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Abstract

Given a prime p ≥ 5, and given 1 < κ < p − 1, we call a sequence (an)n
in Fp a Φκ-sequence if it is periodic with period p − 1, and if it satisfies the
linear recurrence an + an+1 = an+κ with a0 = 1. Such a sequence is said to
be a complete Φκ-sequence if in addition {a0, a1, . . . , ap−2} = {1, . . . , p− 1}.
For instance, every primitive root b mod p generates a complete Φκ-sequence
an = bn for some (unique) κ. A natural question is whether every complete
Φκ-sequence is necessarily defined by a primitive root. For κ = 2 the answer
is known to be positive. In this paper we reexamine that case and investigate
the case κ = 3 together with the associated cases κ = p − 2 and κ = p − 3.

1. Introduction

For a prime number p ≥ 5 and a number κ ∈ {2, . . . , p − 2}, a sequence
(an)n∈Z of elements of Fp is said to be a Φκ-sequence if

a0 = 1 and an+κ = an + an+1 for all n ∈ Z, (1)

where “=” means (throughout this paper) equality in Fp. A Φκ-sequence is
called complete if

(an)n is periodic, with period p − 1, and (2)

{a1, . . . , ap−2} = {2, . . . , p − 1}. (3)

The case κ = 2 has been studied by Brison [1]. A Φ2-sequence satisfies a
Fibonacci recurrence, so it is completely determined by the value of a1. A
complete Φ2-sequence is called a complete Fibonacci sequence; for example,
the only complete Fibonacci sequence in F5 is

. . . , 4, 2, 1, 3, 4, 2, 1, 3, 4, . . .
1
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2 COMPLETE PADOVAN SEQUENCES IN FINITE FIELDS

with a0 = 1 and a1 = 3. Moreover, x = 3 is a primitive root mod 5, and it
is a solution (in F5) of the equation x2 = x + 1 (hence x = 3 is a Fibonacci

primitive root), so the sequence can also be described as

. . . , 3−2(= 4), 3−1(= 2), 30(= 1), 3, 32(= 4), 33(= 2), 34(= 1), . . .

The main result of [1], stated here in a slightly weaker form, generalizes this
observation. In Section 2 we will give an elementary proof of this theorem
in order to motivate our approach.

Theorem 1 (Brison). Let p ≥ 5 be a prime number. A Φ2-sequence (an)n
is a complete Fibonacci sequence if and only if an = bn for all n, where b is

a Fibonacci primitive root.

The new results of this paper concern the case κ = 3. Because of the
specific recurrence satisfied by Φ3-sequences (an+3 = an+1 + an), complete
Φ3-sequences will be called complete Padovan sequences [4]. Similar to the
case κ = 2, we will say that a primitive root b in Fp is a Padovan primitive

root if it satisfies the condition b3 = b + 1. Note that if b is a Padovan
primitive root, then the sequence

. . . , b−1(= bp−2), 1, b, b2, b3, b4, . . . , bp−2, bp−1(= 1), . . .

is a complete Padovan sequence. A natural question is whether these are
the only examples of complete Padovan sequences in Fp. Our results state
that this is the case, at least for certain prime numbers.

Let ̺p be the number of distinct roots of X3 − X − 1 in Fp. The main
results of this paper are the following two theorems.

Theorem 2. Let p ≥ 5 be a prime number such that ̺p < 3. A Φ3-sequence

(an)n is a complete Padovan sequence if and only if an = bn for all n, where

b is a Padovan primitive root.

In the case when ̺p = 3, we denote by α, β, and γ the roots of X3−X−1
in Fp. Further we let

Np = min{|α/β|, |β/γ|, |γ/α|}. (4)

Theorem 3. Let p ≥ 5 be a prime number such that ̺p = 3 and p ≤ N2
p +1.

A Φ3-sequence (an)n is a complete Padovan sequence if and only if an = bn

for all n, where b is a Padovan primitive root.

We strongly believe that this theorem holds even if p > N2
p + 1. In fact,

in Section 4 we will see that our condition on p can be relaxed, see (19).
Numerical computations show that among all primes less than 105, there
are only 4 numbers that cannot be handled by our proof of Theorem 3, cf.
Section 5. Nonetheless, for these cases one can manually check that the
statement of our theorem is still true.

In contrast to the Fibonacci case, the Padovan recurrence is of order
three, so in addition to a0 = 1, one needs values for both a1 and a2 to
completely determine a Φ3-sequence. It is therefore rather surprising that
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complete Padovan sequences are determined by only one parameter. If (an)n
is a complete Padovan sequence, one can use an approach similar to the
Fibonacci case to get one condition relating a1 and a2. The difficulty resides
in proving a second relation.

The ultimate goal will be to connect Φκ-sequences in Fp with primitive
roots of p. It is easy to see that if p ≥ 5 is a prime, and b ∈ Fp is a primitive
root mod p, then there exists a unique value κ ∈ {2, 3, . . . , p − 2} such that
bκ = b + 1. Therefore the sequence

. . . , b−1(= bp−2), 1, b, b2, . . . , bκ−1, bκ, . . . , bp−2, bp−1(= 1), . . .

is a complete Φκ-sequence. Data collected so far suggests that these are in
fact the only complete Φκ-sequences. For a fixed value κ ∈ {2, . . . , p − 2},
we say that a primitive root b in Fp is a Φκ-primitive root if bκ = b + 1.

Conjecture. Let p ≥ 5 be a prime number. A Φκ-sequence (an)n is com-

plete if and only if an = bn for all n, where b is a Φκ-primitive root.

At the end of the paper we briefly discuss the relation between the con-
jugate cases κ and p − κ and prove the statement for κ = p − 2, κ = p − 3,
κ = p−1

2 , and κ = p+1
2 .

2. Fibonacci primitive roots

In this section we discuss the characterization of complete Fibonacci se-
quences in terms of Fibonacci primitive roots, and give an elementary proof
of Theorem 1. The key argument is the same as in [1], but our approach is
more direct.

Proof of Theorem 1. It is not hard to see that a Fibonacci primitive root
generates a complete Fibonacci sequence: If b is a Fibonacci primitive root
and a1 = b, then a2 = a0 + a1 = 1 + b = b2, and, by induction, am = bm for
all integers m. Since b is a primitive root, it follows that the sequence (an)n
satisfies both the periodicity and the completeness conditions, hence it is a
complete Fibonacci sequence.

The less trivial part is to show that for every complete Fibonacci sequence,
a1 is a Fibonacci primitive root. The case p = 5 can be checked separately,
so from now on we assume that p ≥ 7. Let (an)n be a complete Fibonacci
sequence in Fp and let b = a1. Let

P (X) =

p−2
∑

n=0

anXn ∈ Fp[X]. (5)

Then the recurrence of an implies

(1 − X − X2)P (X) =
(

1 − Xp−1
)(

1 + ap−2X
)

. (6)

The right-hand side of (6) is identically zero on F
∗
p, while P (X) can have at

most p − 2 roots in F
∗
p. Therefore, 1 − X − X2 has at least one root in F

∗
p,

and thus it has both roots in F
∗
p.
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Let α and β be the solutions of x2 = x + 1 in Fp. Then α 6= β (since
p 6= 5), hence

an = Aαn + Bβn

for all integers n, where

A =
b − β

α − β
and B =

b − α

β − α
.

If k is an integer such that 1 ≤ k ≤ p − 2, then

p−2
∑

n=0

ak
n =

p−1
∑

n=1

nk = 0.

Therefore,

0 =

p−2
∑

n=0

ak
n =

p−2
∑

n=0

(

Aαn + Bβn
)k

=
k

∑

j=0

(k
j

)

AjBk−j
p−2
∑

n=0

(αjβk−j)n . (7)

However, if x 6= 0, then

p−2
∑

n=0

xn =

{

0, if x 6= 1

p − 1, if x = 1
.

The key ingredient in the proof is finding a value of k for which the last
sum in (7) is zero for all but one j. Using α + β = 1 and αβ = −1, we see
that for all primes p ≥ 7, the smallest such value is k = 4. In fact, we get

0 =

p−2
∑

n=0

a4
n = −6A2B2, (8)

which implies that one of A or B is zero. Without loss of generality, assume
A = 0. Then b = β, so b2 = b + 1. An inductive argument shows that
an = bn for all integers n, and since (an)n is a complete Fibonacci sequence,
b must be a primitive root, hence a1 = b is a Fibonacci primitive root. �

3. Complete Padovan sequences and primitive roots

Let (an)n be a complete Padovan sequence. Note that the periodicity (2)
and the recurrence relation (1) (with κ = 3) imply, as in (6),

(1 − X2 − X3)P (X) = 0 on F
∗
p.

Consequently, there must be at least one element r ∈ Fp that solves the
equation 1 − x2 − x3 = 0. Thus 1/r ∈ Fp is a root of f(X) = X3 − X − 1.

Proof of Theorem 2. We only need to prove that a complete Padovan se-
quence with initial values (a0, a1, a2) = (1, b, c) gives rise to a primitive root
b ∈ Fp with b2 = c and b3 = b + 1.

Case 1: f has exactly one root in Fp.
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In this case, 1 − X2 − X3 must have exactly one root r ∈ Fp. Thus the
other p − 2 nonzero elements of Fp are roots of P (X) from (5), so

P (X) = ap−2

p−1
∏

i=1
i6=r

(X − i). (9)

Note that the periodicity of (an)n implies (ap−1, ap, ap+1) = (1, b, c), and by
(1) we have ap−2 = c − 1 and ap−3 = b − c + 1. Comparing the constant
term and the coefficient of Xp−3 in (9), we conclude that

1 = ap−2/r and ap−3 = ap−2r,

and consequently,

c = r + 1 and b = r2 + r.

Using that 1 − r2 − r3 = 0 it is easy to check that b2 = c and b3 = b + 1.
Thus an = bn, and because of (3), b is a primitive root.

Case 2: f has only two distinct roots in Fp.

The discriminant of f(X) = X3 −X − 1 is −23, so the only way for f to
have only two distinct roots in Fp is when p = 23. We use the periodicity
of (an)n to conclude that 1 = a0 = ap−1 = a22 = 22c + 13b + 17 and so
c = 13b + 16 in F23. Note that because of (3) we have

p−2
∑

n=0

a3
n =

p−1
∑

n=1

n3 = 0 in Fp. (10)

Using c = 13b + 16 we get the cubic equation

0 =

21
∑

n=0

a3
n = 10b3 + b2 + 20

whose solutions in F23 are b = 3 and b = 10. However, the sequence gen-
erated by the initial values (1, 3, 9) fails to be complete, so b = 3 is not an
admissible choice for b = a1. On the other hand, b = 10 is indeed a primitive
root mod 23. �

Proof of Theorem 3. Let α, β, γ ∈ Fp be the distinct roots of f(X). Note
that in this case p must be different from 23, so 2α + 3, 2β + 3, and 2γ + 3
are all different from 0. Note also that these roots satisfy the equations

α + β + γ = 0, αβγ = 1, and αβ + αγ + βγ = −1. (11)

The recurrence relation (1) with initial values (1, b, c) gives the formula

an = Aαn + Bβn + Cγn for every n,

where

A =
α2b + αc + 1

2α + 3
, B =

β2b + βc + 1

2β + 3
, C =

γ2b + γc + 1

2γ + 3
. (12)
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We make again use of (10) to get

0 =

p−2
∑

n=0

(Aαn + Bβn + Cγn)3

=

p−2
∑

n=0

∑

i+j+k=3

3!

i!j!k!
AiBjCk(αiβjγk)n

=
∑

i+j+k=3

3!

i!j!k!
AiBjCk

p−2
∑

n=0

(αiβjγk)n.

Now, using (11) it can be easily seen that αiβjγk 6= 1 unless i = j = k = 1.
Thus, for (i, j, k) 6= (1, 1, 1), we get

p−2
∑

n=0

(αiβjγk)n =
1 − (αiβjγk)p−1

1 − αiβjγk
= 0 in Fp.

Finally, we arrive at the identity

0 =

p−2
∑

n=0

a3
n = −6ABC (13)

which implies that at least one of the factors must vanish, say C = 0, and
so the closed form of an reduces to

an = Aαn + Bβn for every n. (14)

Note that C = 0 implies c = −γb − 1
γ . If we can prove that b = α or

b = β, then this condition on c together with (11) give the desired identities
b2 = c and b3 = b + 1 and the theorem is proved.

Given the numbers p, α, β as above, for k ∈ {1, . . . , p − 2} we consider
the set Ik = {j ∈ Z | 0 ≤ j ≤ k and αjβk−j ≡ 1 mod p}. In the next section
we will discuss some properties of this set and will prove (Corollary 1) that
for p, α, β as in this theorem, there is always a k, 1 < k < p − 1, such that
Ik contains exactly one element. If we let k in (7) be such that Ik = {j0},
then we get

0 =

p−2
∑

n=0

ak
n = −

(

k

j0

)

Aj0Bk−j0 (15)

since the sum
∑p−2

n=0(α
jβk−j)n vanishes in Fp for every j with αjβk−j 6= 1.

Therefore, either A or B must be zero. Now, together with the fact that
C = 0, the equations (12) give b = α or b = β. This proves that an = bn for
every n, and since (an)n is complete, b is a Padovan primitive root. �
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4. Sum of powers and minimal exponent

A crucial idea in the proof of Theorem 1 and Theorem 3 is to consider
the sum of powers

∑p−2
n=0 ak

n in Fp for some k ∈ {2, . . . , p − 2}. Since this
sum is always zero, the aim is to find a suitable exponent k that allows
us to extract useful information about the sequence. For instance, for the
Fibonacci sequence the exponent k = 4 was a good choice. For a complete
Padovan sequence, however, the situation is more subtle. In a first step, the
choice k = 3 allowed us to reduce the closed form of an to a sum of two
terms, cf. (14), but when working with the reduced form, the choice of k is
not clear at all and depends on the prime number p at hand.

Let p be such that X3 − X − 1 has three distinct roots α, β, γ in Fp.
Let (an)n ⊂ Fp be a complete Padovan sequence with initial values (1, b, c).
Assume γ2b + γc + 1 = 0, i.e., C = 0 in (12) so that an reduces to (14).
Under these assumptions we consider the set

Ik = {j ∈ Z | 0 ≤ j ≤ k and αjβk−j ≡ 1 mod p}

and its dual

I ′k = {j ∈ Z | 0 ≤ j ≤ k and αk−jβj ≡ 1 mod p}.

Observe that j ∈ Ik if and only if k − j ∈ I ′k so that these sets essentially
contain the same information.

Let N = |α/β| be the order of α
β in Fp. That is,

(

α
β

)N
= 1 and

(

α
β

)j
6= 1

for every j ∈ {1, . . . , N −1}. In our situation it is easy to check that N > 3.
Observe that

1,
α

β
,
(α

β

)2
, . . . ,

(α

β

)N−1

are the (distinct) Nth roots of unity.

Lemma 1. The order of αN and βN in Fp is (p − 1)/N .

Proof. Let m ≥ 1 be such that mN ≤ p − 1 and αmN = 1. Then βmN = 1
and so by (14) we must have amN = 1. This implies mN = p − 1 so
m = (p − 1)/N . �

Lemma 2. Ik 6= ∅ for some k ∈ {1, . . . , p − 2}. Moreover, in this case, we

have k = ℓ(p − 1)/N for some ℓ ∈ {1, . . . , N − 1}.

Proof. Suppose Ik = ∅ for every k. Then, in particular, βk 6= 1 for k =
1, . . . , p − 2, so that β must be a primitive root mod p. Let 1 < t < p − 1
be such that α = βt. Thus αjβk−j = β(t−1)j+k for every j and k. If we pick
k = p − t and j = 1, then αβp−t−1 = βp−1 = 1 which implies Ip−t 6= ∅ and
we get a contradiction.

Now let k be such that αjβk−j = 1 for some 0 ≤ j ≤ k. Then

1 = (αjβ(k−j))N =
(α

β

)jN
βkN = (βN )k

which by Lemma 1 implies that (p − 1)/N must divide k. �
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Lemma 3. Let Ik 6= ∅ and let j0 = min(Ik). If k < N + j0, then Ik = {j0}.

Proof. Let j1 > j0 be such that αj1βk−j1 = 1. Thus αj1βk−j1 = αj0βk−j0

and so
(α

β

)j1−j0
= 1. But this implies j1 − j0 = ℓN for some ℓ ≥ 1. Hence

j1 ≥ N + j0 > k and therefore j1 6∈ Ik. �

Let kmin denote the smallest k for which Ik 6= ∅.

Lemma 4. If kmin > p−1
N , then kmin < N + j0 and therefore Ikmin

= {j0}.

Proof. Let kmin = ℓ(p − 1)/N for some 1 < ℓ < N , so

1 = αj0βkmin−j0 =
(α

β

)j0
βℓ(p−1)/N =

(α

β

)N+j0
βℓ(p−1)/N . (16)

Moreover, since β(p−1)/N is a Nth root of unity, we have β(p−1)/N =
(α

β

)m

for some 0 ≤ m < N . Therefore,

1 =
(α

β

)j0
βℓ(p−1)/N =

(α

β

)m+j0
β(ℓ−1)(p−1)/N (17)

which in particular implies m+j0 > (ℓ−1)(p−1)/N since I(ℓ−1)(p−1)/N = ∅.
Dividing (16) by (17) we get the equation

1 =
(α

β

)N−m
β(p−1)/N . (18)

Now, if kmin = ℓ(p − 1)/N ≥ N + j0, then we have

(ℓ − 1)(p−1
N ) < m + j0 < N + j0 ≤ ℓ(p−1

N )

which implies N −m < (p− 1)/N . But the equation (18) would then imply
that I(p−1)/N 6= ∅ contradicting the minimality of kmin = ℓ(p − 1)/N . �

Corollary 1. Let Np be as in (4). If p ≤ N2
p + 1, then Ikmin

= {j0}.

Proof. By Lemma 4 we only need to check the case when kmin = p−1
N . Let

k = kmin. If j0 = min(Ik) and j′0 = min(I ′k), then (j0, j
′
0) 6= (0, 0). Otherwise

it would imply αk = βk = 1 and so ak = Aαk+Bβk = 1. But this contradicts
the fact that, by definition, ak 6= 1 for 0 < k < p − 1. Thus we can assume
j0 > 0. Then

p ≤ N2
p + 1 ⇒ p − 1 ≤ N2 ⇒ kmin =

p − 1

N
≤ N < N + j0.

The statement now follows from Lemma 3. �

Remark 1. According to our previous discussion, it is evident that the
condition p ≤ N2

p +1 in Theorem 3 can be replaced by the weaker condition
p−1
N < N + j0, or equivalently,

p < N2 + j0N + 1. (19)
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Observe that if kmin > p−1
N , then (19) is automatically satisfied by Lemma 4.

Thus we only need to request (19) for the cases when kmin = p−1
N . Some

examples will be discussed in the next section.

5. Examples and further remarks

Throughout this section we let f(X) = X3 − X − 1 ∈ Fp[X].

Example 1. The set of numbers

{7, 11, 17, 37, 67, 83, 113, 199, 227, 241, 251, 271, 283, 367, 373, 401, 433, 457,

479, 569, 571, 593, 613, 643, 659, 701, 727, 743, 757, 769, 839, 919, 941, 977}

contains all prime numbers < 1000 for which there is a complete Padovan
sequence in Fp and f(X) has exactly one root. For instance, for p = 7 this
root is b = 5. It can be easily checked that (a0, a1, a2) = (1, 5, 4) generates a
complete Padovan sequence, and that any other choice of initial values will
not give such a sequence. Of course, b = 3 is also a primitive root mod 7
and an = 3n is a complete sequence, but f(3) 6= 0. However, b = 3 solves
the equation x4 − x − 1 = 0 in F7, so 3n is a complete Φ4-sequence in F7.

Example 2. The set of numbers

{59, 101, 167, 173, 211, 271, 307, 317, 593, 599,

607, 691, 719, 809, 821, 829, 853, 877, 883, 991, 997}

contains all prime numbers < 1000 for which there is a complete Padovan
sequence in Fp and f(X) has three distinct roots. With each number we
can associate some data according to our discussion in the previous section.
In the following table we show a few examples. Under “roots” we list pairs
of roots of f(X), say α, β ∈ Fp, that generate complete Padovan sequences.
Recall that N = |α/β|.

p roots N kmin
p−1
N j0 j′0

59 13, 42 29 10 2 7 3
101 20, 89 20 20 5 16 4
101 89, 93 25 8 4 7 1
167 134,73 83 14 2 5 9
173 97,110 86 10 2 1 9
211 205,97 15 14 14 3 11
211 97,120 42 30 5 6 24
271 145,46 135 22 2 17 5
307 157,50 17 18 18 11 7
307 50,100 102 15 3 4 11
307 100,157 102 45 3 3 42

Note that for p = 307 with N = 17 we have p > N2 + 1. Nonetheless, as
discussed in Remark 1, Theorem 3 still holds since N + j0 > p−1

N .
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The relation between j0, j′0, and kmin is not a coincidence. As a matter

of fact, since (α
β )kmin = (α

β )j0+j′0, we have

kmin = j0 + j′0 + ℓN

for some integer ℓ ≥ 0. If ℓ = 0, then N + j0 > p−1
N and our proof of

Theorem 3 works.

Example 3. The set of numbers

{307, 5851, 24697, 34961, 87623, 98801}

contains all prime numbers < 105 for which there is a complete Padovan
sequence in Fp, f(X) has three distinct roots, p > N2 + 1, and kmin = p−1

N
(cf. Remark 1). More precisely, we have

p N kmin j0 j′0 ℓ
307 17 18 11 7 0
5851 39 150 4 29 3
24697 63 392 59 18 5
34961 92 380 89 15 3
87623 227 386 175 211 0
98801 52 1900 47 33 35

As mentioned above, p = 307 and p = 87623 are covered by our current
proof of Theorem 3. For the other four cases, the statement of the theorem
can be checked by hand (computer).

Conjecture. The statement of Theorem 3 is true even if p > N2 + 1.

Remark 2. In the case when f(X) has three distinct roots in Fp, we showed
in the proof of Theorem 3 that a complete Padovan sequence (an)n with
an = Aαn + Bβn + Cγn reduces to an = Aαn + Bβn with A and B as in
(12). Moreover, because of (11), an can be written as

an = −γan−1 −
1

γ
an−2 for every n,

thus it is in fact a generalized Fibonacci sequence with characteristic poly-
nomial g(t) = t2 + γt + 1

γ = (t − α)(t − β). According to [2], the set

{1, a1, . . . , ap−2} is then a standard g-subgroup.

Remark 3. The first part of the proof of Theorem 1 works in a more
general context: Let (an)n be a periodic sequence in Fp, with period p − 1,
and satisfying a linear recurrence of order κ

an+κ = s0an + s1an+1 + · · · + sκ−1an+κ−1 for all n,

with a0 = 1. If

S(X) = 1 − sκ−1X − · · · − s1X
κ−1 − s0X

κ ∈ Fp[X],
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and, as before,

P (X) =

p−2
∑

n=0

anXn = 1 + a1X + · · · + ap−2X
p−2 ∈ Fp[X],

then S(X)P (X) = (1 − Xp−1)Q(X) for some Q(X) ∈ Fp[X], so S(X) has
at least one root r ∈ Fp. Since

Xκ − sκ−1X
κ−1 − · · · − s1X − s0 = XκS(1/X),

it follows that the characteristic polynomial of the linear recurrence has at
least one root 1/r ∈ Fp. When κ = 2, this implies that both roots are in Fp,
but for κ ≥ 3 (as we have seen for κ = 3), the situation is more complicated.
Moreover, even if the roots are distinct and are all in Fp, finding the right
value(s) of k in order to get relation(s) of the form (8), (13), or (15) is not
obvious.

Proposition 1. Let p ≥ 5 be a prime number. A Φκ-sequence (an)n is

complete if and only if (ap−1−n)n is a complete Φp−κ-sequence.

Proof. Let (an)n be a complete Φκ-sequence. Let

ãn = ap−1−n for every n.

By definition, (ãn)n satisfies (2) and (3). So we only need to check (1):

ãn + ãn+1 = ap−1−n + ap−1−n−1

= ap−1−n−1+κ = ap−1−n−1+p−p+κ

= ap−1−(n+p−κ) = ãn+p−κ.

Thus (ãn)n is a complete Φp−κ-sequence. �

This proposition together with Theorem 1, Theorem 2, and Theorem 3
give us the following corollaries.

Corollary. Let p ≥ 5 be a prime number. A Φp−2-sequence (an)n is a

complete Φp−2-sequence if and only if an = bn for all n, where b is a Φp−2-

primitive root.

Corollary. Let p ≥ 5 be a prime number such that ̺p < 3. A Φp−3-sequence

(an)n is a complete Φp−3-sequence if and only if an = bn for all n, where b
is a Φp−3-primitive root.

Corollary. Let p ≥ 5 be a prime number such that ̺p = 3 and p ≤ N2
p + 1.

A Φp−3-sequence (an)n is a complete Φp−3-sequence if and only if an = bn

for all n, where b is a Φp−3-primitive root.

We finish this section discussing the case κ = p−1
2 . The corresponding

statement for the case κ = p+1
2 follows by means of Proposition 1.

Theorem 4. Let p ≥ 5 be a prime number. A Φ p−1

2

-sequence (an)n is

complete if and only if an = bn for all n, where b is a Φ p−1

2

-primitive root.

Moreover, in this case b = p − 2.



12 COMPLETE PADOVAN SEQUENCES IN FINITE FIELDS

Proof. Let (an)n be a complete Φ p−1

2

-sequence, so

an + an+1 = an+ p−1

2

for every n.

Then

an−1 + 2an + an+1 = (an−1 + an) + (an + an+1)

= an+ p−1

2
−1 + an+ p−1

2

= an−1+p−1 = an−1,

so 2an + an+1 = 0 and therefore an+1 = −2an = (p− 2)an. But this implies

an = (p − 2)n for every n.

Thus p − 2 is a Φ p−1

2

-primitive root since (an)n is complete. �

Corollary. Let p ≥ 5 be a prime number. A Φ p+1

2

-sequence (an)n is com-

plete if and only if an = bn for all n, where b is a Φ p+1

2

-primitive root.

Moreover, in this case b = p−1
2 .
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