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ABSTRACT. We study asymptotic properties of periods and transient
phases associated with modular power sequences. The latter are simple; the
former are vaguely related to the reciprocal sum of square-free integer kernels.

Let Z, denote the ring of integers modulo n. Define S(z) to be the sequence
{ak}2e, for each z € Z,. We wish to understand the periodicity properties of S(x),
that is, the statistics of

(z) = the period the least m > 1 for which z*™™ = z*
T = ot S (x) ~ for all sufficiently large k,
the transient the least ¢ > 0 for which zFto@) = gk

m(z) = phase of S(z) ~ forall k > /.

For example, the unique x with (o,7) = (1,0) is x = 1. If (o, 7) = (2,0), then zx is
a square root of unity; if (o, 7) = (3,0), then x is a cube root of unity [I]. If 7 =0
(with no condition placed on ), then x is relatively prime to n. Hence the number
of such x is

#{r€Z, 2" =1for some k > 1} = ¢(n)

where ¢ is the Euler totient function and, asymptotically [II, 2,

3
> p(n) ~ S N? = (0.303963550927...) N
m

n<N

as N — oco. As another example, if (o, 7) = (1,1), then z is an idempotent. The
number of such z, including 0 and 1, is

#{ern:x2:x} = gw(n)
where w(n) denotes the number of distinct prime factors of n and [IJ, B]
6
> 290~ —N-InN
n<N &

as N — oo. More difficult examples appear in the following sections. As in [I], we
make no claim of originality: Our purpose is only to gather relevant formulas in one
place.
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1. GENERALIZED IDEMPOTENTS

1.1. Bounded Transient Phase. If 7 <1 (with no condition placed on o), then
the number of such z is [3]

:#{xEZn:xk“:xforsomek21}.

This is a multiplicative function of n and

n_ ) D if r=1,
a(p)_{pr_pr—1+1 1f’l"22

Let

P
T2 —2p+1

(1 - p(ps“ —1)(p*—1)

Hence, by the Selberg-Delange method [T, 4, B 6],

S an) ~ %G(l)-NQ _ AN

n<N

Fo) = Y =11 (1+ 3 %)
11 ) =6t <to.

as N — oo, where

1 1
A=-T[(1- =——) =0.440756919862...
2 1] ( p*(p+ 1))

p

(the quadratic class constant described in [7], divided by two). Joshi [8] obtained this
result via a different approach and found an alternative formula:

7T2Z 52.Hp+1

but did not numerically evaluate this expression.
If 7 < 2 (with no condition placed on o), then the number of such z is [3]

:#{ern:xk+2:x2 forsomekZl}.
This is a multiplicative function of n and

p" if r <2,
b(p") =14 pr—p t+p" V2 ifr >3 and r = 1mod?2,
pr—pt 4 pr/? if r >4 and » = 0mod 2.
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From
0 T 1 (r=1)/ _ =1 r/2
P —0p +p P —Dp +p
Z s+1 - H 1+ Z D) + Z D)
n=1 P r>1, r>2;
r= 1mod2 T’EOmon

Y

B H (1 N p3s+2 +p2s+2 _ 2ps+1 _'_ps o 2p_'_ 1)
p(p2s+1 _ 1)<p2s _ 1)

we deduce that 7 _\ b(n) ~ B - N?, where

p

1 1
B=- 1——— ) =0.477176626987....
21;( p2(p2+p+1)>

If 7 < 3 (with no condition placed on o), then the number of such z is [3]
n):#{ern:xk+3:x3 forsomekZl}.

This is a multiplicative function of n and

P’ if r <3,
c(p’) = pr—p Tt p?r=UB if >4 and r = 1 mod 3,
b= pr—p L+ p@ =B if r > 5 and r = 2mod 3,
pl— 't /3 if r > 6 and » = 0mod 3.
From
OOc(n) - p_prl+prl p_pT1+p(2r 1)/3
Z nst+1 o H 1+ Z r (s+1) Z r(s—i—l)
n=1 P r>1, r>2,
r= 1mod3 r= 2mod3

_ 1 2r/3
pr—p +p
+ Z r(s—l—l
r>3,

r50m0d3
_ H (1 N p5s+2 + p4s+2 +p3s+2 _ 2p2s+1 + p2s _ 2ps+1 + ps _ 2p + 1)
p(p**tt = 1)(p* — 1)

we deduce that Y- _\ c(n) ~ C- N?, where

’
p

1 1
c==-TT(1- — 0.490145568004....
21}( pz(p3+p2+p+1))

The pattern exhibited by A, B, C'is clear and deserves proof for 7 < T, for arbi-

trary T. A different attempt [9 ] to determine the asymptotics of > _ b(n) and of
> n<n ¢(n) unfortunately turned out to be erroneous [I0].
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1.2. Bounded Period. If o =1 (with no condition placed on 7), then the number
of such z is [I1]

u(n) = #{x € Z, : "' = 2% for some k >0} .
This is a multiplicative function of n and
wipr) = { 2 ifr =1,
PIZ w41 ifr>2

From

—~u(n) p i1
(e

n=1 p

we would like to deduce that ) _\u(n) ~ U- f(N) for some simple expression f (V).
Unfortunately this is an unsolved problem. More details are found in section [2].
If o < 2 (with no condition placed on 7), then the number of such z is [I1]

v(n) = # {x € Zy : 2" = 2% for some k >0} .
This is a multiplicative function of n and

2" if p=2andr <2,
' 44 ifp=2andr >3,

v(p) = 3 ifp>2andr=1,
prt+2 ifp>2andr>2.
From
= v(n) 2T1—|—4 C>Op”1+2
S - (12 g ) (30
n=1 p>2
2 4 95+2 _ 3p*—2p—1
= 1 . 1
(+3+m+ mrome—n) T+ meme )

p>2

we would like to deduce that 3 _yv(n) ~ V- f(N), where f(N) is the same expres-
sion as for o = 1.
If o < 3 (with no condition placed on 7), then the number of such z is [T1]

#{x € Z, : 2" = 2% or 2" = 2* for some k > 0} = w(n) — u(n) + v(n)
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where
w(n) = #{x € Zy, : 2 = 2" for some k > 0} .

The latter is a multiplicative function of n and

(2 iftp=3andr=1,
3714+3 ifp=3andr>2,
() = 2 if p=2mod3 and r =1,
P 4 if p=1mod3 and r =1,
prt+1  ifp=2mod3 and r > 2,
("' +3 ifp=1mod3andr>2.
From
. w(n) ( 2 °°3r—1+3) < = 41
e s R il RN | B R D
n=1 n 3 r=2 3 p=2mod 3 r=1 p
> r—1
p +3>
II (12—
p51m0d3< r=1 p
2 2-3°—4 2 —p—1
= (1+=+ ) (1+ )
(5 e AL U e
4p* —3p — 1
1] (1+p(ps—1)(ps‘1—1))
p=1mod 3

we would like to deduce that > _,w(n) ~ W - f(N), where f(N) is the same
expression as for 0 =1 and 0 < 2.

Note that w—wu-+wv is not multiplicative since w(21)—u(21)+v(21) = 8—4+9 = 13
while w(3) —u(3) +v(3)=2—-24+3=3 and w(7) —u(7)+v(7) =4—-2+3=5. It
would easily follow that )" _(w(n)—u(n)+v(n)) ~ (W —-U+V)- f(N), completing
the case o < 3, if the nature of f(NN) could be better ascertained.

1.3. Unbounded Period. Elements = of small period are apparently quite rare
for large n. We will visit the other extreme. Consider, for example,

m(n) = #{z € Ly : gFHIem/2l — oF for some k > 1}

(the ceiling function is needed only for 1 < n < 2, beyond which ¢(n) is always even).
This is not a multiplicative function, but nevertheless can be simplified to

3 ifn=4,
r—1 1
m(n) = w if n =p", where p > 2 and r > 1,
plp+1) ifn=2p", where p>2andr > 1,
n otherwise.
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From

= m(n) 1 2°+1 p—1
D =) = e ’
s+1 s+1 s+1 S __
“—~n + 4s+ 2s+ = p(p* —1)

we deduce that Y°, _ym(n) ~ (1/2)N? since

0<(-1D 2L (- )Y S m (5= (s — 1) — 0*

~p(p*—1) ~p

as s — 17. The behavior of ) _\(n —m(n)) is more subtle. From

Zps;lw—lns—l Z—

~ p(p* = 1)

and the fact that 3 _p ~ N?/(2In(N)) via the Prime Number Theorem [12, T3],

we deduce that 5 N2
(n—m(n)) ~ 2——.
% 81n(N)
It would be interesting to replace [¢(n)/2] by more slowly-growing expressions and
to see what asymptotic consequences arise.

2. NILPOTENTS

An element x of Z, is nilpotent if its power sequence S(x) is eventually zero. Define
4]
:#{xEZn:xkzoforsomek‘zl}.

This is a multiplicative function of n and

=11 itr=1,
p)= prt if r > 2.

Define also the square-free kernel x(n) to be the product of all distinct prime
factors of n. Clearly x(p") = p for all » > 1 and hence z(n) = n/k(n) for all n > 1.
From

[e.9]

> (i3]

n=1

- (1 55)
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we would like to deduce that )y z(n) ~ Z- f(N) for some simple expression f(IV).
Unfortunately, as discussed in section [[2], this is an unsolved problem. De Bruijn
[15), [16, 17, 18] proved that

1 8In N\ /2 1 n
In <2Nm> ~ (mw) ~In <N2Nm)

and Schwarz [I9] proved that

/4 o0
1 iy, o (I VY . 1
Z k(n) 27 (4m) In N 0£1<nooN Z k(n)nv |
n<N n=1

A more concrete rightmost factor would be good to see someday.

3. PRIMITIVE ROOTS
We have not mentioned the group Z! (under multiplication) of integers relatively

prime to n in this paper thus far. A well-known counting problem concerns the
number [20, 21, P2, P3|

g(n) = #{x € Z;, : o(x) = p(n)}

of primitive ¢(n)" roots modulo n. Equivalently, g(n) is the number of generators
of Z*. Clearly g(n) > 0 if and only if Z} is a cyclic group; further,

(n) = o(p(n)) ifn=1,2,4, ¢/ or 2¢’, where ¢ is an odd prime and j > 1,
A ) otherwise.

Also define the reduced totient or Carmichael function [24]

w(n) if n=1,2,4 or ¢, where ¢ is an odd prime and j > 1,
P(n) =< p(n)/2 if n=2% where k > 3,
lcm{w(pjj) 1< < f} if n=pi'ps*---pyt, where 2 <p; <ps < ... and £ > 2,

*
n?

which is the size of the largest cyclic subgroup of Z
o5, 26, 271

and consider the number [20],

h(n) = #{z € Z;, : o(x) = (n)}

of primitive ¢ (n)" roots modulo n. It is known that 28]

. N?
> g(n) ~ A

n<N



IDEMPOTENTS AND NILPOTENTS MODULO n 8

as N — oo, where

- 1
A=ZTT(1- — 0.233722383512...
8 1;[ ( p(p - 1))

(five-eighths of Artin’s constant [7]). A corresponding result for 5 h(n) evidently
remains open. The issue of the asymptotics of >y g(n) and of ) _\ h(n) bears
some resemblance to the periodicity problems discussed earlier.
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