORM also knows global variables, but they will
only be relevant if you have larger output and want to copy
results to a special file. In most cases you will probably
want to use local variables. Thelocal statement serves
to declare expressions for FORM to work with. Here, the
expressions are purely numerical. In the latter examples,
expressions will also be symbolical, involving both num-
bers and algebraic terms.

Now, let’s move on to the core part of the program.
As mentioned above, the program block from line14 to
21 is executed 97 times, each time incrementingi by one.
Initially, it is i = 4. Then, we sort the results—not much
to sort at this point, but it will come in handy later. On
line 15 , we drop the local variableTi −3 ≡ T1. With
this commandT1 is cleared from memory upon the next
execution of the.sort command. By doing so, we free
memory and, in principle,T1 would again be available for
reuse.

In the present recursive algorithm, no operations are
directly performed on the currentTi −2 and Ti −1. We
just use these values. By issuing theskip command on
lines 16 and17 , FORM will keep these variables inac-
tive within the current module. This means that within
this range all subsequent commands will have no effect
on these variables. In fact, here, we suppress the multiple
output of already calculatedT ’s.

Hence, theprint command of line21 only acts on
the local variableTi =4l , which is calculated from its lower
three neighbors according to the given recursive relation
for each loopl = 1, 2,

In the last step, after all cycles of the#do loop are
completed, the.end directive gracefully exits the pro-
gram.

1After several hours, we lost patience computingT100. Mathematica’s own extrapolation tool suggests that this calculation will require more
than 3 months!

5

M.M. Tung: Computers & Mathematics with Applications 2004

Pattern matching: Multi-angle trigonometry

Naturally, FORM unleashes its full power when sym-
bolic expressions are involved. Thus, in this example, we
will deal with fast symbolic recursion and simple pattern
matching.

Since ancient times, mathematical functions have
been investigated and charted in huge tables. Usually, the
function values for a set of arguments is given and then
supplemented by appropriate rules. These rules are de-
signed to extrapolate the results out of documented range.

Let’s assume, we would only know the infamous sine
and cosine functions for values ranging from 0 toπ (in-
stead of the full range up to 2π).2

We still can recover complete knowledge of the sine
with this double-angle formula

sin(2x) = 2 sin(x) cos(x) .

Making it more difficult for us, we now suppose knowing
only one third, one fourth, ..., onen-th of the 2π range.
Nevertheless, we can always expand our knowledge to full
scope. Salvation comes from the following recursive rela-
tion

sin(nx) = 2 sin[(n − 1)x] cos(x) − sin[(n − 2)x] .

Example 2 implements this algorithm in FORM and
computes sin(10x).

* 1

* Simplification of
* Multi-Angle Sines
*

5

Symbols x, k, [sin(x)], [cos(x)];
Function sin, cos;

Local expr = sin(10,x);
10

repeat;
id sin(0,x) = 0;
id sin(1,x) = sin(x);
id sin(k?,x) =

2*sin(k-1,x)*cos(x) 15

- sin(k-2,x);
endrepeat;

id sin(x) = [sin(x)];
id cos(x) = [cos(x)]; 20

print;
.end

Execution took just 10 milliseconds on our test machine
with the final output

Time = 0.01 sec Generated terms = 407
expr Terms in output = 5

Bytes used = 102

expr =
512*[sin(x)]*[cos(x)]ˆ9 -
1024*[sin(x)]*[cos(x)]ˆ7 +
672*[sin(x)]*[cos(x)]ˆ5 -
160*[sin(x)]*[cos(x)]ˆ3 +
10*[sin(x)]*[cos(x)];

FORM has successfully reduced our symbolic input on
line 9 to a sum of powers of simple sines and cosines—
there is no more dependence on multiple angles in the ar-
guments.

A look at the program code shows that before work-
ing with the local variableexpr , we have to define the
involved symbols and functions (see lines6–7). Sym-
bols names are composed out of alphanumeric characters,
where the first character always has to be a letter. Be care-
ful: FORM is case-sensitive with respect to symbol and
function names. Anything between square brackets is not
interpreted by FORM. Here,[sin(x)] and[cos(x)]
are symbols asx andk . Functions are symbols that take
arguments.

Lines 11 to 17 are the central part of the program.
Therepeat andendrepeat statements embrace com-
mand blocks that are to be executed as long as the local
variable doesn’t change anymore. Our expression is the
function sin(10,x) . It has two arguments (the first
gives the numeric factorn and the second the free vari-
ablex). The FORM statementidentify a = b acts on
the current local variable(s) and replaces all termsa by b.
Hence, lines12 and13 trivially reduce sin(0 · x) = 0 and
sin(1· x) = sin(x). No further decomposition beyond this
point is possible.

Lines 14 to 16 demonstrates how pattern matching
can be used with theidentify statement. The first ar-
gumentk? is a placeholder which translates ask to the
right-hand side of this substitution rule. So, in the initial
pass of therepeat loop, sin(10, x) is reduced to combi-
nations of sin(9, x) and sin(8, x). In the next run also to
sin(7, x) and sin(6, x), and so on. The decomposition fi-
nally comes to an end with an expressionexpr that only
contains immutable terms sin(x) paired with various fac-
tors and cos(x).

The last twoidentify commands replace the sine
and cosine functions by their corresponding symbols.

2NB: Note that there still exist many exotic but in particular cases extremely useful functions that are not yet implemented on computer hardware.
In practice, this simple example for the unproblematic sine function can be generalized and applied to these functions.

6

REFERENCES AND RESOURCES M.M. Tung: Computers & Mathematics with Applications 2004

FORM automatically contracts the powers of symbols,
but by default not for functions. Hence, without this trick,
the final expression would still contain many uncontracted
identical factors.

The program concludes with the usualprint state-
ment and.end directive.

FORM Development with Graphical
Support

FORM programs are run in batch mode. One creates files
containing instructions with an editor, let FORM process
the file, and investigates the output. During the devel-
opment of such a program, this edit-and-run cycle is re-
peated as many times as necessary. Especially for large
programs, which often have to run unattendedly, this strat-
egy has proven very efficient.

Our favorite editing tool is the vim editor [9], an im-
proved version of the ubiquitous vi, which adds many
powerful features to the original. Apart from its standard
editing capabilities, vim can support FORM development
by

• using syntax color highlighting;

• executing programs “interactively”.

Figure 1 shows a screenshot of the second example pro-
gram within the graphical mode of vim (entergvim
example2.frm on the command line). For automatic
syntax highlighting putsyntax on into the vim config-
uration file.vimrc . Adding the flag

let form enhanced color=1

into .vimrc produces a slightly modified coloring that
distinguishes better between various FORM command
types.

All recent distributions of vim (the current stable re-
lease is v6.3) already include FORM syntax highlighting.
However, it can also be easily installed on any recent vim
installation without doing a full upgrade. In this case,
download the syntax fileform.vim [10] from the vim
homepage [9], and follow the instructions in vim’s help
entry:help mysyntaxfile .

Usually, vim detects FORM files by the extension
frm . Appending to the FORM code the modeline

" vim: ft=frm

forces vim to use thefrm filetype, whatever extension the
input file has. The FORM parser will not know about the
modeline as it appears after theend statement.

While working on a program, it would be quite cum-
bersome to exit the editor window every time significant
modifications are made and you want to run FORM. The
following definition in the.vimrc shortcuts this tedious
edit-and-run cycle and is very helpful for fast prototyping
of programs:

map ;f :w!<CR>:!form3.1 -l %<CR>
➯:split ‘basename % .frm‘.log<CR>
➯:e!<CR><CR>

This mapping binds the;f key sequence to pass the cur-
rent file through FORM and display the resulting log file
in a split window of the same vim session. To create a
menu button in the toolbar of gvim, add, for example, the
following line to .gvimrc

menu 50.10 &FORM.run\ form3.1 ;f

The numbers50.10 indicate the location in the tool-
bar and will depend on your local vim installation.
Take a look at the global settings inmenu.vim to
find suitable values that fit your system. For example,
you could easily add another command with the entry
menu 50.20

Figure 2 gives a screenshot of gvim running FORM on
example2.frm . The upper part of the screen displays
the corresponding log output in a split window.

Outlook

This has been a brief introduction to FORM and with em-
phasis on how to use it effectively under UNIX. FORM
offers many more features to perform advanced and large
algebraic computations. Most notably, with time and ex-
perience you can build up your own libraries of proce-
dures that contain specialized routines which solve regu-
larly occurring mathematical tasks.

References and Resources

[1] NIKHEF FORM Website, The National Institute for
Nuclear Physics and High Energy Physics, Ams-
terdam. The FORM license and latest release can
be found at websitehttp://www.nikhef.nl/
˜form/license.html .

[2] J.A.M. Vermaseren, New features of FORM,
arXiv:math-ph/0010025 v2, Amsterdam (2000).

7

http://www.nikhef.nl/~form/license.html
http://www.nikhef.nl/~form/license.html
http://arxiv.org/pdf/math-ph/0010025

REFERENCES AND RESOURCES M.M. Tung: Computers & Mathematics with Applications 2004

[3] NIKHEF Ftp Repository atftp://ftp.nikhef.
nl/pub/form/ . Older FORM v1.x binaries for
most common UNIX flavors (and of course Linux)
can be downloaded from this ftp site. The original
FORM manual and other shorter introductions are
also located at this site.

[4] J.A.M. Vermaseren, FORM, 252p., Amsterdam
(1989). This is the original reference to FORM v1.x.

[5] J.A.M. Vermaseren,Symbolic Manipulation with
FORM, Tutorial and Reference Manual, 113p., Am-
sterdam (2002). The new handbook that deals with
FORM 3. It is a revised and enlarged version of the
previous reference manual for FORM 2.

[6] A. Heck, FORM for Pedestrians, CAN Exper-
tise Center and University of Petrópolis, Petŕopolis
(1993); ibid., with J.A.M. Vermaseren, 149p., Ams-
terdam (2000). An introduction with many good ex-
amples and exercises. It was updated and extended to
FORM 3.

[7] G.J. van Oldenborgh,An Introduction to FORM, 26p.,
Leiden (1995). A concise introduction with some ad-
vanced math and physics applications.

[8] S. Plouffe,Plouffe’s Tables of Constants, University
of Quebec, Montreal (1999). A short note on how
to calculate Tribonacci numbers without recursive al-
gorithms is located athttp://pi.lacim.uqam.
ca/piDATA/tribo.txt .

[9] The Vim Homepage, located athttp://www.
vim.org . Binaries and source code are available for
download.

[10] M.M. Tung, Vim coloring scheme for syn-
tax elements in FORM, Mainz (2001); located
athttp://www.vim.org/htmldoc/syntax.
html#form.vim and ftp://ftp.home.vim.
org/pub/vim/runtime/syntax .

8

ftp://ftp.nikhef.nl/pub/form/
ftp://ftp.nikhef.nl/pub/form/
ftp://ftp.nikhef.nl/pub/form/manual/
http://www.nikhef.nl/~form/FORMdistribution/documentation/formref3.0.pdf
http://www.nikhef.nl/~form/FORMdistribution/documentation/formref3.0.pdf
http://www.nikhef.nl/~form/FORMdistribution/documentation/formtut.pdf
http://www-lorentz.leidenuniv.nl/form/form.html
http://pi.lacim.uqam.ca/piDATA/tribo.txt
http://pi.lacim.uqam.ca/piDATA/tribo.txt
http://www.vim.org
http://www.vim.org
http://www.vim.org/htmldoc/syntax.html#form.vim
http://www.vim.org/htmldoc/syntax.html#form.vim
ftp://ftp.home.vim.org/pub/vim/runtime/syntax
ftp://ftp.home.vim.org/pub/vim/runtime/syntax

REFERENCES AND RESOURCES M.M. Tung: Computers & Mathematics with Applications 2004

Figure 1: Multi-angle sine example with vim syntax highlighting.

9

REFERENCES AND RESOURCES M.M. Tung: Computers & Mathematics with Applications 2004

Figure 2: Running and logging of the multi-sign example with vim

10

