Digit Reversal Without Apology

Lara Pudwell
Rutgers University
Piscataway, NJ 08854
lpudwell@math.rutgers.edu

In A Mathematician's Apology [1] G. H. Hardy states, "8712 and 9801 are the only four-figure numbers which are integral multiples of their reversals"; and, he further comments that "this is not a serious theorem, as it is not capable of any significant generalization."

However, Hardy's comment may have been short-sighted. In 1966, A. Sutcliffe [2] expanded this obscure fact about reversals. Instead of restricting his study to base 10 integers and their reversals, Sutcliffe generalized the problem to study all integer solutions of

$$
k\left(a_{h} n^{h}+a_{h-1} n^{h-1}+\cdots+a_{1} n+a_{0}\right)=a_{0} n^{h}+a_{1} n^{h-1}+\cdots+a_{h-1} n+a_{h}
$$

with $n \geq 2,1<k<n, 0 \leq a_{i} \leq n-1$ for all $i, a_{0} \neq 0, a_{h} \neq 0$. We shall refer to such an integer $a_{0} \ldots a_{h}$ as an $(h+1)$-digit solution for n and write $k\left(a_{h}, a_{h-1}, \ldots, a_{1}, a_{0}\right)_{n}=\left(a_{0}, a_{1}, \ldots, a_{h-1}, a_{h}\right)_{n}$. For example, 8712 and 9801 are 4 -digit solutions in base $n=10$ for $k=4$ and $k=9$ respectively. After characterizing all 2-digit solutions for fixed n and generating parametric solutions for higher digit solutions, Sutcliffe left the following open question: Is there any base n for which there is a 3-digit solution but no 2-digit solution?

Two years later T. J. Kaczynski ${ }^{1}$ [3] answered Sutcliffe's question in the negative. His elegant proof showed that if there exists a 3 -digit solution for n, then deleting the middle digit gives a 2-digit solution for n. Together with Sutcliffe's work, this proved that there exists a 2 -digit solution for n if and only if there exists a 3 -digit solution for n.

[^0]Given the nice correspondence between 2- and 3-digit solutions described by Sutcliffe and Kaczynski, it is natural to ask if there exists such a correspondence for higher digit solutions. In this paper, we will explore the relationship between 4- and 5-digit solutions. Unfortunately, there is not a bijection between these solutions, but there is a nice family of 4- and 5 - digit solutions which have a natural one-to-one correspondence.

A second extension of Sutcliffe and Kaczynski's results is to ask, "Is there any value of n for which there is a 5 -digit solution but no 4 -digit solution?" We will answer this question in the negative; and, furthermore, we will show that there exist 4 - and 5 -digit solutions for every $n \geq 3$.

An attempt at generalization

In the case of 3 -digit solutions, Kaczynski proved that if $n+1$ is prime and $k(a, b, c)_{n}=(c, b, a)_{n}$ is a 3-digit solution for n, then $k(a, b)_{n}=(b, a)_{n}$ is a 2 -digit solution. Thus, we consider the following:

Question 1. Let $k(a, b, c, d, e)_{n}=(e, d, c, b, a)_{n}$ be a 5-digit solution for n. If $n+1$ is prime, then is $k(a, b, d, e)_{n}=(e, d, b, a)_{n}$ a 4-digit solution for n ?

First, following Kaczynski, let $p=n+1$. We have

$$
\begin{equation*}
k\left(a n^{4}+b n^{3}+c n^{2}+d n+e\right)=e n^{4}+d n^{3}+c n^{2}+b n+a . \tag{1}
\end{equation*}
$$

Reducing this equation modulo p, we obtain

$$
k(a-b+c-d+e) \equiv e-d+c-b+a=a-b+c-d+e \bmod p
$$

Thus, $(k-1)(a-b+c-d+e) \equiv 0 \bmod p$, and

$$
\begin{equation*}
p \mid(k-1)(a-b+c-d+e) . \tag{2}
\end{equation*}
$$

If $p \mid(k-1)$, then $k-1 \geq p$, which is impossible because $k<n$. Therefore, $p \mid(a-b+c-d+e)$. But $-2 p<-2 n<a-b+c-d+e<3 n<3 p$, so there are four possibilities:
(i) $a-b+c-d+e=-p$,
(ii) $a-b+c-d+e=0$,
(iii) $a-b+c-d+e=p$,
(iv) $a-b+c-d+e=2 p$.

Write $a-b+c-d+e=f p$, where $f \in\{-1,0,1,2\}$. Substituting $c=-a+b+d-e+f p$ into equation gives:

$$
\begin{aligned}
& k\left[n^{2}\left(n^{2}-1\right) a+n^{2}(n+1) b+f p n^{2}+n(n+1) d-\left(n^{2}-1\right) e\right] \\
& =n^{2}\left(n^{2}-1\right) e+n^{2}(n+1) d+f p n^{2}+n(n+1) b-\left(n^{2}-1\right) a .
\end{aligned}
$$

After substituting for p, dividing by $n+1$, and rearranging, one sees that $k\left[a n^{3}+(b-a+f) n^{2}+(d-e) n+e\right]=e n^{3}+(d-e+f) n^{2}+(b-a) n+a$. Indeed, this is a 4 -digit solution for n if $f=0, b-a \geq 0$, and $d-e \geq 0$, but not necessarily a 4-digit solution of the form conjectured in Question 1.

As in Kaczynski's proof for 2- and 3-digit solutions, it would be ideal if three of the four possible values for f lead to contradictions and the fourth leads to a "nice" pairing of 4- and 5-digit solutions. Unlike Kaczynski, we now have the added advantage of exploring these cases with computer programs such as Maple. Experimental evidence suggests that the cases $f=-1$ and $f=2$ are impossible. The cases $f=0$ and $f=1$ are discussed below.

A counterexample

Unfortunately, Kaczynski's proof does not completely generalize to higher digit solutions. Most 5-digit solutions do, in fact, yield 4-digit solutions in the manner described in Question 1, but for sufficiently large n there are examples where $(a, b, c, d, e)_{n}$ is a 5 -digit solution but $(a, b, d, e)_{n}$ is not a 4-digit solution.

A computer search shows that the smallest such counterexamples appear when $n=22$:

$$
7(2,8,3,13,16)_{22}=(16,13,3,8,2)_{22}, 3(2,16,11,5,8)_{22}=(8,5,11,16,2)_{22}
$$

However, there is no integer k for which $k(2,8,13,16)_{22}=(16,13,8,2)_{22}$ or $k(2,16,5,8)_{22}=(8,5,16,2)_{22}$. Note that $-2+8+13-16=3$ and $-2+16+5-8=11$; that is, both of these counterexamples to Question 1 occur when $f=0$. The next smallest counterexamples are

$$
3(3,22,15,7,11)_{30}=(11,7,15,22,3)_{30}, 8(2,13,8,16,9)_{30}=(9,16,8,13,2)
$$

which occur when $f=0$ and $n=30$.

A family of 4- and 5-digit solutions

Although Kaczynski's proof does not generalize entirely, there exists a family of 5 -digit solutions when $f=1$ that has a nice structure.

Theorem 1. Fix $n \geq 2$ and $a>0$. Then

$$
k(a, a-1, n-1, n-a-1, n-a)_{n}=(n-a, n-a-1, n-1, a-1, a)_{n}
$$

is a 5-digit solution for n if and only if $a \mid(n-a)$.
Proof. We have

$$
\begin{aligned}
& \frac{(n-a) n^{4}+(n-a-1) n^{3}+(n-1) n^{2}+(a-1) n+a}{a n^{4}+(a-1) n^{3}+(n-1) n^{2}+(n-a-1) n+(n-a)} \\
& \quad=\frac{(n-a)\left(n^{4}+n^{3}-n-1\right)}{a\left(n^{4}+n^{3}-n-1\right)}=\frac{n-a}{a}
\end{aligned}
$$

and the result is clear.
Notice that

$$
(-a+(a-1))+((n-a-1)-(n-a))+p=-1+-1+(n+1)=n-1
$$

That is, this family of solutions occurs when $f=1$. Moreover, this family follows the pattern described in Question 1; that is, for each 5-digit solution described in Theorem 1, deleting its middle digit gives a 4-digit solution.

Theorem 2. If

$$
k(a, a-1, n-1, n-a-1, n-a)_{n}=(n-a, n-a-1, n-1, a-1, a)_{n}
$$

is a 5 -digit solution for n, then

$$
k(a, a-1, n-a-1, n-a)_{n}=(n-a, n-a-1, a-1, a)_{n}
$$

is a 4-digit solution for n.
Proof. By Theorem 1, $\frac{n-a}{a} \in \mathbb{N}$. Now

$$
\begin{aligned}
& \frac{(n-a) n^{3}+(n-a-1) n^{2}+(a-1) n+a}{a n^{3}+(a-1) n^{2}+(n-a-1) n+(n-a)} \\
& \quad=\frac{(n-a)\left(n^{3}+n^{2}-n-1\right)}{a\left(n^{3}+n^{2}-n-1\right)}=\frac{n-a}{a} .
\end{aligned}
$$

These 4-digit solutions were first described by Klosinski and Smolarski [4] in 1969, but their relationship to 5 -digit solutions was not made explicit before now.

It is also interesting to note that 9801 and 8712 , the two integers in Hardy's discussion of reversals, are included in this family of solutions.

We conclude with the following corollary.
Corollary 1. There is a 4-digit solution and a 5-digit solution for every $n \geq 3$.

Proof. Let $a=1$ in the statements of Theorem 1 and Theorem 2 above.

Some open questions

We have shown that there is no n for which there is a 5 -digit solution but no 4-digit solution. More specifically, we know that there are 4- and 5-digit solutions for every $n \geq 3$.

Although Kaczynski's proof does not generalize directly to 4- and 5-digit solutions, it does bring to light several questions about the structure of solutions to the digit reversal problem.

First, it would be interesting to completely characterize 4- and 5 -digit solutions for n. Namely,

1. All known counterexamples to Question 1 occur when $f=0$. Are there counterexamples for which $f \neq 0$? Is there a parameterization for all such counterexamples?
2. Theorems 1 and 2 exhibit a family of 4 - and 5 -digit solutions for $f=1$ with a particularly nice structure. To date, no other 4- or 5-digit solutions are known for $f=1$. Do such solutions exist?

More generally,
3. Solutions to the digit reversal problem have not been explicitly characterized for more than 5 digits. Do there exist analogous results to Theorems 1 and 2 for higher digit solutions?

A Maple package for exploring these questions is available from the author's web page at http://www.math.rutgers.edu/~1pudwell/maple.html.

Acknowledgment

Thank you to Doron Zeilberger for suggesting this project.

References

[1] G. H. Hardy, A Mathematician's Apology, Cambridge University Press, New York, NY, 1993.
[2] Alan Sutcliffe, "Integers That Are Multipled When Their Digits Are Reversed", Math. Mag., 39 (1966), 282-287.
[3] T. J. Kaczynski, "Note on a Problem of Alan Sutcliffe", Math. Mag., 41 (1968), 84-86.
[4] Leonard F. Klosinski and Dennis C. Smolarski, "On the Reversing of Digits", Math. Mag., 42 (1969), 208-210.
[5] N. J. A. Sloane, Sequence A031877 in"The On-Line Encyclopedia of Integer Sequences", http://www.research.att.com/projects/OEIS?Anum=A031877.
[6] Eric W. Weisstein, "Reversal", From MathWorld-A Wolfram Web Resource, http://mathworld.wolfram.com/Reversal.html.

[^0]: ${ }^{1}$ Better known for other work.

