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Abstract

We show bijectively that the Catalan number Cn counts Dyck (n + 1)-paths in

which the terminal descent is of even length and all other descents to ground level

(if any) are of odd length.

Richard Stanley’s inventory of combinatorial interpretations of the Catalan number

Cn = 1

n+1

(

2n

n

)

currently stands at 135 items. Here is one more.

Theorem 1. Let An denote the set of Dyck n-paths for which the terminal descent is

of even length and all other descents to ground level (if any) are of odd length. Then

|An| = Cn−1 for n ≥ 2.

This result is a counterpart to item (j) in Stanley’s inventory, which says that Cn−1

also counts Dyck n-paths for which all descents to ground level are of odd length.

A Dyck n-path is a lattice path of n upsteps U and n downsteps D that never dips

below ground level, the horizontal line joining its start and end points. The number of

Dyck n-paths is well known to be Cn. The size, also called the semilength, of a Dyck

n-path is n. A return is a downstep that returns the path to ground level. A descent is a

maximal sequence of contiguous downsteps. A peak is an occurrence of UD. A low peak

(resp. low UDU) is one that starts at ground level. A low peak is also called a hill and a

low UDU an early hill. Note that a path free of early hills is either hill-free or has just one

hill at the very end. Hill-free Dyck paths and Dyck paths with an even-length terminal

descent are both counted [1] by the Fine numbers, A000957 in OEIS. Early-hill-free Dyck

paths are counted [2] by A000958 .

We prove the following refinement of |An| = Cn−1.
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Theorem 2. For n ≥ 2 and k ≥ 1, the paths in An with k returns correspond bijectively

to Dyck (n − 1)-paths that contain k − 1 early hills.

The proof relies on the following bijections.

Proposition 3. There exists a bijection from Dyck n-paths with terminal descent of even

(resp. odd ) length to hill-free (resp. early-hill-free) Dyck n-paths.

Proof The “DUtoDXD” bijection of [3, §4] establishes the even-length terminal descent

→ hill-free part. For the odd-length terminal descent → early-hill-free part, split the first

set of paths into A: those with only one return, and B: those with 2 or more returns. The

interior (drop first and last steps) of a path in A has terminal descent of even length and

so corresponds to a hill-free Dyck (n − 1)-path by the previous part. Append UD to get

a bijection from A to the early-hill-free Dyck n-paths that end UD. A path in B can be

written (uniquely) as PUQD = P �
Q

� where P, Q are nonempty Dyck paths and

Q has terminal descent of even length. Map to �
P

� Q′ , where Q′ is the hill-free path

corresponding to Q. This gives a bijection from B to the early-hill-free Dyck n-paths that

do not end UD.

Proof of Theorem 2 Given a path in An with k returns, use the path’s returns to

write it (uniquely) as �
P1

� �
P2

� . . . �
Pk−1

� �
Pk

� where P1, P2, . . . , Pk−1

are Dyck paths, all with terminal descent of even length (possibly 0), and Pk is a

Dyck path with terminal descent of odd length. Using Prop. 3, map the path to

P ′
1 � � P ′

2 � � . . . � � P ′
k−1

� � P ′
k
, where P ′

i
is hill-free for 1 ≤ i ≤ k − 1

and P ′
k

is nonempty early-hill-free. The resulting Dyck path has one fewer U and D than

the original and contains k − 1 early hills, and Theorem 2 follows.

These results can be used to explain the distribution of the statistic “# even-length

descents to ground level” on Dyck paths. First, let T (n, k) denote the number of Dyck

n-paths with k returns;
(

T (n, k)
)

0≤k≤n
forms the Catalan triangle, A106566 in OEIS.

Corollary 4 ([4]). The number of Dyck n-paths with k even-length descents to ground

level is T (n, 2k) + T (n, 2k + 1).

Proof Again calling on the “DUtoDXD” bijection of [3, §4], it sends Dyck n-paths

all of whose returns to ground level have odd length to Dyck n-paths that start UD and

thence (transfer this D to the end of the path) to Dyck n-paths with exactly 1 return.
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This establishes the case k = 0. For k ≥ 1, split the paths into A: those for which the

terminal descent has even length, and B: the rest. A path in A splits, via its even-length

descents to ground level, into k Dyck paths to each of which Theorem 1 applies. The

result is a k-list of nonempty Dyck paths of total size n− k. Since nonempty Dyck paths

correspond to 2-return Dyck paths of size 1 unit larger
(

�
P

� Q → �
P

� �
Q

�
)

,

we get a bijection from A to Dyck n-paths with 2k returns. There is a similar bijection

from B to Dyck n-paths with 2k + 1 returns.
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