
ar
X

iv
:c

s/
05

02
06

6v
1

 [
cs

.C
C

]
 1

5
Fe

b
20

05

On the Complexity of Real Functions

Mark Braverman1

September 21, 2007

Abstract

We develop a notion of computability and complexity of functions over the reals,
which seems to be very natural when one tries to determine just how “difficult” a certain
function is. This notion can be viewed as an extension of both BSS computability
[BCSS98] and bit-computability in the tradition of computable analysis [Wei00] as it
relies on the latter but allows some discontinuities and multiple values.

1 Introduction

The main goal of this paper is to provide a simple definition which would capture the intuitive
notion of whether f : R → R is an “easily” computable function.

There are two main currently existing approaches to the computability and complexity
of real functions. One is the BSS approach, where algebraic operations are performed on
real numbers that are stored with infinite precision. This approach is described in [BSS89]
and [BCSS98]. The other approach, which we call bit-computability, goes all the way back
to the Polish school in the 1930-50s, and can be formulated best as: “given a good rational
approximation of x, compute a good rational approximation of f(x)”. More recent references
on the subject include [Ko91] and [Wei00].

The quality of a given definition for computability of real functions (or any notion of
computability in general) can be judged by how well it matches the intuitive notion of
“easy” vs. “hard” vs. “impossible”. For example, in the discrete case, it it much easier to
add two numbers x + y (an operation that takes linear time in the size of the input), than
factor an integer n (an operation most believe requires time superpolynomial in the size of
the input), and solving the Halting Problem is truly impossible (for example, the Goldbach
conjecture can be presented as a simple instance of the Halting Problem). We keep this in
mind while examining the different approaches to the computability of real functions.

We consider some reservations to both approaches mentioned above. One complaint
about the BSS approach is that it is too focused on the algebraic simplicity of the function
f , allowing only piecewise-semialgebraic functions to be computable. In particular, simple

1Research is partially supported by an NSERC postgraduate scholarship

1

http://arxiv.org/abs/cs/0502066v1

functions such as x 7→ ex and x 7→ √
x are not computable in this model (cf. [Brt03b]).

There are also problems in the opposite direction: this model classifies all the constant
functions x 7→ a, which are extremely simple algebraically, as computable. However, there
are infinitely many real a’s such that computing a with an arbitrarily good precision would
allow us to solve the Halting Problem. We will discuss more of these issues, and ways to ‘fix’
them in section 3 below.

On the other hand, in the bit computability model all the computable functions must be
continuous. Thus even the simplest step function s0(x) = 1 if x ≥ 0 and f(x) = 0 if x < 0
is not computable in this model. This function is extremely simple from the mathematical
point of view (involving only the constants 0 and 1 and the comparison operations in its
description), hence it would be reasonable to expect it to be computable at least in some
sense. For a real function f it is hard to say whether it is uncomputable in this model
because it is “difficult” in some profound way, or because it is just discontinuous in one or a
few points. It would also be nice to have a setting in which, by analogy with the discrete case,
we have a strong connection between the computability of a set A and the computability of
its characteristic function χA. Another problem is how to properly define the computability
of multi-valued functions such as

√
: C → C. It is obvious that such a simple function

should be computable, but it doesn’t have a continuous (and hence bit-computable) branch
defined on the entire complex plane C.

We deliberately restrict our discussion to the simple case where the functions are from
Rk or from a simple rectangle such as [0, 1]k to Rℓ. The goal being not to give the broadest
definitions and prove the most general theorems, but rather provide a simpler discussion ac-
cessible to a broader audience. We will try to use only basic background in the computability
and complexity theory and in the topology of Rk.

The paper is organized as follows. In section 2 we give an introduction to the bit model of
computation for sets, along with some properties and examples. This section can be viewed as
a separate simple introduction to the subject. In section 3 we discuss the BSS computability
for sets, and propose three natural modifications to the model that make BSS-computability
equivalent to bit-computability. In section 4 we introduce another notion of set-computability
– weak computability, and show its equivalence to the standard bit-computability. Sections 3
and 4 can be read independently. In section 5 we use results from sections 3 and 4 to propose
a new computability and complexity definition for real functions extending the computability
in both models, and the classical complexity in the case of continuous functions.

Acknowledgement. The author wishes to thank his graduate supervisor, prof. Stephen
Cook, for his insights and encouregement during the preparation of this paper, and for the
countless helpful discussions.

2

2 The Bit Model

2.1 The Model of Computation

The computability of functions in the bit model as we know it today was first proposed by
Grzegorczyk [Grz55] and Lacombe [Lac55]. It has been since developed and generalized.
More recent references on the subject include [Ko91], [PR89], and [Wei00].

The basic model of computation here is a Turing Machine. One can think about it as
a program in any programming language on the computer. We will usually denote Turing
Machines by the letter M . Obviously, a computer has a finite memory and cannot store a
whole real number. Instead, a naming system is used to represent a real number x. The
most popular naming system for R uses the dyadics D = { m

2n | m ∈ Z, n ∈ N}. A name for a
number x would be a sequence of dyadics φ(1), φ(2), φ(3), . . . such that |φ(n)− x| < 2−n. In
particular, φ(n) → x as n→ ∞. Note that the same real number x can have more than one
name, e.g. 0, 1

4
, 2

8
, 5

16
, 10

32
. . . and 1

2
, 2

4
, 3

8
, 6

16
, 11

32
. . . are both names for the same number x = 1

3
.

The oracle terminology is just a natural way to separate the complexity of computing x
from the complexity of computing on x as a parameter. For most purposes on can think of
the oracle φ for x as an infinite tape containing the binary expansion of x.

Consider a function f : R → R. In plain language a program M computing f would
output f(x), provided the input x. More precisely, given a name φ for x, M should output
a name ψ for f(x). Of course, both the name of x and of f(x) take infinitely long to write
down in general. We deal with this problem as follows: M is allowed to query φ(m), which is
a 2−m-approximation of x for any natural m, and is required to output ψ(n), where n is given
to M as a parameter. In other words, M is allowed to get arbitrarily good approximations
of x to compute f(x) with a given precision 2−n. Note that M does not care about the way
φ(m) is obtained or computed, thus we say that φ is an oracle representing x to M , and we
write Mφ to emphasize this fact. We sometimes write Mφ(n) to emphasize the fact that Mφ

gets one precision parameter n.
The definition extends naturally to a function f : Rk → Rℓ. Here M = Mφ1,φ2,...,φk(n) is

allowed to query each of the k parameters with an arbitrarily good precision and is required
to output the ℓ values of f with precision 2−n.

Example: Compute the function f : [0, 1] → [0, 1], f(x) = x2.
Solution: On an input n, query for q = φ(n+ 1). Output the dyadic number q2.
To show that it works, we need to see that |q2 − x2| < 2−n. We know that |q − x| =

|φ(n+ 1) − x| < 2−n−1, hence

|q2 − x2| = |q + x| · |q − x| ≤ 2 · |q − x| < 2 · 2−n−1 = 2−n.

The running time of the machine Mφ(n) is the largest running time over all legitimate
oracles φ.

3

2.2 Basic Properties and Examples

One of the main properties of computable functions is that they are continuous. To see
this assume that f is computable and let x be a point in the domain of f . Let φ be some
oracle representing x as described above. The computation Mφ(n) terminates after finitely
many steps with an output q such that |q− f(x)| < 2−n. M only queries φ with some finite
precision 2−m, and the computation would be the same for any oracle ψ which agrees with
φ on the first m values. If we choose φ and ψ carefully, we see that |q − f(y)| < 2−n for all
y such that |x− y| < 2−m−1. This shows that f must be continuous.

Moreover, one can show that if the domain of f is a simple compact (closed and bounded)
set, such as the interval [0, 1], then the modulus of continuity of f is computable. That is,
we can compute a function m(n) such that |f(x) − f(y)| < 2−n whenever |x− y| < 2−m(n).

We recall the definition of computable real numbers, introduced by Turing in [Tur36]. In-
formally, this definition says that a real number x is computable if we can compute arbitrarily
good approximations of x.

Definition 1 A number x ∈ R is computable if and only if a representation φ of x as
described above can be computed.

Most “standard” continuous functions are computable in this model. For instance, the
exponential function f(x) = ex is computable on R using the Taylor series expansion of

ex =
∑

∞

k=0
xk

k!
. It is not hard to estimate the number of terms and the precision of x we need

to consider in order to get a 2−n-approximation of ex.
Similarly, polynomial, rational and trigonometric functions with computable coefficients

are computable (on properly chosen domains). Moreover, if f, g are computable on the same
domain D and c is a computable constant, then c · f , f + g and f · g are also computable.
f

g
is computable if g 6= 0 on A.

Let a ∈ D be a computable number, and f(a) = g(a), then the piecewise defined function

h(x) =

{

f(x) x ∈ D, x ≤ a
g(x) x ∈ D, x > a

is also computable. Note that the condition f(a) = g(a) is essential here, for otherwise the
function h would not be continuous (and cannot be computable in this case).

It must be noted that in the continuous case, only truly “pathological” functions are
uncomputable. This notion of computability seems to be effective in classifying continuous
functions.

One of the possible disadvantages of this model is the fact that even the simpliest dis-
continuous function, the step function

s0(x) =

{

0 x < 0
1 x ≥ 0

is not computable under this definition. This is in contrary to the intuition that s0 must be
a “simple” function. One could also argue that some physical systems, e.g. quantum energy
levels, are best described using step functions and other simple discontinuous functions. One
of the goals of the present work is to develop notions which deal with this problem.

4

2.3 Complexity of Real Numbers and Real Functions

The time complexity Ta(n) of a number a is the time complexity of computing a 2−n-
approximation of a. Note that this is the time the fastest machine would take to compute
a. If Ta(n) < p(n) for some polynomial p(n), then we say that a is poly-time computable.

Example: Let’s consider the time complexity Tπ(n) of computing the number π. One
way to compute π is to use the Taylor series of arctan:

π = 4 · arctan(1) = 4 ·
(

1 − 1

3
+

1

5
− 1

7
+ . . .

)

= 4 ·
∞
∑

i=0

(−1)i

2i+ 1
.

It is not hard to see that one would need to take exponentially many terms of the series to
obtain a 2−n-approximation of π. On the other hand, one can use the Bailey, Borwein and
Plouffe [BBP97] formula for π:

π =

∞
∑

i=1

1

16i

(

4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)

(or any one of the many other exponentially convergent π expansions). One needs only
linearly (≈ n

4
) terms of the BBP series to get a 2−n-approximation of π. Hence π is, in fact,

poly-time computable.

The definition of the complexity of a function f arises naturally from the definition of
computability above. We define the worst case time it takes to compute f(x) with precision
2−n to be the time complexity of f(x), and denote it by Tf (n). Note that Tf may depend on
the domain D of f . In general, the time complexity may increase as the domain expands.

If Tf(n) < p(n) for some polynomial p(n), we say that the function f(x) is poly-time
computable on D. The standard functions mentioned in the previous section are typically
poly-time computable, using the standard numerical-analytic techniques.

Note that the time complexity of the constant function f(x) = a is equal to the time
complexity of the number a (we just ignore the argument x).

Example: The function f(x) = ex is poly-time computable on the domain [0, 1]. To see
this, we use the Taylor series expansion

f(x) = ex =
∞
∑

i=0

xi

i!
.

It is not hard to see that on the [0, 1] interval, n (and even fewer) terms of the series suffice
to get a 2−n-approximation of f(x). All we need to get the sum of the first n terms is
O(n) additions and multiplications on O(n)-bit numbers. Hence even with the naive O(n2)
multiplication algorithm, we obtain Tf(n) = O(n3).

2.4 Computability and Complexity of Real Sets

According to [BW99], probably, the first definitions of effective subsets of Rn based on
the concept of computability have been proposed by Kreisel and Lacombe in 1957 [KL57],

5

[Lac58]. We refer the reader to [BW99] and [Wei00] for a more detailed discussion. By
“computing” a set C, we mean generating increasingly precise “images” of C. At least for
now, we restrict our attention to bounded subsets of Rn.

Consider the two-dimensional case, which is closely related to computer graphics. Intu-
itively, in this case, the set C is computable if we can draw arbitrarily good “zoom-ins” into
it. One can view a 2−n-precise image of C on a screen as a collection of radius-2−n pixels
such that the following two conditions are fulfilled:

1. If a pixel contains a point from C, then it is colored black. This ensured that the entire
set appears on the screen.

2. If a pixel is far (say 2−n-far) from C, then it is colored white. This ensures that the
picture is a faithful image of C.

We can take the pixels to be balls of radius 2−n with a dyadic center d ∈ Dn. Formally,
we say that C is computable, if there is a machine M(d, n) computing a function from the
family

f(d, n) =

1 if B(d, 2−n) ∩ C 6= ∅
0 if B(d, 2 · 2−n) ∩ C = ∅
0 or 1 otherwise

(1)

On figure 1 we see some sample values of the function f . It should be noted that the definition
remains the same if we take square pixels instead of the round ones. It is also unchanged if
we replace the ratio between the inner and the outer radius to some α > 1 instead of 2.

Figure 1: Sample values of f . The radius of the inner circle is 2−n.

One can also define the time complexity TC(n) as the worst-case running time of a machine
M(d, n) computing a function from the family (1). Low time complexity means that it is
easy to zoom into the set C. We say that C is poly-time computable if TC(n) < p(n) for
some polynomial p.

6

So far, one might have been left with the impression that the computability definition
above is not very robust. As seen below, on the contrary, it is equivalent to several other
reasonable definitions.

First, we establish a connection between the computability of functions and sets. The
first attempt is to mimic the discrete case, and to say that a set is computable if and only if
its characteristic function χC is computable. Unfortunately, this is not true: a computable
function must be continuous, hence χC can only be computable in the trivial cases of C = ∅
and C = Rn.

The next most natural candidate is the distance function

dC(x) = inf
y∈C

|x− y|.

Unlike the characteristic function, the distance function is continuous and even satisfies the
Lipschitz condition |dC(x)− dC(y)| ≤ |x− y|. In fact, we have the following (see [Brv04] for
a proof):

Theorem 2 1. A bounded set C is computable if and only if the distance function dC(x)
is computable.

2. If the distance function is poly-time computable, then the set C is poly-time computable.

3. If n = 1, the converse to part 2 holds: if the set C is poly-time computable, then dC(x)
is poly-time computable.

4. If n ≥ 2, the converse to part 2 holds if and only if P = NP (which is extremely
unlikely).

Another possible view on the computability of sets it through global computability. That
is, instead of trying to decide one pixel, we are trying to generate an approximation of
the entire set. The word “approximation” here is in the most natural semi-metric on the
bounded subsets of Rn, the Hausdorff metric.

The Hausdorff distance between two bounded sets S and T is the smallest quantity d by
which we need to “blow-up” S to cover T and vice versa. Formally, for bounded S and T ,
the Hausdorff distance is

H(S, T) = inf{d : S ⊂ B(T, d) and T ⊂ B(S, d)},

where B(S, d) = {x : |x − s| < d for some s ∈ S}. On figure 2 is an illustration of the
Hausdorff metric.

On the right-hand image the Hausdorff distance is large, because we would need to blow-
up A by a large quantity to cover B. As a result, the set B is a good picture of A on the
left, but not on the right.

The theorem below states that C is computable if and only if one can approximate it in
the Hausdorff metric with finite unions of dyadic balls (see [Brv04] for a proof):

7

Figure 2: An illustration of the Hausdorff metric

Theorem 3 A bounded set C ⊂ Rn is computable if and only if there is a machine M(n) that
on input n computes a finite sequence of centers c1, c2, . . . , ck ∈ Dn and radii r1, r2, . . . , rk ∈ D

such that

H

(

C,
k
⋃

i=1

B(ci, ri)

)

< 2−n.

In other words, ∪k
i=1B(ci, ri) is a good Hausdorff approximation of C.

It is not hard to see that when time complexity is concerned, we cannot compare the two
definitions. For example C = [0, 1] × {0} ⊂ R2 is obviously poly-time computable, but one
needs exponentially (O(2n)) many balls to approximate it within 2−n.

In order to deal with the computability of bounded sets it suffices to discuss compact (=
closed and bounded) sets:

Lemma 4 A bounded set C ⊂ Rn is computable if and only if its closure, C, is computable.

We restrict our attention to bounded sets in order for theorem 3 to make sense. We can
have the same discussion for unbounded sets by considering the stereographic projection of
Rn to the n-dimensional sphere.

2.5 Examples of Computable Sets

The first natural examples to consider are the simple geometric objects such as a point, a
line segment, a circle, etc. For these basic examples set computability connects naturally to
number computability:

8

Claim 5 1. A singleton C = {c} is computable iff all the coordinates of c are computable
numbers.

2. A line segment connecting the points x and y is computable iff all the coordinates of x
and y are computable.

3. A ball B(c, r) is computable iff r and all the coordinates of c are computable.

This list can be continued with any other standard shapes. In general, such a shape is
computable if and only if its parameters are.

There is another connection between computable functions and sets that gives rise to a
large family of computable sets. Recall that for a function f : D ⊂ Rk → Rℓ its graph is
defined by

Γf = {(x, f(x)) | x ∈ D} ⊂ Rk+ℓ.

We have the following direct connection between the computability of the function f and of
Γf (as a set).

Theorem 6 Suppose D is a computable closed and bounded set, and f is continuous. Then
f is computable if and only if Γf is computable.

A version of this theorem has been first proven in [Zh96], see also [Brt03a] and [Brv04].
In section 4 we will give a simple proof of it.

In particular, the graphs of all the common continuous functions on closed intervals are
computable. E.g. the graph of f(x) = ex on the [0, 1] interval.

Another interesting family of computable sets are the self-similar fractal images. The
most famous set in this family is probably the Cantor set C. To define the Cantor set let
C0 = [0, 1] be the [0, 1] interval. Let C1 be the set obtained from C0 by removing its middle
third: C1 = C0\(1

3
, 2

3
) = [0, 1

3
] ∪ [2

3
, 1]. We then remove the middle thirds from each of the

two intervals of C1 to obtain C2 = [0, 1
9
] ∪ [2

9
, 1

3
] ∪ [2

3
, 7

9
] ∪ [8

9
, 1]. Continue this process to

obtain a chain of closed sets C0 ⊃ C1 ⊃ C2 ⊃ Define C = ∩∞
i=0Ci. See figure 3 for a

graphical illustration of the construction.
The Cantor set has a fractal structure because each of its halves is similar to the entire

set C with a factor of 1
3
. C has an irrational Hausdorff dimension of log3 2, which is smaller

than 1 but bigger than 0.
We establish that C is computable by showing it is approximable in the Hausdorff met-

ric. Ci is a 3−i-precise approximation of C in the Hausdorff metric, and it is very easy to
approximate Ci in the Hausdorff metric, since Ci is just a union of 2i simple intervals. Thus
C is easily computable.

Another famous computable fractal is the Koch snowflake K. The Koch snowflake is
obtained from an equilateral triangle by continuously replacing each side of length l by four
sides of length l

3
, as seen on figure 4. K is a set of Hausdorff dimension log3 4, which is less

than 2 but more than 1. K is the union of three self-similar sets (corresponding to the sides
of the original equilateral triangle).

9

Figure 3: The construction of the Cantor set C.

Figure 4: The construction of Koch snowflake K.

As in the case of the Cantor set, the i-th stage of the construction is a 2−Θ(i)-approximation
of K, and it is easy to compute the i-th stage which is a simple union of line segments. This
shows that K is Hausdorff approximable, and hence computable.

An intriguing family of computable quasifractals, the hyperbolic Julia sets is discussed
in [RW03], [Ret04] and [Brv04]. Other discussions on the computability of Julia sets, and in
particular existence of uncomputable Julia sets can be found in [BY04], [BBY04].

10

3 The BSS Model

3.1 The Model

The BSS model is quite different from the bit model of computability. Like the bit model,
it also extends the standard Turing machines to deal with the continuous reality. In the bit
model the extension is through application of the standard machine to continuous problems
using oracles and naming systems for continuous objects (cf. [Wei00]). The BSS approach
extends the model of computation itself. We present here an informal description of the
model, which is equivalent to a formal one, but is simpler to comprehend for a reader who
is new to the subject.

The BSS model in general is formulated for computation over an arbitrary ring or field
R (for our purposes one can take R = R or R = C). The machines in this model are allowed
to store an entire element of R in one memory cell. The operations the machine is allowed
to perform on numbers are (1) the ring operations (+, −, ·, and ÷ if R is a field); and (2)
branching conditioned on exact comparisons between numbers (= and <, ≤, if R is ordered).
Initially, the program is allowed to have only some finite number of constants from R. A
machine computes a function f : Rk → Rℓ on a domain D ⊂ Rk, if on an input x ∈ D,
it outputs f(x) ∈ Rℓ. A machine decides a set C ⊂ Rn if it computes the characteristic
function χC(x) = 1, if x ∈ C, and χC(x) = 0 otherwise.

In the BSS model functions and sets of increasing dimension n are sometimes considered.
The underlying structures then can be viewed over R∞ = ∪∞

n=0R
n. The running time is

allowed to depend on n. In our discussion we restrict attention to the fixed-dimensional
case, but it can be easily extended to R∞.

In the case R = Z2 (the finite field with 2 elements) this machine is equivalent to the
standard Turing machine. The same statement holds for any finite R. In this sense, the BSS
model extends the standard computability model. It can be shown that in the case R = R,
the model stays the same if we only allow the machine to have finitely many registers (see
[BSS89] and [Mich89]).

In general, all the intermediate computation results of a BSS machine M , as well as the
output, are rational functions r(x, c) of the inputs x and the constants c of M . From now
on we restrict our attention to R = R. We will need the following definition (see [BCSS98]
for more details):

Definition 7 A semi-algebraic formula φ(x1, . . . , xn) is a finite combination of polynomial
equalities and inequalities over R linked by the logical connectives ∧ (“and”), ∨ (“or”), and
¬ (“not”).

Obviously, any semi-algebraic set is computable by a BSS machine (in constant time).
As a partial converse, we have the following theorem (cf. Theorem 1 in [BCSS98]).

Theorem 8 If a set C ⊂ Rn is decided by a BSS machine M , then C is a countable disjoint
union of semi-algebraic sets.

A similar statement can be made about BSS computable functions.

11

3.2 Examples of BSS Computable and Uncomputable Sets

The richest family of examples of BSS computable sets are the semi-algebraic sets. In
particular, any singleton C = {c}, any line segment and any ball in Rn is BSS computable.
For example, a ball B(x, r) is given by the simple algebraic condition

B(x, r) = {y ∈ Rn | (y1 − x1)
2 + (y2 − x2)

2 + . . .+ (yn − xn)2 ≤ r2}.

The BSS computable functions include the rational and piecewise rational functions with
finitely many computable pieces on BSS computable domains. In particular, the step function
s0(x) which was not computable in the bit model is easily computable in the BSS model: on
an input x check whether x ≥ 0, if yes output 1, otherwise output 0.

In the BSS model, any singleton {c} is computable. In particular, if we take c to be some
uncomputable number, the singleton {c} ⊂ R is BSS computable, but not bit-computable.
Similarly, the constant function f(x) = c is BSS computable for any c ∈ R, regardless of
whether there is a feasible way to approximate the values of f .

We will now present a bit more subtle example of a BSS computable set which is not
bit-computable. It will be useful later in the discussion. First, it is well known that there
is a computable (binary) predicate R(x, y) such that the predicate H(x) = ∃y R(x, y) is
uncomputable and if H(x) holds, then the y satisfying R(x, y) is unique. One can think
of x as the encoding of a Turing machine, and R(x, y) = “the machine encoded by x halts
after exactly y steps”. Then R(x, y) is computable by a simple simulation, while H(x) is the
halting problem, well known to be undecidable.

Figure 5: A BSS computable set C0 one cannot draw.

We construct the following closed set C0 ⊂ [0, 1] × [0, 1]. Denote Ii = [1
i+1
, 1

i
] for i =

12

1, 2, Then [0, 1] = ∪∞
i=1Ii ∪ {0}. Define

C0 = ({0} × [0, 1]) ∪
⋃

R(x,y)=1

Ix × Iy.

It is not hard to see that C0 is closed (there are no accumulation points on the (0, 1] × {0}
because for each value of x there is at most one value of y such that R(x, y) = 1). See figure
5 for a schematic construction of C0.

First we observe that C0 is BSS computable using the following program.

On an input (x, y) ∈ [0, 1] × [0, 1]:

1. Check whether x = 0; if yes – output 1.

2. Otherwise, check whether y = 0; if yes – output 0.

3. Otherwise, find the rectangle(s) Ii × Ij to which (x, y) belong. This can be done using
integer numbers and exact comparisons. There are at most 4 such rectangles, if for
one of them R(i, j) = 1 – output 1, otherwise – output 0.

Observe that one cannot draw a good image of the set C. In fact, in order to decide

whether to put a pixel in a small neighborhood of the point
(

2i+1
i(i+1)

, 0
)

(this is the middle of

the interval Ii on the x-axis), one needs essentially to compute H(i), which is impossible.

On the other hand, there are many functions (and sets) that are uncomputable in the
BSS model, but are computable in the bit model. For example, the exponential function
f(x) = ex on the interval [0, 1] and its graph are uncomputable (see [Brt03b]). In general, one
can expect a bit-computable function without some “algebraic structure” to be uncomputable
in the BSS model. This is caused by the advantage given to the algebraic operations (+, −,
· and ÷) in the BSS model.

It is known that BSS computable sets must have an integer Hausdorff dimension (this
follows from theorem 8). As a result, the Cantor set (H.d. log3 2) and the Koch snowflake
(H.d. log3 4) are not computable in the BSS model.

3.3 Possible Modifications to the BSS Model

In this section we discuss possible modifications to the BSS models which address some issues
raised in the previous section.

Modifications to the model have been discussed in [BV98], [Brt98] leading to a notion
of “feasible real RAM” which is essentially equivalent to the bit-computability. The main
idea there was, that exact comparisons are not possible on real-life devices, and should not
be permitted in the model. This idea, by its nature, bars the step function from being
computable. This is not good when one is concerned with classifying functions into “easy”
and “hard”, or when discussing computability of multi-valued functions.

13

3.3.1 Uncomputable Constants

The first concern to address is the use of uncomputable numbers. It is unreasonable to say
that a function f(x) = a, where a is a constant encoding the halting problem is computable.
The simple solution is to restrict the BSS machines to use only computable constants.

Recall that the computable numbers, which we denote by C, are the numbers that can
be approximated arbitrarily well on a computer. It is not hard to see that C is a countable
real closed field, and that C + iC ⊂ C is algebraically closed. Thus, it makes sense to discuss
BSS machines over C rather than on the entire R. To emphasize the field C we are working
with, we will denote this model by BSSC.

It now follows easily that simple geometric objects, such as singletons, line segments and
balls are BSSC-computable if and only if they are bit-computable.

3.3.2 Computation Errors

The next possible modification addresses the problem of the uncomputability of functions
such as ex. The BSS model is in part based on the fact that real-life computers usually
use the four arithmetic operations as a base to performing real computations. However,
ex =

∑

∞

n=0
xn

n!
can be viewed as an infinite-degree polynomial, and is approximated arbitrarily

well with the finite degree polynomials pn(x) =
∑n

i=0
xi

i!
. In fact, real-life programs never

compute ex, but only pn(x) with some suitably chosen n.
We further modify BSSC by allowing the machines to err within a given precision ε.

We denote this model by BSSε
C
. In this model, a BSS machine M(x, ε) is said to compute

f(x), if on an input (x, ε), ε > 0, it outputs f(x) with an error of at most ε, and using only
computable constants. Note that the simple step function s0(x) (as well as any other BSSC

computable functions) is computable in BSSε
C.

One can also define naturally the BSSε
C computability of sets. A bounded set C is BSSε

C-
computable, if there is a BSS machine M(x, ε) which uses only computable constants, and
on input (x, ε) it outputs 1 if x ∈ C and 0 if d(x, C) > ε. With this definition, the graph
of ex becomes computable. The simple fractals, such as the Cantor set and Koch snowflake
mentioned in section 2.5 also become computable under the modification.

It should be noted that if we drop the requirement of using only computable numbers, all
the bounded sets are easily seen to be computable. It is not hard to encode all the “pictures”
of any bounded set C into one (possibly uncomputable) number c. In other words, all the
sets are computable in BSSε.

3.3.3 Unbounded Computation Branches

The third modification addresses the problem highlighted by the example C0 on figure 5. The
problem is the excessive power the BSS model gets from the possibility of having arbitrarily
long computation paths (as it happened in the example above).

In the case of “simple” computations, such as ex, or its graph function, we can easily
estimate the number of steps the machine would have to perform as a function of ε. We
include this condition as an additional restriction on the BSSε

C machines.

14

We say that a function (or a set) is BSSε,b
C

computable, if it is BSSε
C computable by

a machine M , and the running time of M can be bounded by τ
(⌊

1
ε

⌋)

for some integer
computable function τ : N → N. We say that τ(2n) is the time complexity of the set.

Under this restriction the set C0 on figure 5 is not computable, while the function ex on
[0, 1], the graph of ex and the step function s0(x) are computable.

As before, if we remove the restriction of using only computable constants, all the sets
become computable.

We summarize the modifications to the BSS model in the following diagram:

BSSC ⊂ BSSε
C ⊃ BSSε,b

C

(C0 comp., ex not comp.) (C0 comp., ex comp.) (C0 not comp., ex comp.)
∩ ∩ ∩

BSS ⊂ BSSε ⊃ BSSε,b

(C0 comp., ex not comp.) (everything is comp.) (everything is comp.)

We will now show that BSSε,b
C

-computability is equivalent to bit computability for
bounded sets. Note that they are still different for functions, since the step function s0(x) is
BSSε,b

C
-computable, but not bit-computable. In section 5 we will connect BSSε,b

C
function

computability to bit computability.

3.4 Computability of sets in BSSε,b
C

We show the following:

Theorem 9 Let C ⊂ Rk be a bounded set. Then C is BSSε,b
C

-computable if and only if it
is bit-computable.

Proof: C is bit-computable ⇒ C is BSSε,b
C

-computable

This is the easier direction. Given a machine M(d, n) for bit-computing C, we show
how to BSSε,b

C
-compute it. On an input ε, find n such that 2−n < ε

3
. Also, by a simple

binary search, on an input x to the BSS machine, we can find a dyadic d ∈ Dk such that
|x − d| < 2−n. We can now use the BSS machine to simulate M(d, n). We claim that the
output is a valid answer.

If x ∈ C, then x ∈ B(d, 2−n) ∩ C 6= ∅, and M(d, n) outputs 1. If d(x, C) > ε, then
d(d, C) ≥ d(x, C) − |d− x| > ε− 2−n > 2ε

3
> 2 · 2−n, and M(d, n) outputs 0 in this case.

Finally, we have to bound the running time as a function of ε. This can be done by
simulating all the possible runs of M(d, n) with some n such that 2−n < ε

4
, and all d with

denominator of 2−(n+k+1).

C is BSSε,b
C

-computable ⇒ C is bit-computable
This is a more involved direction. The reduction we will give is not uniform in C. It

cannot be uniform due to the fact that BSSε,b
C

uses arbitrary computable constants. Even
the simple decision questions, such as equality, are not decidable for arbitrary computable

15

reals presented by Turing machines computing them. Denote the BSSε,b
C

machine computing
C by M(x, ε).

The nonuniform information needed. Suppose that the BSS machine M uses l con-
stants a1, a2, . . . , al ∈ R. We would need the following algebraic information about a1, . . . , al,
in addition to the Turing machines approximating them:

1. The algebraic degree of ai over Q(a1, . . . , ai−1),

2. if this algebraic degree is finite (i.e. ai is algebraic over Q(a1, . . . , ai−1)), the minimal
polynomial pi(x) ∈ Q(a1, . . . , ai−1)[x] with leading coefficient 1, that has ai as its root.
pi is presented symbolically, with nonleading coefficients given as rational functions
with non-zero denominators.

Lemma 10 Provided the nonuniform information as above, for any symbolic polynomial
p(x1, x2, . . . , xl) ∈ Q[x1, x2, . . . , xl] we can check whether p(a1, a2, . . . , al) = 0.

Proof: We prove the lemma by induction on l.
Basis: For l = 0, p is just a rational number, and it is trivial to check whether p = 0.
Step: Assume it is true for l = i− 1, and prove it for l = i. Write

p(a1, . . . , ai−1, ai) = pt(a1, . . . , ai−1)a
t
i + . . .+ p1(a1, . . . , ai−1)ai + p0(a1, . . . , ai−1). (2)

There are two cases:
(i) If ai is algebraic of degree d over Q(a1, . . . , ai−1), then we can use the minimal poly-

nomial for ai to symbolically rewrite (2) as a degree (at most) d− 1 polynomial in ai:

p(a1, . . . , ai−1, ai) = qd−1(a1, . . . , ai−1)a
d−1
i + . . .+ q1(a1, . . . , ai−1)ai + q0(a1, . . . , ai−1).

Here the qj’s are rational functions which have non-zero denominators at (a1, a2, . . . , ai−1).
By the minimality of d, p(a1, . . . , ai−1, ai) = 0 if and only if all the qj(a1, . . . , ai−1) = 0,
j = 0, 1, . . . , i− 1, which we can check by the induction hypothesis (since we know that the
denominators are non-zero, all we have to do is check the numerators at (a1, a2, . . . , ai−1)).

(ii) If ai is transcendental over Q(a1, . . . , ai−1), it follows from (2) that p(a1, . . . , ai−1, ai) =
0 if and only if all the pj(a1, . . . , ai−1) = 0, j = 0, 1, . . . , t, which we can check by the induc-
tion hypothesis.

Lemma 11 Provided the nonuniform information as above, for any symbolic polynomial
p(x1, . . . , xl) ∈ Q[x1, . . . , xl] we can check whether p(a1, a2, . . . , al) > 0.

Proof: By lemma 10 we can first check whether p(a1, a2, . . . , al) = 0. If yes, we output
‘no’. Otherwise, using increasingly good approximations, we will eventually be able to tell
whether p(a1, a2, . . . , al) > 0 or p(a1, a2, . . . , al) < 0.

We now return to the proof of theorem 9. Given a dyadic d ∈ Dk and n ∈ N, we would
like to compute f(d, n) as in (1):

f(d, n) =

1 if B(d, 2−n) ∩ C 6= ∅
0 if B(d, 2 · 2−n) ∩ C = ∅
0 or 1 otherwise

16

For the rest of the proof set ε = 2−n. We know there is a computable bound on the running
time of M(x, ε) in terms of ε. We compute this bound B = B(ε). This means that M(•, ε)
can have at most 2B different computation paths. Each potential path has an output (either
0 or 1), and a set of rational constraints on the input x = (x1, . . . , xk) and the constants
a1, . . . , al that ensure that this path is followed. If the constraints are not satisfiable by any
(x1, . . . , xk), it means that the path is never actually followed. The rational constraints can
be rewritten as polynomial constraints.

Choose some computation path γ on which M(•, ε) outputs 1. We denote the polynomial
constraints to be satisfied in order to follow γ by Cγ(x1, . . . , xk, a1, . . . , al). We are interested
whether there is an x ∈ B(d, 2−n)∩C. In particular, we would like to know whether there is
such an x that is accepted by the path γ. This is stated by the following quantified formula

fγ(a1, . . . , al) = ∃x1, . . . , xk ((x1 −d1)
2 + . . .+(xk −dk)

2 < 2−2n)∧Cγ(x1, . . . , xk, a1, . . . , al).

Using Tarski’s quantifier elimination algorithm (see [Tar51]), we can convert fγ(a1, . . . , al)
into a quantifier-free formula gγ(a1, . . . , al) which has the same truth value. We then can
use lemmas 10 and 11 to decide whether gγ(a1, . . . , al) is true or false (which is the same as
deciding fγ(a1, . . . , al)). A far more efficient procedure can be applied here, using the recent
developements in algebraic geometry algorithms and the fact that fγ has only some constant
number of existential quantifiers with no alternations. It is possible to reduce the complexity
to be exponential in k (and polynomial in the other parameters). See [Ren92] and [BPR03]
for the algorithms and their analysis.

As an answer, we output the following

f(d, n) =
∨

γ is a 1-valued path of M(•, ε)
fγ(a1, . . . , al).

As there are at most 2B such paths γ, the computation will involve computing fγ at most
2B times.

We now show the correctness of f(d, n). First, suppose that there is an x ∈ B(d, ε)∩C (re-
call that ε = 2−n). Then M(x, ε) must output 1. Let γx be the computation path correspond-
ing to x. γ is an output-1 path, since M(x, ε) = 1. Thus, we will have Cγ(~x, a1, . . . , al) = 1,
and fγ(a1, . . . , al) = 1. So f(d, n) = 1 in this case.

Suppose that f(d, n) = 1. It means that there is a computation path of M(x, ε) which
accepts an x ∈ B(d, ε). Thus, by definition of BSSε,b

C
-computability, there is a y ∈ C such

that |x − y| < ε, and d(d, C) ≤ |d − y| ≤ |d − x| + |x − y| < ε + ε = 2 · 2−n. Hence
d(d, C) ≥ 2 · 2−n implies that f(d, n) = 0, which completes the proof.

4 Weak Computability of Real Sets

In this section we introduce another computability and complexity notion for subsets of
Rn. This notion was first introduced by Chow and Ko in [CK95] under the name of strong

17

recognizability. It wasn’t known at the time that this definition is, in fact, equivalent to the
standard bit-computability definition, as we will show below.

The idea of the definition is to relax the conditions of the pixel bit computability defini-
tion. We are given a point x as an oracle to Mφ(n), and we must output 1 if x ∈ C and 0 if
x is 2−n-far from C. Formally,

Definition 12 We say that a set C is weakly computable if there is an oracle Turing Ma-
chine Mφ(n) such that if φ represents a real number x, then the output of Mφ(n) is

Mφ(n) =

1 if x ∈ C
0 if B(x, 2−n) ∩ C = ∅
0 or 1 otherwise

(3)

Figure 6: Strong vs. weak computability.

Figure 6 illustrates possible values on input (x, n) for strong (standard) and weak com-
putability. Note that in the case of weak computability Mφ(n) cannot be computing a
function of x, because there are no nontrivial continuous 0 − 1 valued functions. Hence, for
some x’es in the ‘grey’ area the output of Mφ(n) depends on the specific oracle φ for x.

Our main statement is that, despite the apparent weakness of the weak definition, it is
equivalent to the standard bit computability.

Theorem 13 A set is bit-computable if and only if it is weakly computable.

Before proving theorem 13, we will give one application of it to obtain a simple proof of
theorem 6 on the equivalence of function and graph computability:

18

Theorem 6: Suppose D is a computable closed and bounded set, and f is continuous.
Then f is computable if and only if Γf is computable.

Proof: The “Γf computable ⇒ f is computable” direction is just a routine graph value
look-up algorithm and is left to the reader.

We will prove the opposite direction. Namely, that if f is computable ⇒ Γf is weakly
computable, which implies the computability of Γf by theorem 13.

Given a point (x, y) by an oracle, we run the Mφ computing f on x with precision 2−(n+2).
We respond to all the oracle queries of Mφ with an answer which is consistent with x as
well as some point in D. If at any stage of the computation it is impossible, then we’ve
discovered that x /∈ D, and we output 0. Otherwise, either x ∈ D and we denote x′ = x, or
there is an x′ ∈ D with |x− x′| < 2−(n+2), such that the run of the machine on x and x′ is
the same (we don’t actually need to know x′). In either case, we obtain a value q such that
|q − f(x′)| < 2−(n+2). If |q − y| < 2−(n+2), output 1; if |q − y| > 2−(n+1), output 0.

To see that the procedure above works, first assume that (x, y) ∈ Γf . Then x ∈ D and
y = f(x), hence x′ = x and |q − y| = |q − f(x)| < 2−(n+2), and we will output 1.

In the opposite direction, if we output 1 then in particular |x′ − x| < 2−(n+2) and |y −
f(x′)| ≤ |y − q| + |q − f(x′)| < 2−(n+1) + 2−(n+2) = 3 · 2−(n+2). Hence |(x, y) − (x′, f(x′))| ≤
|x′ − x| + |y − f(x′)| < 2−n, and d((x, y),Γf) < 2−n. Thus we will output 0 whenever
d((x, y),Γf) > 2−n.

In terms of time complexity, weak computability is provably weaker than the standard
computability (assuming P 6= NP).

Theorem 14 Let C ⊂ Rn be a bounded set.

1. If C is poly-time bit computable, then C is weakly poly-time computable,

2. the converse is equivalent to P = NP : “if C is weakly poly-time computable, then it
is bit poly-time computable in general” ⇔ “P = NP”, which is most unlikely. Hence
poly-time bit computability is strictly stronger than weak poly-time computability,

3. a weaker version of the converse holds: if C is weakly poly-time computable, then it
is exponential time bit computable. Moreover, if the machine which weakly computes
C in poly-time reads at most p(n) bits of the input, then C is computable in time
nO(1)2O(p(n)+n) = 2O(p(n)+n).

See [Brv04] for a proof, which we omit here. The last part of the theorem is useful in
proofs of specific upper bounds, e.g. poly-time computability of hyperbolic Julia sets, see
[Brv04] for more details.

We will now prove theorem 13.
Proof: Recall that bit-computability requires computing a function from the family

f(d, n) =

1 if B(d, 2−n) ∩ C 6= ∅
0 if B(d, 2 · 2−n) ∩ C = ∅
0 or 1 otherwise

(4)

19

while for weak computability we need to compute a “function” from the family:

Mφ(n) =

1 if x ∈ C
0 if B(x, 2−n) ∩ C = ∅
0 or 1 otherwise

(5)

C is computable ⇒ C is weakly computable.

This is the easy direction in the proof. Suppose we have a Turing Machine computing
an f(d, n) from the family (4). In order to weakly compute C, we first query d = φ(n + 2),
and then return f(d, n+ 2). We need to show that (5) is satisfied.

If x ∈ C, then |x−d| < 2−(n+2) implies that x ∈ B(d, 2−(n+2))∩C, so B(d, 2−(n+2))∩C 6= ∅,
and by (4) f(d, n+ 2) returns 1.

If B(x, 2−n)∩C = ∅, then |x− d| < 2−(n+2) implies that B(d, 2−n − 2−(n+2))∩C = ∅. So
B(d, 2 · 2−(n+2)) ∩ C ⊂ B(d, 2−n − 2−(n+2)) ∩ C = ∅, and by (4) f(d, n+ 2) returns 0, which
completes the proof.

C is weakly computable ⇒ C is computable.

We will show the implication for a one-dimensional set C, the proof in k > 1 dimensions
works out in a similar fashion. For convenience purposes assume that C ⊂

[

1
4
, 3

4

]

, and hence
in (4) we only need to consider d ∈ [0, 1]. The proof extends trivially to bigger intervals (C
is bounded).

We construct an infinite tree T . In every vertex of T we write a dyadic number. The
numbers on level l are dyadics of the form m ·2−l. The root, which is on level 1, is labeled by
1
2

= 0.1 (all the numbers in this section are in binary notation). Each vertex v on a level l has
3 children. If the label of v is m ·2−l then the labels of its children are m ·2−l−2−(l+1), m ·2−l

and m · 2−l + 2−(l+1), or in other words (2m− 1) · 2−(l+1), 2m · 2−(l+1) and (2m+ 1) · 2−(l+1).
On figure 7 we see the first three levels of the tree (cf [Wei00], section 7.2, signed digit
representation).

It is easy to see that numbers on every path p in the tree converge to a real number
xp ∈ [0, 1]. Conversely, for every x ∈ [0, 1] there is a path p such that xp = x (e.g. choose p
to be the prefixes of the binary expansion of x). Moreover, if we denote by p(n) the label of
the n-th node on p, then |x− p(n)| ≤ 2−n < 2−(n−1). Hence φ(n) = p(n+ 1) is a valid oracle
for xp.

We will now describe how to compute f(d, n) as in (4). On an input (d, n), find two
nodes v1 and v2 on level n such that label(v1) ≤ d ≤ label(v2) and |label(v1) − d| < 2−n,
|label(v2) − d| < 2−n (if d is an integer multiple of 2−n, we can choose v1 = v2). Denote
the paths from the root to v1 and v2 by p1 and p2, respectively. Denote the machine weakly
computing C by Mφ(n). We simulate the computation of Mφ(n) on the subtrees with roots
v1 and v2 as follows.

Consider the simulation with root v1 (the simulation with root v2 is done in the same
way). For every oracle query φ(m) with m < n, we return the value of p1(m + 1) (which
is a valid output for the oracle). Otherwise we consider all the possible descendants of v1

on level m + 1, and create a separate computation for each of them (thus creating 3m−n+1

computations). Consider one of the copies and denote the path leading to the selected vertex

20

Figure 7: The first three levels of the tree T

on level m + 1 by p (p extends p1). If we are now asked about φ(r) for some r < m + 1,
we return the value of p(r + 1), and otherwise we again consider all possible descendants of
p(m+1) on level r+1, and split the computation into 3r−m computations. We continue this
process until all computations terminate.

If any one of the computations (starting either from v1 or from v2) returns 1, we return
1. Otherwise return 0. We need to show two things:

1. The algorithm terminates.

2. It gives answers that satisfy (4).

We will be using König’s lemma.

König’s Lemma: If a every vertex in a tree has a finite degree, then the tree is infinite if
and only if it has an infinite branch.

Suppose that the computation does not terminate. We can view the entire computation
as a tree where the nodes are the subcomputations described above and a computation C1 is
the parent of the 3s computations it launches. If the entire computation does not terminate,
then there are two possibilities: either one of the computations C ′ fails to terminate without
calling to subcomputations, or the tree of all the computations to be performed is an infinite
tree.

21

In the first case denote the path in T leading to C ′ by p′. Then p′ corresponds to a
dyadic number d′, and also gives an oracle φ′ for d′. Note that C ′ is reached and executed
by simulating Mφ′

(n). Hence Mφ′

(n) does not terminate in this case, contradiction.
In the second case, by König’s lemma, there must be an infinite branch in the computa-

tions tree. Denote the branch by C1, C2, C3, That is, C1 calls C2, C2 calls C3 etc. Note
that each Ci works with a path pi of T and pi+1 strictly extends pi for each i, hence the
infinite sequence of Ci corresponds to an infinite path p in T . The path converges to a real
number x ∈ [0, 1], and p gives rise to an oracle φ for x. By the construction, the sequence
of C1, C2, C3, . . . simulates the computation of Mφ(n). Hence Mφ(n) does not terminate,
contradiction. This shows that the algorithm terminates.

We now have to show the correctness of the algorithm.

Case 1: B(d, 2−n) ∩ C 6= ∅. In this case, either v1 or v2 has a descending path p in T
which converges to an x ∈ C. Consider the oracle φ corresponding to this path. One of the
computation paths of the algorithm will be a simulation of Mφ(n), and hence will have to
output 1.

Case 2: B(d, 3 · 2−n)∩C = ∅. In this case all points corresponding to descendants of v1

and v2 are at distance at most 2 · 2−n from d, and hence are at least 2−n-far from C. Hence
any computation corresponding to simulating Mφ along any of the paths must output 0.

Note that we are only able to compute a function satisfying a condition weaker than (4).
Namely, we compute a function f such that

f(d, n) =

1 if B(d, 2−n) ∩ C 6= ∅
0 if B(d, 3 · 2−n) ∩ C = ∅
0 or 1 otherwise

It is very easy to use f to compute a function that satisfies (4). Take

g(d, n) = f(d− 2−(n+1), n+ 1) ∨ f(d, n+ 1) ∨ f(d+ 2−(n+1), n+ 1)

If |d− c| < 2−n for some c ∈ C, then either |d− c + 2−(n+1)| < 2−(n+1), or |d− c| < 2−(n+1),
or |d − c − 2−(n+1)| < 2−(n+1). So one of the f ’s will return 1. On the other hand, if
B(d, 2 · 2−n) ∩ C = ∅, then B(d− 2−(n+1), 3 · 2−(n+1)) ∩ C = ∅, B(d, 3 · 2−(n+1)) ∩ C = ∅ and
B(d+ 2−(n+1), 3 · 2−(n+1))∩C = ∅. Hence g returns 0 in this case. This completes the proof.

5 Complexity of Real Functions

In this section we propose a new definition for the computability and complexity of real
functions, and establish its connections to bit and BSS computability.

5.1 Computability of Real Functions

The main idea arises from the equivalence between the function computability and the set
computability in case of a continuous function, which was established in theorem 6. We have

22

a good notion of bit-computability for sets which coincides with BSSε,b
C

-computability. We
use it to define a computability notion for functions:

Definition 15 We say that a bounded real function f on a bounded domain from a class F
is graph computable, if its graph Γf is computable as a set.

Obviously, one has to be careful about the choice of the class F which extends the class of
the continuous functions. For example, under this definition, any function f : [0, 1] → [0, 1]
which has a dense graph in [0, 1]× [0, 1] would be computable under this definition. On the
other hand, one can reasonably interpret this example by saying that all we can know about
f(x) in this case is that it is some number in [0, 1] (regardless of the precision x is given
with), and that is exactly what we can read from the graph.

The definition above extends naturally to multi-valued functions. One possible candidate
for the class F is the class of (multi-valued) functions f : D ⊂ Rn → Rm such that f has at
most finitely many limits at any point of D. In other words,

|{x} × Rm ∩ Γf | <∞ (6)

for all x ∈ D. We denote this class by Ff . Ff extends the class of the continuous functions.
Note that both the step function and the square root function on C, viewed as a function
from R2 to R2, belong to this class. In the case of a function f : R1 → R1, all the f ’s of
bounded variation satisfy condition (6). The definition will make sense outside the class Ff .

By theorem 6, definition 15 coincides with the bit computability definition in the case of
continuous functions on closed domains. In the next section we investigate its connection to
the BSS model, and show that it extends the BSSε,b

C
-computable functions.

5.2 Connections to the BSS model

In this section we show that all the BSSε,b
C

-computable functions are graph-computable.
The converse is not true. For example, let Γe be the graph of the exponential function ex on
[0, 1]. The characteristic function χΓe

(x) is easily seen not to be BSSε,b
C

computable, even
though it is graph computable.

Theorem 16 If a function f : Rk → Rℓ is BSSε,b
C

-computable and bounded on some bounded
semi-algebraic BSSC-computable domain D (e.g. D = [a1, b1] × [a2, b2] × . . . × [ak, bk] with
computable endpoints), then it is graph computable.

Proof: We first note that if a function is BSSε,b
C

-computable on D by some machine
M(z, ε), then its graph is BSSε,b

C
-computable. To see this let (x, y) ∈ Rk+ℓ and ε > 0 be

given. First of all check whether x ∈ D, and if not – reject. Next, simulate the run of
M(x, ε

2
) to obtain z, |z − f(x)| < ε

2
. If |y − z| < ε

2
, output 1, otherwise output 0.

If y = f(x), then |z− y| < ε
2

and we will output 1. If d((x, y),Γf) > ε, then in particular
|y − f(x)| > ε, so |y − z| ≥ |y − f(x)| − |f(x) − z| > ε − ε

2
= ε

2
, and the output is 0. It is

also not hard to see that the running time is bounded by a computable function of ε.
We use theorem 9 to conclude that the graph Γf is bit-computable, so f is graph-

computable.

23

5.3 Complexity of Real Functions

By now we have established that graph computability is a useful notion extending both bit
computability and a natural modified version of the BSS computability. Our next goal is
to give a reasonable definition for graph complexity of real functions. Should we take the
complexity of computing Gf? Or the complexity of weakly computing it? It turns out that
neither one extends the bit-complexity of f in the continuous case. In fact, we have the
following theorem.

Theorem 17 Let f : [0, 1]k → [0, 1]ℓ be a continuous function, with a polynomial modulus
of continuity µ(n) (|f(x) − f(y)| < 2−n whenever |x − y| < 2−µ(n)). Denote the following
properties:

(a) The graph Γf is poly-time computable as a set.
(b) f is a poly-time computable function.
(c) The graph Γf is weakly poly-time computable as a set.
Then we have the following:

1. (a) ⇒ (c) and (b) ⇒ (c),

2. in general, (b) ⇒ (a) implies P = NP , and

3. (a) ⇒ (b) (and also (c) ⇒ (b)), implies that integer factoring and other one-way func-
tions can be done in poly time (this is weaker than P = NP , yet extremely unlikely).

Proof: The first claim is quite routine and is left to the reader.
We sketch the proof of the second claim. The goal is to construct a poly-time computable

function on the [0, 1] interval for which it is NP-hard to strongly compute its graph. The idea
is to subdivide [0, 1] into the intervals Ii =

[

1
i+1
, 1

i

]

. Some of them correspond to boolean

formulas φi. For such an i we subdivide the middle fifth of Ii into 2k subintervals, where k is
the number of variables in φi. We associate a spike of f to each thruth assignment satisfying
φi. Then it is easy to compute f in poly-time using only one substitution to φi, but a strong
query to Γf would allow us to check for the satisfiability of φi fast.

We will now prove the third claim, namely that (a) ⇒ (b) would allow fast factoring
of integers. The example we construct is for k = 1, ℓ = 2. It is unclear whether such an
example can be constructed for k = ℓ = 1.

The idea of the proof is as follows. We construct a function f which has the values of
some one-way function F encoded into it, so that computing f is as hard as computing F .
We make the graph of f “easy” to draw by the following construction. Let C be a (small)
interval on which the value F (n) is encoded. We make f fairly dense on intervals CL and
CR lying on both sides of C. So that its graph in coarse precision looks like two “walls” on
CL and CR, and there is no need to worry about the value on C to draw the graph. In fince
precision, on the other hand, the pixels we can query are so small that to answer them on
C we would only need to know whether F (n) = k for a few different k’s, which is easy to
check.

24

We now give a more formal construction. First consider the following function F : N →
{0, 1}∗: on an input n, F outputs a canonic encoding of the prime factorization of n. E.g.
F (6) =< 2, 3 >, F (24) =< 2, 2, 2, 3 >, all encoded properly as binary strings. Then F
satisfies the following properties:

• F is well-defined on all N,

• F is one-to-one,

• the length of F (n) is linear in the length of n: |F (n)| < c · |n|, and

• given a string s ∈ {0, 1}∗ and a number n it is easy (poly-time) to verify whether
F (x) = s.

Subdivide the [0, 1] interval into the intervals Ij =
[

1
j+1

, 1
j

]

. We subdivide each Ij into 5

intervals: left – Lj , central-left – CLj , central – Cj, central-right – CRj and right – Rj . Let
k = ⌈log j⌉. The dividing points of the intervals are dyadic, and the lengths are as follows:

Lnth(L) ≈ Lnth(R), Lnth(CL) = Lnth(C) = Lnth(CR) = 2−(ck+k+3) << Lnth(L).

Denote
CL = [xll, xlr], C = [xlr, xrl] CR = [xrl, xrr].

f on CL is defined to have the following properties:

(a) the range of f is in [−2−k, 2−k] × [−2−k, 2−k],
(b) f(xll) = f(xlr) = (0, 0),
(c) for any (x, y) such that |x|, |y| < α < 2−k there is a z ∈ CL such that |z − xlr| <

α · 2−(ck+3) and |f(z) − (x, y)| < α · 2−(ck+k+3),
(d) f is poly-time graph computable on this interval.

This can be achieved, for example, by a function presented on figure 8 (left).
Next, we define f on C as follows:

f(z) =

{

(2ck · (z − xlr), F (n) · (z − xlr)), if z is in the left half of C
(2ck · (xrl − z), F (n) · (xrl − z)), if z is in the right half of C

See figure 8 (right). Note that f(xlr) = f(xrl) = (0, 0). We define f on CR symmetrically
to its definition on CL above. f is defined to be (0, 0) on the intervals L and R. It is easy
to see now that f extends continuously to the closed interval [0, 1] by setting f(0) = (0, 0).

If f were poly-time computable, then querying its value on C for the interval In with
precision 2−O(log n) would allow us to compute F (n). Our goal now is to show that the graph
Γf is poly-time computable as a set. The idea is as follows: if we query a fairly large pixel
of Γf , then the picture will be dominated by (the computationally easy) graph of f on CL
and CR, and we will not have to worry about the value of f on C. If we query a fairly small
pixel in C, then to determine the answer we will have to verify at most one potential value of
F , which can be done in poly-time. On an input (d,m), d = (z, (x, y)) ∈ D3, we will decide

25

Figure 8: The construction of f

whether B(d, 2−m) ∩ Γf 6= ∅ or B(d, 8 · 2−m) ∩ Γf = ∅, with the other cases being the “grey
area”. It is not hard to see that this is equivalent to the standard definition of computing a
set.

First of all we find the interval In which is relevant to the particular d. If there is more
than one relevant In then the problem easily decidable in poly-time. Next, it is easy to
decide whether d is close to the graph of f on the intervals L,CL,CR and R. The hard part
is to deal with the interval C. Since the picture is symmetric with respect to the middle of
C, we assume without loss of generality that z is to the left from the middle of C.

If z < xlr − 2 · 2−m, then the pixel in question is far from C, and the value of f on C is
irrelevant. Otherwise, there are two cases:

Case 1: xlr − 2 · 2−m < z < xlr + 3 · 2−m.
In this case, in for the value of f on C to become relevant we must have |x|, |y| <

2ck ·4·2−m+2−m and |x|, |y| < 2−k. By property (c) of f on CL there is a point p = (z′, f(z′))
such that |z′ − xlr| < 2−m and |f(z′) − (x, y)| < 2−m, thus |(z′, f(z′)) − d| < 5 · 2−m, and it
is safe to output 1 in this case regardless of the value on C.

Case 2: z > xlr + 3 · 2−m.
In this case we only need to care about potential points f(z′) on the graph with z′ >

z − 2 · 2−m > xlr + 2−m. It is not hard to see that for these values the distance between any
two potential points on the graph of f (for two different possible values of F (n)) is at least
2−m/

√
2, hence (x, y) can be only close to at most 4 potential graphs of f , and to confirm

those we need to query F (n) = t? for 4 t’s, which is done in poly-time. This shows that Γf

is poly-time computable.
What we need is a complexity definition that extends part (b) in theorem 17 to all the

graph-computable functions.

26

Definition 18 We say that a bounded multi-valued function f : D ⊂ Rk → Rℓ for some
bounded computable D is graph-computable in time T (n,m) if there is an oracle Turing
machine Mφ(m, d, n) which, given an oracle φ for x ∈ D, computes a function from the
family

Mφ(m, d, n) =

1, if |d− y| < 2−n for some y ∈ f(x)
0, if |d− y| ≥ 2 · 2−n for all y ∈ f (B(x, 2−m))
0 or 1 otherwise

(7)

and the computation time is bounded by T (m,n). One can think about Mφ(m, •, n) as
(strongly) computing a set Am ⊂ Rℓ with precision 2−n such that

f(x) ⊂ Am ⊂ f
(

B(x, 2−m)
)

(8)

The set Am can be thought of as a “vertical cross-section” of the graph of f . In the case
of a continuous single-valued f , Am → {f(x)} as m → ∞. More generally, one can easily
see that (8) is equivalent to the condition

∞
⋂

i=0

f
(

B(x, 2−i)
)

⊂ Am ⊂ f
(

B(x, 2−m)
)

. (9)

For definition 18 to make sense, we need it to be equivalent to definition 15 as far as
computability is concerned.

Theorem 19 A function f : D ⊂ Rk → Rℓ for some closed and bounded computable D is
computable as per definition 18 if and only if its graph is computable (that is, it is computable
as per definition 15).

Proof: f is computable as per definition 18 ⇒ Γf is computable.

We show that in this case Γf is weakly computable. Given a point (x, y) by an oracle,
we run the Mφ(n + 2, •, n+ 2) computing f on x with precision 2−(n+2). We respond to all
the oracle queries of Mφ with an answer which is consistent with x as well as some point in
D. If at any stage of the computation it is impossible, then we’ve discovered that x /∈ D,
and we output 0. Otherwise, either x ∈ D and we denote x′ = x, or there is an x′ ∈ D
with |x− x′| < 2−(n+2), such that the run of the machine on x and x′ is the same (we don’t
actually need to know x′). In either case, we obtain a set An+2 satisfying condition (8) (with
n+ 2 instead of m and n). If d(An+2, y) < 2−(n+2), output 1; if d(An+2, y) > 2−(n+1), output
0.

If x ∈ D and y ∈ f(x), then y ∈ An+2 by (8), so d(An+2, y) = 0, and we output 1.
If we output 1, then d(An+2, y) < 2−(n+1) thus by (8) there is a z ∈ D such that |x′−z| <

2−(n+2), and |y− f(z)| < 2−(n+1). Thus |(x, y)− (z, f(z))| ≤ |x− z|+ |y− f(z)| ≤ |x− x′|+
|x′−z|+ |y−f(z)| < 2−(n+2) +2−(n+2) +2−(n+1) = 2−n. Hence in the case d((x, y),Γf) > 2−n,
we will output 0.

Γf is computable ⇒ f is computable as per definition 18.

27

Note that by theorem 17 the reduction in this direction cannot be too efficient. We
denote by πℓ the projection πℓ : Rk × Rℓ → Rℓ, πℓ(x, y) = y.

Given a point x ∈ D and a triple (m, d, n), d ∈ Dℓ we would like to check whether d is
2−n-close to an Am as in (8). To do this we take a dyadic approximation dx ∈ Dk of x such
that |dx −x| < 2−(m+2). If d is 5 · 2−(n+2)-close to πℓ

(

Γf ∩ B(dx, 2
−(m+2)) × Rℓ

)

we output 1,

if it is 7 · 2−(n+2)-far from πℓ

(

Γf ∩B(dx, 2
−(m+1)) × Rℓ

)

we output 0. This can be done by
“drawing” a portion of the graph using queries for Γf .

If |d− f(x)| < 2−n for one of the values of f(x) (in which case we must output 1), then
f(x) ∈ πℓ

(

Γf ∩B(dx, 2
−(m+2)) × Rℓ

)

, and |d− f(x)| < 5 · 2−(n+2), hence we output 1.

If we output 1, then there is a z ∈ B(dx, 2
−(m+1)) such that |f(z) − d| < 7 · 2−(n+2).

We have |z − x| ≤ |z − dx| + |dx − x| < 3 · 2−(m+2). Thus |f(z) − d| < 2 · 2−n for some
z ∈ B(x, 2−m), and we are allowed to output 1 in this case.

We will later see that definition 18 extends the standard complexity definition for the
case of the continuous single-valued functions. We start off with some examples from the
discontinuous/multi-valued functions.

5.4 Examples of Function Complexity

We begin with the simplest discontinuous function, the step function s0(x) = 0 if x < 0, and
s0(x) = 1 if x ≥ 0. It is now easy to see that s0 is graph-computable in linear time (under
definition 18). We first query for x with precision 2−(n+1). If |x| > 2−(n+1) we output either
{0} or {1}, depending on the sign of x. If |x| < 2−n, we output {0, 1}, so in either case (8)
is satisfied.

In general, if we have a piecewise continuous single-variable function f with finitely many
pieces g0, g1, . . . , gk and computable discontinuity points a1, a2, . . . , ak, then f is computable,
and the time complexity T (f) satisfies

T (f) ≤
k
∑

i=0

T (gi) +
k
∑

i=1

T (ai) +O(n).

Similar relations can be derived for functions over higher dimensions.
Consider the square root function

√
: C → C. It is two-valued at all points but 0. It

cannot be made computable on C in the bit-sense because it does not have a continuous
branch defined on the entire C. It is also uncomputable in the original BSS model, but has
an efficiently computable branch in BSSε,b

C
.

The following algorithm graph-computes the square root in poly-time on a bounded
domain:

On an input x, (m, d, n):

1. Check whether |x| < 2−(2n+4). In this case f(x) with precision 2−n looks like the point
{0}.

2. Otherwise, we can compute r and φ such that x = re2πiφ with precision 2−Ω(n+m) in
poly-time,

28

3. compute r′ =
√
r, the positive real root,

4. take one of the values of φ′ = φ

2
(mod 1),

5. we take Am = {r′e2πiφ′

,−r′e2πiφ′}.

It is not hard to see that other simple multi-valued functions, such as x 7→ k
√
x on the

complex plane are computable in poly-time.
Next, we consider the characteristic function χA for a bounded A ⊂ Rn. Note that the

computability of χA is equivalent to the computability of ΓχA
, which is equivalent to the

computability of A and Ac.
Consider the complexity of χA. On an input x we need to output one of the three possible

sets: {0}, {1} or {0, 1}. We must include 1 if x ∈ A, and must exclude it if x is 2−m-far from
A. Similarly, we must include 0 if x /∈ A, and must exclude it if x is 2−m-far from Ac. We see
that the complexity of χA in this case is roughly equal to the sum of the weak complexities
of A and Ac.

5.5 The Definition Extends Standard Function Complexity

In this section we show that for continuous functions with a reasonably small modulus of
continuity graph-complexity extends the standard complexity definition. In particular such
a function is poly-time computable if and only if it is poly-time computable according to
definition 18. We prove the following theorem:

Theorem 20 Let f : D → Rk be a continuous function, where D ⊂ Rℓ is bounded. Then
the following holds:

1. If f is computable in time T (n) according to the standard definition, then it is com-
putable in time T (n+ 2) +O(n) according to definition 18.

2. If f is computable in time S(m,n) according to definition 18, and the modulus of
continuity for f is a computable µ = µ(n) (so that |f(x) − f(y)| < 2−n whenever
|x− y| < 2−µ(n)), then f is computable in time O(n · S(µ(n+ 2), n + 2)) according to
the standard definition.

Proof: (1) For an input (m, d, n), compute an approximation q of f(x) with precision
2−(n+2). If |d−q| < 5 ·2−(n+2), output 1. If |d−q| > 7 ·2−(n+2) output 0. It is not hard to see
that the result of such computation satisfies (7). The time required here is T (n + 2)+O(n)
for the comparisons.

(2) The set Aµ(n+2) ⊂ f(B(x, µ(n + 2))) is contained in B(f(x), 2−(n+2)), and we can
approximate f(x) within 2−n by O(n) queries about the distance of d from this set in different
scales. This is done in time O(n · S(µ(n+ 2), n+ 2)).

In particular, theorem 20 implies that a continuous function with a polynomial modulus
of continuity is poly-time computable if and only if it is poly-time computable according to
definition 18.

29

5.6 Different Bit-Complexity Notions for Discontinuous Functions

In this section we compare the three different complexity notions for general (possibly dis-
continuous and multi-valued) functions. In theorem 17 we have seen three poly-time com-
putability notions, in the general case they correspond to the following:

(a) The graph Γf is a poly-time computable as a set.
(b) f is a poly-time computable function as per definition 18.
(c) The graph Γf is weakly poly-time computable as a set.

In the continuous case we have seen that (a) ⇒ (b) ⇒ (c), while the converses are
extremely unlikely. In the general case we have:

Theorem 21 In the case of a general f :

1. (a) ⇒ (c) and (b) ⇒ (c),

2. there is a function that satisfies (b) and (c), but does not satisfy (a) unless P = NP ,

3. there is a function that satisfies (a) and (c), but does not satisfy (b) unless P = NP
(FACTORING ∈ P in the single-valued case).

Proof: The first two parts are standard constructions, and are left to the reader. We will
only prove the third part.

The proof uses the same idea as the construction in theorem 17, but is much simplier due
to the fact that we are now allowed multi-valued, discontinuous functions. The multi-valued
function we construct is f : [0, 1] → P ([0, 1]).

Subdivide the interval [0, 1] into the intervals Ij =
[

1
j+1

, 1
j

]

. For each j ∈ N set f(1
j
) =

[0, 1], also set f(0) = [0, 1].
Let n be some natural number. If n does not encode a boolean formula, set f(x) = {0}

for all x ∈
[

1
n+1

, 1
n

]

. Otherwise, n encodes a boolean formula φ(~x), where ~x is a vector of
k < log n− 1 variables.

We create a 1 − 1 correspondence between points of the form 1
2

+ t
2k+1 ∈

[

1
2
, 1
]

, t =
0, 1, . . . , 2k − 1 and the possible assignments for φ. For any x ∈

[

1
n+1

, 1
n

]

, set

f(x) = {0} ∪
{

1

2
+

t

2k+1
: t corresponds to a satisfying assignment for φ

}

.

A graph of f is schematically presented on figure 9.
We show that Γf is (strongly) poly-time computable. Let (d1, d2) ∈ D2 and n be given.

We need to decide whether (d1, d2) is 2−n-close or 2 · 2−n-far from (d1, d2). If d1 /∈ [0, 1],
or d2 /∈ [0, 1] it is very easy to answer the query. Suppose d1 ∈

[

1
m+1

, 1
m

]

for some m. If
1
m
< 2−n we can just output 1, and we do not need to compute f . Otherwise, we check

whether m corresponds to a boolean formula φ in k variables. If it doesn’t, then it is very
easy to answer the query. Otherwise, since 2−n < 1

m
< 1

2k+1 , we will need to make at most
two substitutions to φ in order to correctly answer the query.

On the other hand, if f were graph poly-time computable as in (b), we would be able to
decide satisfiability in poly-time, which would imply that P = NP .

30

Figure 9: The construction of f

5.7 Notes on Complexity in the BSS Model

In theorem 16 we have seen that from the computability point of view, graph computability
extends BSSε,b

C
-computability of functions. In this section we give an example that illustrates

the gap between the definition from the complexity point of view.
We give an example of a set A ⊂ [0, 1]× [−1, 1] which is BSS computable by a machine

M without constants or error, such that the running time of M on (x, y), 0 < x ≤ 1 is
bounded by a polynomial in − log x. Thus the function

f(x, y) = x · χA(x, y)

is BSSε,b
C

computable, with a time bound polynomial in − log ε (this is the natural “poly-
time computability” for this model). On the other hand, graph-computing f in poly-time
would allow us to solve SAT in P , and imply that P = NP .

The set A is defined as follows: it is a union of Ai’s which are small sets in the neigh-
borhood of

(

1
i
, 0
)

, and i = 2s, where s is a number representing a boolean formula φ with
k < log i variables. We associate the 2k assignments to φ with numbers from 0 to 2k − 1. Ai

is defined as follows:

Ai =

{

(x, y) :
1

i
< x <

1

i− 1
, y ≥ 0, 0 <

y

x− 1/i
< 1, and φ

(⌊

2k · y
x− 1/i

⌋)

= 1

}

.

On figure 10 is an illustration of Ai corresponding to φ(x1, x2, x3) = (x1 ∧ x2) ∨ x3.

31

Figure 10: Ai corresponding to φ(x1, x2, x3) = (x1 ∧ x2) ∨ x3

To compute A in the BSS model one first locates the i such that 1
i
< x < 1

i−1
. This takes

time linear in − log x. Then it takes time polynomial in log i ≈ − log x to verify whether
(x, y) ∈ Ai. Thus A is BSS computable in time polynomial in − log x.

Now suppose that f(x, y) is poly-time computable in the graph model. Then a run on
x = 1

2s
, y = 0 with 2−m < 1

2s2 will reveal whether or not the formula φ corresponding to s is
satisfiable, yielding a poly-time algorithm for SAT.

References

[BBP97] D. Bailey, P. Borwein, S. Plouffe, On the rapid computation of various polyloga-
rithmic constants. Mathematics of Computation, vol. 66, no. 218, pp. 903-913, 1997.

[BPR03] S. Basu, R. Pollack, M.F. Roy, Algorithms in Real Algebraic Geometry, Springer,
2003.

[BBY04] I. Binder, M. Braverman, M. Yampolsky. Filled Julia sets with empty interior are
computable, e-print, 2004.

[BSS89] L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over the
real numbers: NP-completeness, recursive functions and universal machines. Bulletin
of the Amer. Math. Soc. 21, 1-46, 1989.

[BCSS98] L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation,
Springer, New York, 1998.

[BV98] P. Boldi, S. Vigna, δ-Uniform BSS machines, J. of Complexity 14, pp. 234-256, 1998.

32

[Brt98] V. Brattka, Feasible real random access machines, J. of Complexity 14, pp. 490-526,
1998.

[Brt03a] V. Brattka, Plottable real number functions. In Marc Daumas and et al., edi-
tors, RNC’5 Real Numbers and Computers, pp. 13-30. INRIA, Institut National de
Recherche en Informatique et en Automatique, Lyon, Sept. 3-5, 2003.

[Brt03b] V. Brattka, The emperor’s new recursiveness: The epigraph of the exponential
function in two models of computability. In Masami Ito and Teruo Imaoka, editors,
Words, Languages & Combinatorics III, pp. 63-72, Singapore, 2003. World Scientific
Publishing. ICWLC 2000, Kyoto, Japan, March 14-18, 2000.

[BW99] V. Brattka, K. Weihrauch, Computability of Subsets of Euclidean Space I: Closed
and Compact Subsets, Theoretical Computer Science, 219, pp. 65-93, 1999.

[Brv04] M. Braverman, “Computational Complexity of Euclidean Sets: Hyperbolic Julia
Sets are Poly-Time Computable”, Thesis, University of Toronto, 2004, and Proc. CCA
2004. Available at www.cs.toronto.edu/~mbraverm.

[BY04] M. Braverman, M. Yampolsky. Non-computable Julia sets, e-print, 2004.

[CK95] A. Chou, K. Ko, Computational complexity of two-dimensional regions, SIAM J.
Comput. 24, pp. 923-947, 1995.

[Grz55] A. Grzegorczyk, Computable functionals, Fund. Math. 42, pp. 168-202, 1955.

[Ko91] K. Ko, Complexity Theory of Real Functions, Birkhäuser, Boston, 1991.

[KL57] G. Kreisel, D. Lacombe, Ensembles récursivement mesurables et ensembles
récursivement ouverts et fermés, C. R. Acad. Sci. Paris, 245, pp. 1106-1109, 1957.

[Lac55] D. Lacombe, Classes récursivement fermés et fonctions majorantes, C. R. Acad. Sci.
Paris, 240, pp. 716-718, 1955.

[Lac58] D. Lacombe, Les ensembles récursivement ouverts ou fermés, et leurs applications à
l’Analyse récursive, C. R. Acad. Sci. Paris, 246, pp. 28-31, 1958.

[Mich89] C. Michaux, Une remarque à porpos des machines sur R introduites par Blum,
Shub et Smale, C. R. Acad. Sci. Paris, 309, Série I, pp. 435-437, 1989.

[PR89] M.B. Pour-El, J.I. Richards, Computability in Analysis and Physics, Perspectives in
Mathematical Logic, Springer, Berlin, 1989.

[Ren92] J. Renegar, On the computational complexity and geometry of the first order theory
of the reals, J. of Symb. Comp. 13, pp. 255-352, 1992.

[Ret04] R. Retinger. A fast algorithm for Julia sets of hyperbolic rational functions, Proc.
CCA’04, 2004.

33

[RW03] R. Rettinger, K. Weihrauch, The Computational Complexity of Some Julia Sets, in
STOC’03, June 9-11, 2003, San Diego, California, USA.

[Tar51] A. Tarski, A Decision Method for Elementary Algebra and Geometry, 2nd ed. Berke-
ley, CA: University of California Press, 1951.

[Tur36] A. M. Turing, On Computable Numbers, With an Application to the Entschei-
dungsproblem. In Proceedings, London Mathematical Society, 1936, pp. 230-265.

[Wei00] K. Weihrauch, Computable Analysis, Springer, Berlin, 2000.

[Zh96] Q. Zhou, Computable real-valued functions on recursive open and closed subspaces
of Rq, Math. Log. Quart. 42, pp. 379-409, 1996.

34

	Introduction
	The Bit Model
	The Model of Computation
	Basic Properties and Examples
	Complexity of Real Numbers and Real Functions
	Computability and Complexity of Real Sets
	Examples of Computable Sets

	The BSS Model
	The Model
	Examples of BSS Computable and Uncomputable Sets
	Possible Modifications to the BSS Model
	Uncomputable Constants
	Computation Errors
	Unbounded Computation Branches

	Computability of sets in BSSC,b

	Weak Computability of Real Sets
	Complexity of Real Functions
	Computability of Real Functions
	Connections to the BSS model
	Complexity of Real Functions
	Examples of Function Complexity
	The Definition Extends Standard Function Complexity
	Different Bit-Complexity Notions for Discontinuous Functions
	Notes on Complexity in the BSS Model

