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Abstract

The X-ray of a permutation is defined as the sequence of antidiagonal sums in the
associated permutation matrix. X-rays of permutation are interesting in the context
of Discrete Tomography since many types of integral matrices can be written as linear
combinations of permutation matrices. This paper is an invitation to the study of
X-rays of permutations from a combinatorial point of view. We present connections
between these objects and nondecreasing differences of permutations, zero-sum arrays,
decomposable permutations, score sequences of tournaments, queens’ problems and
rooks’ problems.

1 Introduction

Let Sn be the set of all permutations of [n] = {1, 2, . . . , n} and let Pπ be the per-
mutation matrix corresponding to π ∈ Sn. For k = 2, . . . , 2n, the (k − 1)-th antidi-
agonal sum of Pπ is xk−1(π) =

∑

i+j=k[Pπ]i,j. The sequence of nonnegative integers
x(π) = x1(π)x2(π) . . . x2n−1(π) is called the (antidiagonal) X-ray of π. The diagonal X-ray
of π, denoted by xd(π), is similarly defined. Note that x(π) = x(π−1), for every π ∈ Sn.
The sequence x(π) may be also seen as a word over the alphabet [n]. As an example, the
following table contains the X-rays of all permutations in S3:

π x(π) π x(π) π x(π) π x(π) π x(π)
123 10101 231, 312 01110 132 10020 213 02001 321 00300

Although X-rays of permutations are interesting object on their own, among the reasons
why they are of general interest in Discrete Tomography [6] is that many types of integral
matrices can be written as linear combinations of permutation matrices (for example,
binary matrices with equal row-sums and column-sums, like the adjacency matrices of
Cayley graphs). Deciding whether for a given word w = w1 . . . w2n−1 there exists π ∈ Sn
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such that w = x(π) is an NP-complete problem [3] (see also [5]). The complexity is
polynomial if the permutation matrix is promised to be wrapped around a cylinder [4]. It
is necessary to keep into account that permutations are not generally specified by their
X-rays: just consider the permutation π = 73142865 and σ = 72413865; we have x(π) =
x(σ) = 000110200002100, xd(π) = xd(σ) = 00021111100010 and π 6= σ−1. This hints
that an issue concerning X-rays is to quantify how much information about π is contained
in x(π). In this paper we present some connections between X-rays of permutations and
a variety of combinatorial objects. From a practical perspective, this may be useful in
isolating and approaching special cases of the above problem.

The remainder of the paper is organized as follows. In Section 2 we consider the problem
of counting X-rays. We prove a bijection between X-rays and nondecreasing differences of
permutations. We define the degeneracy of an X-ray x(π) as the number of permutations
σ such that x(π) = x(σ), and we characterize the X-rays with the maximum degeneracy.
We prove a bijection between X-ray of length 4k + 1 having maximum degeneracy and
zero-sum arrays. In Section 3 we consider the notion of simple permutations. This notion
seems to provide a good framework to study the degeneracy of X-rays, but the relation
between simple permutations and X-rays with small degeneracy remains unclear. Section
4 is devoted to binary X-rays, that is X-rays whose entries are only zeros and ones. We
characterize the X-rays of circulant permutation matrices of odd order. Moreover, we
present a relation between binary X-rays, the n-queens problem (see, e.g., [9]), the score
sequences of tournaments on n vertices (see [10, Sequence A000571]), and extremal Skolem
sequences, see [7, Conjecture 2.2].

A number of conjectures and open problems will be explicitly formulated or will simply
stand out from the context. We use the standard notation for integers sequences from the
OEIS [10].

2 Counting X-rays

We begin by addressing the following natural question: what is the number of different
X-rays of permutations in Sn? Although we are unable to find a generating function
for the sequence, we show a bijection between X-rays and nondecreasing differences of
permutations. The difference of permutations π, σ ∈ Sn is the integers sequence π − σ =
(w1, w2, . . . , wn), where w1 = π1 − σ1, w2 = π2 − σ2, . . . , wn = πn − σn. For example, if
π = 1234 and σ = 2413, we have e − 2413 = (−1,−2, 2, 1). Let xn be the numbers of
different X-rays of permutations in Sn. Let dn be the number of nondecreasing differences
of permutations in Sn. The number dn equals the number of different differences e−σ with
entries rearranged in the nondecreasing order. In other words, dn equals the number of
different multisets of the form M(σ) = {1−σ1, 2−σ2, . . . , n−σn}, with entries rearranged
in the nondecreasing order. The entries of x(π) are then the entries of the vector e1−σ1

+
e2−σ2

+ . . .+en−σn
, where ei is the i-th coordinate vector of length 2n−1. For example, for
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π = 3124 we have x(3124) = 0101200 and e1−3 + e2−1 + e3−2 + e4−4 = (0, 1, 0, 0, 0, 0, 0) +
(0, 0, 0, 0, 1, 0, 0) + (0, 0, 0, 0, 1, 0, 0) + (0, 0, 0, 1, 0, 0, 0) = (0, 1, 0, 1, 2, 0, 0). On the basis of
this reasoning we can state the following result.

Proposition 1 The number xn of different X-rays of permutations in Sn is equal to the
number dn (see [10, Sequence A019589]) of nondecreasing differences of permutations in
Sn.

Let us define and denote the degeneracy of an X-ray x(π) by

δ(x(π)) = |{σ : x(σ) = x(π)}|.

If x(π) is such that δ(x(π)) ≥ δ(x(σ)) for all σ ∈ Sn, we write xn
max = x(π) and we say

that x(π) has maximum degeneracy. The following table contains xn, xn
max and δ(xn

max)
for n = 1, . . . , 8.

n xn xn
max δ(xn

max) n xn xn
max δ(xn

max)

1 1 1 1 5 59 001111100 6

2 2 020, 101 1 6 246 00011211000 12

3 5 01110 2 7 1105 0001111111000 28

4 16 0012100 3 8 5270 000011121110000 76

It is not difficult to characterize the X-rays with maximum degeneracy. One can verify
by induction that for n even,

xn
max = 00 . . . 011 . . . 121 . . . 110 . . . 00,

with n/2 left-zeros and right-zeros, and n/2 − 1 ones; for n odd,

xn
max = 00..011 . . . 110..00,

with (n − 1)/2 left-zeros and right-zeros, and n ones. Notice that if x(π) = xn
max (for n

odd) then Pπ can be seen as an hexagonal lattice with all sides of length (n + 1) /2. In
each cell of the lattice there is 0 or 1, and 1 is in exactly n cells; the column-sums are 1 and
the diagonal and anti-diagonal sums are 0. This observation describes a bijection between
permutations of odd order whose X-ray is xn

max and zero-sum arrays. An (m, 2n + 1)-zero-
sum array is an m× (2n+1) matrix whose m rows are permutations of the 2n+1 integers
−n,−n + 1, . . . , n and in which the sum of each column is zero [2]. The matrix







−1 0 1
0 1 −1
1 −1 0







is an example of (3, 3)-zero-sum array. Thus we have the next result.
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Proposition 2 The number δ(xn
max) for n odd is equal to the number of (3, 2n + 1)-zero-

sum arrays (see [10, Sequence A002047]).

Before concluding the section, it may be interesting to notice that if we sum entry-wise
the X-rays of all permutations in Sn we obtain the following sequence of 2n − 1 terms:

(n − 1)!, 2(n − 1)!, . . . , (n − 1)(n − 1)!, n!, (n − 1)(n − 1)!, . . . , 2(n − 1)!, (n − 1)!.

The meaning of the terms of this sequence is clear.

3 Simple permutations and X-rays

In the previous section we have considered the X-rays with maximum degeneracy. What
can we say about X-rays with degeneracy 1? If δ(x(π)) = 1 then π is an involution (in
such a case Pπ = P−1

π ) but the converse if not necessarily true. In fact consider the
involution π = 1267534. One can verify that x(π) = x(σ) = x(ρ) = 1010000212000, for
ρ = 1275634 and σ = 1267453. In a first approach to the problem, it seems useful to
study what kind of operations can be done “inside” a permutation matrix Pπ in order to
obtain another permutation, say Pσ , such that x(π) = x(σ) and Pπ 6= P−1

σ . A intuitively
good framework for this task is provided by the notion of block permutation. A segment
and a range of a permutation are a set of consecutive positions and a set of consecutive
values. For example, in the permutation 34512, the segment formed by the positions 2, 3, 4
is occupied by the values 4, 5, 1; the elements 1, 2, 3 form a range. A block is a segment
whose values form a range. Every permutation has singleton blocks together with the block
12 . . . n. A permutation is called simple if these are the only blocks [1]. A permutation is
said to be a block permutation if it is not simple. Note that if π is simple then it is π−1.
Let S = (π1 ∈ Sn1

, . . . , πk ∈ Snk
) be an ordered set and let π ∈ Sk. We assume that in

S there exists 1 ≤ i ≤ k such that ni > 1. We denote by P (π, S) the (n1 + · · · + nk)-
dimensional permutation matrix which is partitioned in k2 blocks, B1,1, . . . , Bk,k, such that
Bi,j = Pπi

if π(i) = j and Bi,j = 0, otherwise. We denote by π[π1, . . . , πk] (or equivalently
by (π)[S]) the permutation corresponding to P (π, S). For example, let S = (231, 21, 312)
and π = 231. Then

P (231, S) =







0 P231 0
0 0 P21

P312 0 0







and 231[S] = 231[231, 21, 312] = 56487312. The matrix P (231, S) can be modified leaving
the X-ray of (π)[S] invariant:

P (231, (312, 21, 312)) =







0 P312 = P T
231 0

0 0 P21

P312 0 0






.
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It is clear that 56487312 is a block permutation. Let π be a simple permutation then
possibly δ(x(π)) > 1. In fact, the permutation π = 531642 is simple, but δ(x(π)) = 6,
since x(π) = 00111011100 = x(526134) = x(461253), plus the respective inverses. The
permutations 526134 and 461253 are decomposable. This means that there possibly exists
a decomposable permutation σ such that x(σ) = x(π), even if π is simple. There relation
between simple permutations and X-rays of small degeneracy is not clear. Intuitively,
a simple permutation allows less “freedom of movement” than a block permutation. It
is also intuitive that we have low degeneracy when the nonzero entries of the X-ray are
“distributed widely” among the 2n − 1 coordinates. The following result is easily proved.

Proposition 3 Let σ = π[S] = π[π1, . . . , πk] be a block permutation. Then δ(x(π)) > 1 if
one of the following two conditions is satisfied:

(1) If π 6= 12 . . . n then there is at least one πi ∈ S which is not an involution;
(2) If π = 12 . . . n then there are at least two πi, πi ∈ S which are not involution.

Proof. (1) Let π 6= 12 . . . n be any permutation. Take π−1
i for some πi ∈ S. Let ρ =

π[π1, . . . , π
−1

i , . . . , πk]. Since σ is a block permutation, x(σ) = x(ρ). However, if πi 6= π−1

i

then σ 6= ρ and σ−1 6= σ. It follows that x(σ) does not specify σ. (2) Let π = 12 . . . n.
Let all elements of S be involutions except πi. Take π−1

i . Let ρ = π[π1, . . . , π
−1
i , . . . , πk].

Again, x(σ) = x(ρ), but this time ρ = σ−1. Then x(σ) possibly specifies σ. If, for distinct
i, j, there are πi, πj ∈ S such that πi 6= π−1

i and πj 6= π−1
j then

x(σ′) = x(π[π1, . . . , π
−1
i , . . . , π−1

j , . . . , πk]) = x(σ),

but x(σ) does not specify σ, given that ρ 6= σ−1.
This is however not a sufficient condition for having δ(x(π)) > 1. Permutations with

equal X-rays are said to be in the same degeneracy class. The table below contain the
number of permutations in Sn which are in each degeneracy class, and the number of
different degeneracy classes with the same cardinality, for n = 2, . . . , 8. These numbers
provide a partition on n!. We denote by C(n) the total number of degeneracy classes. We
write a(b), where a is the number of permutations in the degeneracy class and b the number
of degeneracy classes of the same cardinality:

C(2) = 1: 1(2)

C(3) = 2: 1(4),2(1)

C(4) = 3: 1(9),2(6),3(1)

C(5) = 5: 1(20),2(26),3(6),4(6),6(1)

C(6) = 10: 1(49),2(100),3(19),4(43),5(1),6(19),7(2),8(11),9(1),2(1)

C(7) = 20: 1(114),2(345),3(60),4(229),5(18),6(118),7(11),8(98),10(29)

11(2),12(33),14(13),16(14),18(6),20(4),21(1),22(2),26(1),28(1).

.

We conjecture that if δ(x(π)) = 1 then x(π) does not have more than 2 adjacent nonzero
coordinates. However the converse is not true if π ∈ Sn for n ≥ 8: for π = 17543628 and
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σ = 16547328, we have x(π) = x(σ) = 100000320010001, but there are no more than 2
adjacent coordinates.

4 Binary X-rays

In general, it does not seem to be an easy task to characterize X-rays. A special case
is given by X-rays associated with circulant permutation matrices, for which is available
an exact characterization. An X-ray x(π) is said to be binary if xi(π) ∈ {0, 1} for every
1 ≤ i ≤ 2n − 1. The set all permutations in Sn with binary X-ray is denoted by Bn.
Counting binary X-rays means solving a modified version of the n-queens problem (see,
e.g., [9]) in which two queens do not attack each other if they are in the same NorthWest-
SouthEst diagonal. The permutations with binary X-rays associated to circulant matrices
are characterized in a straightforward way. Let Cn be the permutation matrix associated
with the permutation cn = 23 . . . n1, that is the basic circulant permutation matrix. The
matrices in the set Cn = {C0

n, Cn, C2
n, . . . , Cn−1

n } (C0
n is the identity matrix) are called the

circulant permutation matrices. The matrix Ck
n is associated to ck

n. Observe that x(π) can
be seen as a binary number, since xi(π) ∈ {0, 1} for every i. Let

dj(π) = 22n−1−j · xj(π), j = 1, 2, . . . , 2n − 1,

and d(π) =
∑

2n−1
i=1

di(π), that is the decimal expansion of x(π). The table below lists the
X-rays of C3, C5 and C7, and their decimal expansions:

π x(π) d(π) π x(π) d(π)

123 10101 21 12345 101010101 341

231 01110 14 23451 010111010 186

34512 001111100 124

.

For π = ck
n, one can verify that

d(π) = 1

6
2

3

2
n+

1

2
+k − 1

6
2

1

2
n+

1

2
+k + 1

3
2

3

2
n+

1

2
−k − 1

3
2

1

2
n+

1

2
−k

= a(k) (2n − 1) (2n − 1) 2
1

2
n−k+

1

2 ,

where a(k) = (22k−1 + 1)/3 (A007583).
In the attempt to count binary X-rays, we are able to establish a bijection between

these objects and score sequences of tournaments. A tournament is a loopless digraph
such that for every two distinct vertices i and j either (i, j) or (j, i) is an arc [8]. The score
sequence of an tournament on n vertices is the vector of length n whose entries are the
out-degrees of the vertices of the tournament rearranged in nondecreasing order.

Proposition 4 Let bn be the number of binary X-rays of permutations in Sn and let sn

be the number of different score sequences of tournaments on n vertices (see [10, Sequence
A000571]). Then bn ≤ sn.
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Proof. The number sn equals the number of integers lattice points (p0, . . . , pn) in the
polytope Pn given by the inequalities p0 = pn = 0, 2pi − pi+1 − pi−1 ≤ 1 and pi ≥ 0,
for i = 1, . . . , n − 1, see [8]. Let x1, . . . , xn be the coordinates related to p1, . . . , pn by
pi = x1+ . . .+xi−i2, for i = 1, . . . , n. We can rewrite the inequalities defining the polytope
Pn in these coordinates as follows: x1 + . . .+ xi ≥ i2, xi+1 ≥ xi + 1 and x1 + . . . + xn = n2.
For a permutation w ∈ Sn with a binary X-ray, let li = li(w) be the position of the i-th
‘1’ in its X-ray. In other words, the sequence (l1, . . . , ln) is the increasing rearrangement
of the sequence (w1, w2 + 1, w3 + 2, . . . , wn + n − 1). Then the numbers l1, . . . , ln satisfy
the inequalities defining the polytope Pn (in the x-coordinates). Indeed, l1 + . . . + ln =
w1 + (w2 + 1) + · · · + (wn + n − 1) = n2; li+1 ≥ li + 1; and the minimal possible value of
l1 + · · ·+ li is (1+0)+ (2+1)+ · · ·+(i+(i− 1)) = i2. This finishes the proof. In order, to
prove that bn = sn it is enough to show that, for any integer point (x1, . . . , xn) satisfying
the above inequalities, we can find a permutation w ∈ Sn with xi = li(w).

Conjecture 5 All binary X-rays of permutations in Sn are in a bijective correspondence
with integer lattice points (x1, . . . , xn) of the polytope given by the inequalities

x1 + · · · + xi ≥ i2, i = 1, . . . , n;
x1 + · · · + xn = n2,
xi+1 − xi ≥ 1, i = 1, . . . , n − 1.

For a permutation w ∈ Sn, the corresponding sequence (x1, . . . , xn) is defined as the in-
creasing rearrangement of the sequence (w1, w2 + 1, w3 + 2, . . . , wn + n − 1).

Again, it is clear that X-rays injectively map into the integer points of the above
polytope. One needs to show that there will be no gaps in the image. Also, it can
be shown that the above conjecture is equivalent to Conjecture 2.2 from [7] concerning
extremal Skolem sequences. The conjecture turns out to be false, when not restricted to
binary X-rays.

We conjecture also that the number of different X-rays of permutations in Sn whose
possible entries are 0 and 2 is equal to the number of score sequences in tournament with
n players, when 3 points are awarded in each game (see [10, Sequence A047729]).

5 Palindromic X-rays

What can we say about X-rays with special symmetries? The reverse of x(π), denoted
by x(π), is the mirror image of x(π). If x(π) = x(π) then π is said to be palindromic.
The reverse of π, denoted by π, is mirror image of π. For example, if π = 25143 then
π = 34152. The permutation matrix Pπ is obtained by writing the rows of Pπ in reverse
order. In general x(π) 6= x(π). In fact, for π = 25143, we have x(π) = 0011001200,
x(π) = 0021001100 and x(π) = 0020011010. We denote by |M and M the matrices
obtained by writing the columns and the rows of a matrix M in reverse order, respectively.
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Proposition 6 Let ln be the number of permutations in Sn with palindromic X-rays and
let in be the number of involutions in Sn (see [10, Sequence A000085]). Then, in general,
ln > in.

Proof. Recall that a permutation π is an involution if π = π−1. Since Pπ = P T
π , it is

clear that the diagonal X-ray of an involution π is palindromic. The X-ray of σ such that
Pσ = |Pπ is then also palindromic. This shows that ln ≥ in. Now, consider a permutation
matrix of the form

Pσ =

[

Pρ 0
0 P T

ρ

]

,

for some permutation ρ which is not an involution. Then Pρ 6= P T
ρ , Pσ 6= P T

σ and σ is
not an involution, but the diagonal X-ray of σ is palindromic. The X-ray of π such that
Pπ = |Pσ is then also palindromic. This proves the proposition.

The next contains the values of ln for small n:

n ln n ln n ln n ln
2 2 4 12 6 128 8 2110

3 4 5 32 7 436 9 8814

.

Proposition 7 Let ln,A=D be the number of permutations in Sn with:
(1) equal diagonal and antidiagonal X-rays;
(2) palindromic X-rays.

Let rn be the number of permutations in Sn invariant under the operation of first reversing
and then taking the inverse (see [10, Sequnce A097296]). Then, in general, ln,A=D > rn.

Proof. We first construct the permutations which are invariant under the operation of
first reversing and then taking the inverse. Let π ∈ Sn where n = 2k. We look at Pπ as
partitioned in 4 blocks:

Pπ =

[

A B
C D

]

.

If

Pπ = (Pπ)T =

[

A B
C D

]T

=

[

B A
D C

]T

=

[

(B)T (D)T

(A)T (C)T

]

then A = (B)T , B = (D)T , C = (A)T and D = (C)T . This implies the X-ray of Pπ

being palindromic and, moreover, the diagonal and antidiagonal X-rays being equal. Note
that we can construct Pπ only if n ≡ 0(mod 4), and in this case rn 6= 0. However, fixed
n ≡ 0(mod 4), we have rn = rn+1, since the permutation matrix

Pσ =







A 0

1
0 D






+







0 B
1

C 0
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can be always constructed from Pπ. (Permutation matrices like Pπ and Pσ provide the
solutions of the “rotationally invariant” n-rooks problem. This points out that A097296
and A037224 are indeed the same sequence.) Now, the proposition is easily proved by
observing that, for ρ = 369274185, Pρ is not of the form of Pσ. A direct calculation shows
that r9 = 12 and l9,A=D = 20.
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