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Convex polygon Directed and convex polygon Staircase polygon

Stack polygon Ferrers diagram Rectangular polygon

Figure 1. Examples of the types of convex polygons we consider in this paper.

1. Introduction

A well-known long standing problem in combinatorics and statistical mechanics is to

find the generating function for self-avoiding polygons (or walks) on a two-dimensional

lattice. The models are of tremendous inherent interest as well as serving as simple

models of polymers and vesicles [1, 2, 3]. Despite strenuous effort over the past 50 years

or so this problem has not been solved on any regular two dimensional lattice. However,

there are many simplifications of this problem that are solvable [4], but all the simpler

models impose an effective directedness or other constraint that reduces the problem,

in essence, to a one-dimensional problem.

One particular class of exactly solved polygon models are those with a convexity

constraint (see figure 1). On the square lattice a polygon is said to be convex if it

is convex with respect to both vertical and horizontal lines, i.e., any vertical line will

intersect the polygon at zero or two horizontal edges while similarly any horizontal line

will intersect the polygon at zero or two vertical edges. Alternatively a convex polygon

is a SAP of a length equal to the perimeter of its minimal bounding rectangle. If we

further demand that the polygon must include the vertices in some of the corners of the

minimal bounding rectangle we can define a further five polygon models as illustrated

in figure 1. The full perimeter and area generating functions are known for all these

models [4]. Also of great interest is the mean-square radius of gyration, 〈R2〉n, which

measures the typical size of a polygon with perimeter n. In this paper we report on

work leading to conjectured exact solutions for the generating functions associated with

the mean-square radius of gyration for the class of convex polygons.
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An n-step self-avoiding walk ω is a sequence of distinct vertices ω0, ω1, . . . , ωn such

that each vertex is a nearest neighbour of it predecessor. SAWs are considered distinct

up to translations of the starting point ω0. A self-avoiding polygon of length n is an

n − 1-step SAW such that ω0 and ωn−1 are nearest neighbours and a closed loop can

be formed by inserting a single additional step joining the two end-points. We shall use

the symbol Ωn to mean the set of all SAPs of perimeter length n. Generally SAPs are

considered distinct up to a translation, so if there are pn SAPs of length n there are 2npn

walks (the factor of two arising since the walk can go in two directions). One expects

in general that pn ∼ Aµnnα−3, where µ is the so-called connective constant while α is

a critical exponent. In our cases µ and α are known from the exact solutions for the

perimeter generating functions

P(x) =
∑

n

p2nxn ∼ A(x)(1 − µ2x)2−α, (1)

where we took into account that polygons on the square lattice have even length. The

generating functions thus have a singularity at the critical point xc = 1/µ2 with critical

exponent 2 − α. The function A(x) is analytic at x = xc. Note that both µ and α are

model dependent.

The mean-square radius of gyration of n-step polygons is defined by,

〈R2〉n =
1

2n2pn

∑

Ωn

n−1
∑

i,j=0

(ωi − ωj)
2, (2)

where we expect that 〈R2〉n ∼ Bn2ν . It is advantageous to look at the quantity

rn = n2pn〈R2〉n, which is an integer, and in particular we shall study the associated

generating function

R(x) =
∑

n

r2nx
n ∼ B(x)(1 − µ2x)−(α+2ν), (3)

where we again used that rn is non-zero only when n is even.

The values for the critical exponents are known exactly, though non-rigorously, for

self-avoiding polygons due to the work by Nienhuis [5], α = 1/2 and ν = 3/4. As we

shall demonstrate later, the exponent α takes on several different values for the convex

polygons studied in this paper, but the exponent ν = 1 in all cases.

In the next section we briefly describe the algorithm used to calculate rn and in the

following section we list the various perimeter generating functions.

2. Computer enumeration

The first terms in the series for the polygon generating function are calculated using

transfer matrix techniques to count the number of polygons spanning rectangles W + 1

edges wide and L + 1 edges long. The transfer matrix technique involves drawing a line

through the rectangle intersecting a set of edges. For each configuration of occupied or

empty edges along the intersection we maintain a (perimeter) generating function for
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partial polygons cutting the intersection in that particular pattern. Due to the convexity

constraint a vertical line will intersect the polygon exactly twice. The upper edge of the

convex polygon performs a directed walk taking steps to the right and up until it reaches

the top of the rectangle where it turns and then performs a directed walk with steps to

the right and down. Likewise the lower edge performs a directed walk with right and

down steps until it hits the bottom of the rectangle where it turns and takes only right

and up steps. A convex polygon is formed once the two walks meet. In order to specify

a configuration we just need to know the positions of the edges and whether or not the

top and bottom of the rectangle has been touched. All the possible configurations can

then be encoded by four (W + 1)× (W + 1)-matrices, one matrix for each possibility of

touched borders. As the vertical boundary line is moved one step forwards the matrices

are updated to allow for all the legal moves of the edge-walks (the walks must be directed

as described above and never cross). The updating involves simple double sums over

the indices. This approach was used by Guttmann and Enting [6] and is very efficient.

However, in one iteration many steps can be inserted and this makes the calculation

of the contributions to the radius of gyration somewhat cumbersome. We find it more

convenient to use an algorithm in which the convex polygons in a given rectangle are

enumerated by moving the intersection so as to add one vertex at a time. The method

we used to enumerate convex polygons on the square lattice is a specialisation of the

method originally devised by Enting [7] for the enumeration of self-avoiding polygons.

As noted earlier, convex polygons can be viewed as SAPs with a number of steps equal to

the perimeter of the minimal bounding rectangle. So we could simply take our previous

algorithm [8, 9], which we generalised in order to calculate the radius of gyration, and

only extract the terms counting convex polygons. Due to the convexity constraint we

were able to simplify the algorithm somewhat and make it more efficient. However, the

algorithm is still quite similar to the SAP enumeration algorithm so we won’t describe it

further. Suffice to say that the method for calculating the radius of gyration coefficients

rn has been described in [9].

Using this algorithm we quickly (a few hours of CPU time) calculated the radius of

gyration of the polygon models of figure 1 to length n = 110, giving us 56 terms in the

half-perimeter series. The first few terms pn and rn are listed in table 1. The full series

for the generating functions studied in this paper can be obtained by sending a request

to the author or via the web at http://www.ms.unimelb.edu.au/∼iwan/.

3. The exact generating functions

In this section we use the series for rn to find (numerically) the exact perimeter

generating functions for the radius of gyration of convex polygons.

The perimeter generating function for convex polygons was first obtained by Delest

and Viennot [10] using the method of algebraic languages and later by several other

http://www.ms.unimelb.edu.au/~iwan/
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Table 1. The number of polygons pn and their mean-squared radius of gyration

rn = n2pn〈R2〉
n
.

Convex polygons Directed and convex polygons Staircase polygons

n pn rn pn rn pn rn

4 1 8 1 8 1 8
6 2 66 2 66 2 66
8 7 600 6 522 5 444

10 28 5164 20 3772 14 2710
12 120 41768 70 25138 42 15512
14 528 317584 252 157212 132 84756
16 2344 2280792 924 935140 429 446952
18 10416 15573120 3432 5343160 1430 2291718
20 46160 101743312 12870 29541450 4862 11485760
22 203680 639664960 48620 158920172 16796 56486716
24 894312 3889101336 184756 835390460 58786 273405288
26 3907056 22961959168 705432 4305416136 208012 1305401916
28 16986352 132118984560 2704156 21812985652 742900 6159651344
30 73512288 743046249664 10400600 108875244952 2674440 28766573800
32 316786960 4095077270128 40116600 536326527048 9694845 133128274320
34 1359763168 22163717040384 155117520 2611304032624 35357670 611143639110
36 5815457184 118021533366432 601080390 12582098181466 129644790 2785335811920
38 24788842304 619313064407680 2333606220 60058408242252 477638700 12612104460780
40 105340982248 3206924122635928 9075135300 284257070075212 1767263190 56773091159400

Stack polygons Ferrers diagrams Rectangular polygons

n pn rn pn rn pn rn

4 1 8 1 8 1 8
6 2 66 2 66 2 66
8 5 444 4 366 3 288

10 13 2541 8 1640 4 900
12 34 12840 16 6404 5 2280
14 89 59113 32 22696 6 4998
16 233 253600 64 74832 7 9856
18 610 1029802 128 233312 8 17928
20 1597 4002112 256 695680 9 30600
22 4181 15005189 512 2000128 10 49610
24 10946 54603436 1024 5578752 11 77088
26 28657 193743969 2048 15166464 12 115596
28 75025 672725072 4096 40336384 13 168168
30 196418 2292470170 8192 105256960 14 238350
32 514229 7685026612 16384 270135296 15 330240
34 1346269 25392243845 32768 683188224 16 448528
36 3524578 82826447752 65536 1705443328 17 598536
38 9227465 267077278409 131072 4207935488 18 786258
40 24157817 852322922488 262144 10274078720 19 1018400

authors using different methods [6, 11, 12]:

PConvex(x) =
x2 − 6x3 + 11x4 − 4x5

(1 − 4x)2
− 4x4

(1 − 4x)3/2
. (4)

From this we see that the critical point xc = 1/4 (and thus µ = 2) while the critical

exponent 2−α = −2 (and thus α = 4), corresponding to the dominant double pole at x =

xc. In addition there is a sub-dominant square root correction. Informed by this result it

is natural to assume that the generation function for the mean-squared radius of gyration

has a similar form. That is we assume that R(x) = [A(x) + B(x)
√

1 − 4x]/(1 − 4x)γ ,

where A(x) and B(x) are polynomials. Using the method of differential approximants

[13] we easily established that γ = 6. Next we wrote a simple Maple routine to find
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such a solution, that is we solve for the unknown coefficients ai and bi of A(x) and

B(x). We simply form the series expansion for [A(x) + B(x)
√

1 − 4x], match the series

coefficients to those of R(x)(1 − 4x)6 and solve the resulting set of linear equations in

the coefficient ai and bi. In this fashion we found a solution with polynomials of degree

10 requiring no more than 22 unknown coefficients. Since we have more than 50 known

terms r2n there are at least 30 unused series coefficients which serve as strong checks on

the correctness of our solution. The generating function for the mean-squared radius of

gyration of convex polygons is:

RConvex(x) =
2x2(1 − 2x)(4 − 55x + 388x2 − 1058x3 + 956x4 + 2064x5 − 6592x6 + 6400x7)

(1 − 4x)6

−4x4(15 + 22x − 408x2 + 1664x3 − 3720x4 + 3456x5)

(1 − 4x)11/2
. (5)

From this we see that the critical exponent α + 2ν = 6 and thus ν = 1. This should

be compared to the result for self-avoiding polygons ν = 3/4 [5]. Physically, there is a

simple argument for ν = 1. Convex polygons are relevant to the description of vesicles

in the inflated regime, where they are space-filling, and since the radius of gyration

measures a typical size of a polygon 〈R2〉n is proportional to a typical area and hence

ν = 1 for convex polygons. The value ν = 3/4 means that SAPs are much more ramified.

Directed and convex polygons was considered by Lin and Chang [11]. They

calculated the full anisotropic generating function for directed and convex polygons.

In the isotropic case which we consider here their result reduces to the very simple form

PDirConv(x) =
x2

(1 − 4x)1/2
, (6)

so we have xc = 1/4 while 2 − α = −1/2 and thus α = 5/2. As for the convex case we

start by looking for a solution to R(x) of the same form, that is R(x) = A(x)/(1−4x)γ,

with γ = 9/2 determined from differential approximants. However we were not

successful at first, so next we tried a solution of the same form as for convex polygons

and found that

RDirConv(x) =
−x2 + 20x3 − 48x4 + 24x5 − 168x6 + 384x7

(1 − 4x)9/2
+

9x2 − 44x3 + 72x4 − 32x5

(1 − 4x)3
.(7)

So in this case we find the critical exponent α + 2ν = 9/2 and thus as before ν = 1.

The model of staircase polygons is very well-known and much studied, dating back

at least to the work by Pólya [14] who showed that p2n = 1
4n−2

(

2n
n

)

for n ≥ 2. This result

was obtained by Delest and Viennot [10] in the more elegant form p2n+2 = Cn = 1
n+1

(

2n
n

)

,

where Cn are the famous and ubiquitous Catalan numbers. Consequently the generating

function is

PStair(x) = (1 − 2x −
√

1 − 4x)/2, (8)
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and xc = 1/4, while 2 − α = 1/2 and thus α = 3/2. As per the previous cases we quite

readily find the radius of gyration generation function

RStair(x) =
x(1 − 6x + 24x2 − 60x3 + 64x4)

(1 − 4x)7/2
− x, (9)

and we see that α + 2ν = 7/2 and once again ν = 1.

Stack polygons were also considered by Lin and Chang [11] and their result for the

generating function is

PStack(x) =
x2(1 − x)

(1 − 3x + x2)
. (10)

The critical point is now given by the zero of 1 − 3x + x2 namely xc = 0.381966011 . . .

and the critical exponent is 2 − α = −1 or α = 3. In this case the radius of gyration

generation function is of the same form and again we have ν = 1. Explicitly we find

that

RStack(x) =
8x2 − 54x3 + 214x4 − 489x5 + 605x6 − 386x7 + 177x8 − 120x9 + 19x10 − x11

(1 − 3x + x2)5
.(11)

The generating function for Ferrers diagrams is trivial in that these polygons are

simply formed from a directed walk with n−2 right or up steps, extended at the starting

point with a horizontal step and at the end-point with a vertical step, and then closed

by straight lines to form a polygon with 2n steps. It immediately follows that the

generating function is

PFerrers(x) =
x2

(1 − 2x)
, (12)

and we have xc = 2 and α = 3. The radius of gyration generation function is of the

same form and with ν = 1,

RFerrers(x) =
2x2(4 − 7x + 13x2 − 10x3 + 2x4)

(1 − 2x)5
. (13)

Rectangular polygons are obviously the simplest case and the generating function

is simply

PRect(x) =
x2

(1 − x)2
, (14)

so that xc = 1 and α = 4. The radius of gyration generating function is found to be

RRect(x) =
2x2(1 + x)2(4 + x)

(1 − x)6
, (15)

and again we have ν = 1.

Now that these results for the radius of gyration of convex polygons are known

from the numerical work presented here it should be easier to prove them rigorously.
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