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Hyperelliptic curves, continued fractions,

and Somos sequences

Alfred J. van der Poorten1,∗

Centre for Number Theory Research, Sydney

Abstract: We detail the continued fraction expansion of the square root of
a monic polynomials of even degree. We note that each step of the expansion
corresponds to addition of the divisor at infinity, and interpret the data yielded
by the general expansion. In the quartic and sextic cases we observe explicitly
that the parameters appearing in the continued fraction expansion yield integer
sequences defined by bilinear relations instancing sequences of Somos type.

The sequence . . . , 3 , 2, 1, 1, 1, 1, 1, 2, 3, 5, 11, 37, 83, . . . is produced by
the recursive definition

Bh+3 = (Bh−1Bh+2 + BhBh+1)/Bh−2 (1)

and consists entirely of integers.
On this matter Don Zagier comments [26] that ‘the proof comes from the theory

of elliptic curves, and can be expressed either in terms of the denominators of the
co-ordinates of the multiples of a particular point on a particular elliptic curve, or
in terms of special values of certain Jacobi theta functions.’

Below, I detail the continued fraction expansion of the square root of a monic
polynomials of even degree. In the quartic and sextic cases I observe explicitly
that the parameters appearing in the expansion yield integer sequences defined by
relations including and generalising that of the example (1).

However it is well known, see for example Adams and Razar [1], that each step
of the continued fraction expansion corresponds to addition of the divisor at in-
finity on the relevant elliptic or hyperelliptic curve; that readily explains Zagier’s
explanation.

1. Some Brief Reminders

1.1. The numerical case

We need little more than the following. Suppose ω is a quadratic irrational integer
ω , defined by ω2 − tω + n = 0, and greater than the other root ω of its defining
equation. Denote by a the integer part of ω and set P0 = a − t , Q0 = 1. Then
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the continued fraction expansion of ω0 := (ω + P0)/Q0 is a two-sided sequence of
lines, h in Z ,

ω + Ph

Qh

= ah − ω + Ph+1

Qh

; in brief ωh = ah − ρh ,

with (ω + Ph+1)(ω + Ph+1) = −QhQh+1 defining the integer sequences (Ph) and
(Qh). Obviously Q0 divides (ω + P0)(ω + P0). This suffices to ensure that the
integrality of the sequence (ah) of partial quotients guarantees that always Qh

divides the norm n + tPh + P 2
h = (ω + Ph)(ω + Ph).

Comment 1. Consider the Z-module ih = 〈Qh, Ph + ω〉 . It is a pleasant exercise
to confirm that ih is an ideal of the domain Z[ω] if and only if Qh does indeed
divide the norm (ω + Ph)(ω + Ph) of its numerator.

One says that a real quadratic irrational ωh is reduced if

ωh > 1 and its conjugate ωh asatisfies −1 < ωh < 0.

If the partial quotient ah is always chosen as the integer part of ωh then ω0 reduced
entails all the ωh and ρh are reduced; and, remarkably, ah — which starts life as
the integer part of ωh — always also is the integer part of ρh . Then conjugation
of the continued fraction tableau retrieves the negative half of the expansion of ω0

from the continued fraction expansion of ρ0 .

Comment 2. What a continued fraction expansion does. Suppose α = [ a0 , a1 , a2 , . . . ]
with α > 1, is our very favourite expansion, so much so that sometimes we go quite
alpha — expanding arbitrary complex numbers β = β0 by the ‘alpha’ rule

βh = ah + (βh − ah) and (βh − ah)−1 = βh+1 = ah+1 + · · · etc.

What can one say about those ‘alpha d’ complete quotients βh ?
Quite a while ago, in 1836, Vincent reports that either (i) all βh > 1, in which

case β = α ; or (ii) for all sufficiently large h , |βh| < 1 and the real part ℜβh of
βh satisfies −1 < ℜβh < 0; in other words, all those βh lie in the left hand half of
the unit circle. Proof : Straightforward exercise; or see [4] or, better, the survey [2].

Of this result Uspensky [24] writes: ‘This remarkable theorem was published by
Vincent in 1836 in the first issue of Liouville’s Journal , but later [was] so completely
forgotten that no mention of it is found even in such a capital work as the Enzy-

clopädie der mathematischen Wissenschaften. Yet Vincent’s theorem is the basis of
the very efficient method for separating real roots . . . ’.

The bottom line is this: When we expand a real quadratic irrational α then,
willy-nilly, by conjugation we also expand α . By Vincent’s theorem, its complete
quotients eventually arrive in the left hand-half of the unit circle and, once ‘reduced’,
they stay that way.

One readily confirms that the integers Ph and Qh are bounded by

0 < 2Ph + t < ω − ω and 0 < Qh < ω − ω .

It follows by the box principle that the continued fraction expansion of ω is periodic.
More, the adjustment whereby we replace ω by ω0 = ω + a − t arranges that ω0

is reduced. Yet more, by conjugating the tableau one sees immediately that (an
observation credited to Galois) for any h the expansion of ωh is purely periodic.

Comment 3. On conjugating the tableau, a putative preperiod becomes a ‘post-
period’ in the expansion of ρh ; which is absurd.
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1.2. The function field case

Here, ‘polynomial’ replaces ‘integer’. Specifically, set Y 2 = D(X) where D is a
monic polynomial of even degree deg D = 2g + 2 and defined over the base field,
K say. Then we may write

D(X) = A(X)2 + 4R(X) (2)

where A is the polynomial part of the square root Y of D , so deg A = g + 1,
and the remainder R satisfies deg R ≤ g . It is in fact appropriate to study the
expansion of Z := 1

2
(Y + A). Plainly

C : Z2 − AZ − R = 0 with deg Z = g + 1 and deg Z < 0. (3)

Comment 4. Note that Y is given by a Laurent series A + d−1X
−1 + d−2X

−2 +
· · · , an element of K((X−1)); in effect we expand around infinity. Felicitously,
by restricting our attention to Z , and forgetting our opening remarks, the story
we tell below makes sense over all base fields of arbitrary characteristic, including
characteristic two. However, for convenience, below we mostly speak as if K = Q .

In the present context we study the continued fraction expansion of an element
Z0 of K(Z, X) leading to the expansion consisting of a tableau of lines, h ∈ Z ,

Z + Ph

Qh

= ah − Z + Ph+1

Qh+1

, in brief Zh = ah − Rh , say, (4)

initiated by the conditions deg P0 < g , deg Q0 ≤ g and Q0 divides the norm
(Z + P0)(Z + P0) = −R + P0(A + P0). Indeed, the story is mutatis mautandis

precisely as in the numerical case, up to the fact that a function of K(Z, X) is
reduced exactly when it has positive degree but its conjugate has negative degree.
Here, analogously, we find that therefore all the Ph and Qh satisfy

deg Ph < g and deg Qh ≤ g , (5)

the conditions equivalent to the Zh and Rh all being reduced.

1.2.1. Quasi-periodicity

If the base field K is infinite then the box principle does not entail periodicity. In
a detailed reminder exposition on continued fractions in quadratic function fields
at Section 4 of [17], we are reminded that periodicity entails the existence of a
non-trivial unit, of degree m say, in K[Z, X ] . Conversely however, the exceptional
existence of such a unit implies only ‘quasi-periodicity’ — in effect, periodicity
‘twisted’ by multiplication of the period by a nonzero element of K . The existence
of an exceptional unit entails the divisor at infinity on the curve C being torsion
of order dividing m . If quasi-periodic, the expansion of the reduced element Z0 =
(Z + P0)/Q0 is purely quasi-periodic.

Comment 5. Consider the surprising integral
∫

6xdx√
x4 + 4x3 − 6x2 + 4x + 1

= log
(

x6 + 12x5 + 45x4 + 44x3 − 33x2 + 43

+ (x4 + 10x3 + 30x2 + 22x − 11)
√

x4 + 4x3 − 6x2 + 4x + 1
)

,



Somos sequences 215

a nice example of a class of pseudo-elliptic integrals

∫

f(x)dx
√

D(x)
= log

(

a(x) + b(x)
√

D(x)
)

. (6)

Here we take D to be a monic polynomial defined over Q , of even degree 2g + 2,
and not the square of a polynomial; f , a , and b denote appropriate polynomials.
We suppose a to be nonzero, say of degree m at least g + 1. One sees readily that
necessarily deg b = m − g − 1, that deg f = g , and that f has leading coefficient
m . In the example, m = 6 and g = 1.

The trick is to recognise that obviously a2 − b2D is a non-zero constant and
a + b

√
D is a unit of degree m in the domain Q(x,

√

D(x) and is not necessarily
of norm ±1 — it is this that corresponds to quasi-periodicity; for details see [14].

1.2.2. Normaility of the expansion

In the sequel, I suppose that Z0 has been so chosen that its continued fraction
expansion is normal : namely, all its partial quotients are of degree 1. This is the
generic case if K is infinite. Since I have the case K = Q in mind, I refer to elements
of K as ‘rational numbers’.

Comment 6. Näıvely, it is not quite obvious that the case all partial quotients of
degree one is generic, let alone that this generic situation can be freely arranged
in our partcular situation. I comment on the latter matter immediately below but
the former point is this: when one inverts d−1X

−1 + d−2X
−2 + · · · , obtaining a

polynomial plus e−1X
−1 +e−2X

−2 + · · · it is highly improbable that e−1 vanishes
because e−1 is a somewhat complicated rational function of several of the d−i . See
my remarks in [15].

1.2.3. Ideal classes

If K is infinite, choosing P0 and Q0 is a matter of selecting one of infinitely many
different ideal classes of Z-modules {〈Qh, Z + Ph〉 : h ∈ Z} . Only a thin subset of
such classes fails to give rise to a normal continued fraction expansion. Of course
our choice of P0 and Q0 will certainly avoid the blatantly singular principal class:
containing the ideal 〈1, Z〉 .

1.2.4. Addition on the Jacobian

Here’s what the continued fraction expansion does. The set of zeros {ωh,1, . . . , ωh,g}
of Qh defines a rational divisor on the hyperelliptic curve C . In plain language: any
one of these zeros ωh is the X co-ordinate of a point on C , here viewing C as
defined over the algebraic extension K(ωh), generically of degree g over the base
field K . In particular, in the case g = 1, when C is an elliptic curve, the unique zero
wh of Qh provides a point on C defined over the base field; see §2.2 at page 217
below.

Selecting P0 and Q0 is to choose a divisor class, say M , thus a point on the
Jacobian Jac(C) of the curve C defining Z . Let S denote the divisor class defined
by the divisor at infinity. Then each complete quotient Zh = (Z + Ph)/Qh has
divisor in the class Mh+1 := M + hS . I show this in [17] for g = 1 making explicit
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remarks of Adams and Razar [1]. See further comment at §2.2. For higher genus
cases, one wilkl find helpful the introduction to David Cantor’s paper [7] and the
instructive discussion by Kristin Lauter in [13]. A central theme of the paper [3] is
a generalisation of the phenomenon to Padé approximation in arbitrary algebraic
function fields. My suggestion that partial quotients of degree one are generic in
our examples is the same remark as that divisors on C/K typically are given by g
points on C/F , where F is some algebraic extension of K .

2. The Continued Fraction Expansion

Evidently, the polynomials Ph and Qh in

Z + Ph

Qh

= ah − Z + Ph+1

Qh+1

, (7)

are given sequentially by the formulas

Ph + Ph+1 + A = ahQh and

−QhQh+1 = (Z + Ph+1)(Z + Ph+1) = −R + Ph+1(A + Ph+1). (8)

2.1. A näıve approach

At first glance one might well be tempted to use this data by spelling out the
first recursion in terms of g equations linearly relating the coeficients of the Ph ,
and the second recursion in terms of 2g + 1 equations quadratically relating the
coefficients of the Qh . Even for g = 1, doing that leads to a fairly complicated
analysis; see [16], and the rather less clumsy [17]. For g = 2, I had to suffice myself
with the special case deg R = 1 so that several miracles (I called it ‘a ridiculous
computation’) could yield a satisfying result [18]. I realised that a quite different
view of the problem would be needed to say anything useful in higher genus cases.

2.2. Less explicit use of the recursions

Denote by ωh a zero of Qh(X). Then

Ph(ωh) + Ph+1(ωh) + A(ωh) = 0

so − QhQh+1 = −R + Ph+1

(

A + Ph+1

)

becomes R(ωh) = −Ph+1(ωh)Ph(ωh). (9)

This, together with a cute trick, already suffices to tame the g = 1 case: that is,
the case beginning as the square root of a monic quartic polynomial. Indeed, if
g = 1 then deg Ph = g − 1; so the Ph are constants, say Ph(X) =: eh . Also,
deg Qh = 1, say Qh(X) =: vh(X − wh), so ωh = wh . Further, deg R ≤ 1, say
R(X) =: v(X − w).

First, (9) tells us directly that v(w − wh) = eheh+1 . Second, this is the ‘cute
trick’, obviously −R(wh) = v(w −wh) = Qh(w) · v/vh . An intelligent glance at (8)
reminds us that vh−1vh = −eh . Hence, by (8) and R(w) = 0,

eh−1e
2
heh+1 = −Qh−1(w)Qh(w) · v2/eh = v2

(

eh + A(w)
)

.
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The exciting thing about the recursion

eh−1e
2
heh+1 = v2

(

eh + A(w)
)

(10)

is that, among the parameters varying with h , it involves the eh alone; moreover,
its coefficients v2 and v2A(w) depend only on the curve C and not on the initial
conditions P0 = e0 and Q0 = v0(X − w0).

More, if X = wh then Z = −eh or Z = −eh+1 ; yielding pairs of rational points
on C . Moreover, the transformation U = Z , V − v = XZ transforms the curve C
to a familiar cubic model

E : V 2 − vV = monic cubic in U with zero constant coefficient, (11)

essentially by moving one of the two points SC , say, at infinity on C to the origin
SE = (0, 0) on E . As at §1.2.4 on page 215 above, denote the point (wh,−eh) on
C by Mh+1 . Recall that an elliptic curve is an abelian group with group operation
denoted by +. Set M1 = M . One confirms, see [17] for details, that Mh+1 =
M + hSC by seeing that this plainly holds on E where the addition law is that
F + G + H = 0 if the three points F , G , H on E lie on a straight line.

I assert at §1.2.4 that precisely this property holds also in higher genus. There,
however, one is forced to use the gobbledegook language of ‘divisor classes on the
Jacobian of the curve’ in place of the innocent ‘points on the curve’ allowed in the
elliptic case.

Comment 7. By the way, because each rational number −eh is the U co-ordinate
of a rational point on E it follows that its denominator must be the square of an
integer.

2.3. More surely useful formulas

Set ah(X) = (X + νh)/uh ; so uh is the leading coefficient of Qh (its coefficient
of Xg ) and ah vanishes at −νh . Below, we presume that dh denotes the leading
coefficient of Ph (its coefficient of Xg−1 ). Then

R(X) + Ph+1(X)Ph(X) = Qh(X)Qh+1(X) + Ph+1(X)(X + νh)Qh(X)/uh

= Qh−1(X)Qh(X) + Ph(X)(X + νh)Qh(X)/uh .

Plainly, we should divide by Qh(X)/uh and may set

Ch(X) :=
(

R(X) + Ph+1(X)Ph(X)
)

/
(

Qh(X)/uh

)

= uhQh+1(X) + Ph+1(X)(X + νh)

= uhQh−1(X) + Ph(X)(X + νh). (12)

Since deg R ≤ g , and the P all have degree g − 1, and the Q degree g , it follows
that the polynomial C has degree g − 2 if g ≥ 2, or is constant in the case g = 1.
If g = 2 it of course also is constant and then, with R(X) = u(X2 − vX + w), its
leading coefficient is dhdh+1 + u so we have, identically, Ch(X) = dhdh+1 + u . If
g ≥ 3 then Ch is a polynomial with leading coefficient dhdh+1 .

2.4. The case g = 2

If deg A = 3 then R = u(X2 − vX + w) is the most general remainder. In the
continued fraction expansion we may take Ph(X) = dh(X + eh). As just above,
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denote by uh the leading coefficient of Qh(X) and note that uh−1uh = −dh . In
the case g = 1 we succeeded in finding an identity in just the parameters eh ; here
we seek an identity just in the dh .

First we note, using (12) and Ch(X) = dhdh+1 + u , that

dhdh+1 + u = Ch(−eh) = uhR(−eh)/Qh(−eh) = uhQh−1(−eh) . (13)

dh−1dh + u = Ch−1(−eh) = uh−1R(−eh)/Qh−1(−eh) = uh−1Qh(−eh) . (14)

Hence, cutely,

(dh−1dh + u)(dhdh+1 + u) = uh−1uhR(−eh) = −udh(e2
h + veh + w) . (15)

Set R(X) =: u(X − ω)(X − ω). Also from (12), we have

Ch(ω)Qh(ω) = Ph+1(ω)Ph(ω)

and therefore

Ch−1(ω)Ch(ω)Qh−1(ω)Qh(ω) = Ph−1(ω)
(

Ph(ω)
)2

Ph+1(ω) .

But −Qh−1(ω)Qh(ω) = Ph(ω)
(

A(ω) + Ph(ω)
)

. Together with (15) we find that

u3
(

A(ω) + dh(ω + eh)
)(

A(ω) + dh(ω + eh)
)

= dh−1d
3
hdh+1(dh−2dh−1 + u)(dh+1dh+2 + u). (16)

In the special case u = 0, that is: R(X) = −v(X −w), a little less argument yields
the more amenable

−v3
(

A(ω) + dh(w + eh)
)

= dh−2d
2
h−1d

3
hd2

h+1dh+2 .

In this case, we have −vdh(w + eh) = −dhR(−eh) = dh−1d
2
hdh+1 , finally providing

dh−2d
2
h−1d

3
hd2

h+1dh+2 = v2dh−1d
2
hdh+1 − v3A(w) . (17)

Comment 8. This reasonably straightforward argument removes the ‘miraculous’
aspects from the corresponding discussion in [18]. Moreover, it gives a result for
u 6= 0. However, I do not yet see how to remove the dependence on eh in (16) so
as to obtain a polynomial relation in the ds.

3. Somos Sequences

The complexity of the various parameters in the continued fraction expansions
increases at frantic pace with h . For instance the logarithm of the denominators
of eh of the elliptic case at §2.2 is readily proved to be O(h2) and the same must
therefore hold for the logarithmic height of each of the parameters.

Denote by A2
h the denominator of eh (recall the remark at Comment 7 on

page 217 that these denominators in fact are squares of integers). It is a remarkable
fact holding for the co-ordinates of multiples of a point on an elliptic curve that in

general

Ah−1Ah+1 = ehA2
h (18)

Moreover, it is a simple exercise to see that (18) entails Ah−2Ah+2 = eh−1e
2
heh+1A

2
h .

Thus, on multiplying the identity (10), namely eh−1e
2
heh+1 = v2

(

eh + A(w)
)

, by
A2

h we find that
Ah−2Ah+2 = v2Ah−1Ah+1 + v2A(w)A2

h (19)

gives a quadratic recursion for the ‘denominators’ Ah .
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Comment 9. My remark concerning the co-ordinates of multiples of a point on an
elliptic curve is made explicit in Rachel Shipsey’s thesis [21]. The fact this also holds
after a translation is shown by Christine Swart [23] and is in effect again proved
here by way of the recursion (10). My weaselling ‘in general’ is to avoid my having
to chat on about exceptional primes — made evident by the equation defining the
elliptic curve — at which the Ah may not be integral at all. In other words, in
true generality, there may be a finite set S of primes so that the Ah actually
are just S -integers: that is, they may have denominators but primes dividing such
denominators must belong to S .

3.1. Michael Somos’s sequences

Some fifteen years ago, Michael Somos noticed [11, 20], that the two-sided sequence
Ch−2Ch+2 = Ch−1Ch+1+C2

h , which I refer to as 4-Somos in his honour, apparently
takes only integer values if we start from Ch−1 = Ch = Ch+1 = Ch+2 = 1.
Indeed Somos went on to investigate also the width 5 sequence, Bh−2Bh+3 =
Bh−1Bh+2 +BhBh+1 , now with five initial 1s, the width 6 sequence Dh−3Dh+3 =
Dh−2Dh+2+Dh−1Dh+1+D2

h , and so on, testing whether each when initiated by an
appropriate number of 1s yields only integers. Naturally, he asks: “What is going
on here?”

By the way, while 4-Somos (A006720) 5-Somos (A006721), 6-Somos (A006722),
and 7-Somos (A006723) all do yield only integers; 8-Somos does not. The codes in
parentheses refer to Neil Sloane’s ‘On-line encyclopedia of integer sequences’ [22].

3.2. Elliptic divisibility sequences

Sequences generalising those considered by Somos were known in the literature.
Morgan Ward had studied anti-symmetric sequences (Wh) satisfying relations

Wh−mWh+mW 2
n = Wh−nWh+nW 2

m − Wm−nWm+nW 2
h . (20)

He shows that if W1 = 1 and W2

∣

∣W4 then a
∣

∣b implies that Wa

∣

∣Wb ; that is, the
sequences become divisibility sequences (compare the Fibonacci numbers). For a
brief introduction see Chapter 12 of [9].

There is a drama here. The recurrence relation

Wh−2Wh+2 = W 2
2 Wh−1Wh+1 − W1W3W

2
h ,

and four nonzero initial values, already suffices to produce (Wh). Thus (20) for all
m and n is apparently entailed by its special case n = 1 and m = 2. The issue is
whether the definition (20) is coherent.

One has to go deep into Ward’s memoir [25] to find an uncompelling proof that
there is in fact a solution sequence, namely one defined in terms of quotients of
Weierstrass sigma functions. More to the point, given integers W1 = 1, W2 , W3 ,
and W4 , there always is an associated elliptic curve. In our terms, there is a curve
C : Z2 − AZ − R = 0 with deg A = 2, deg R = 1 and the sequence (Wh) arises
from the continued fraction expansion of Z1 = Z/(−R). I call (Wh) the singular

sequence because in that case e1 = 0 — so the partial quotient a0(X) is not linear.
My ‘translated’ sequences (Ah) were extensively studied by Christine Swart in

her thesis [23].
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3.3. Somos sequences

It is natural to generalise Michael Somos’s questions and to study recurrences of the
kind he considers but with coefficients and initial values not all necessarily 1. Then
our recurrence (19) is a general instance of a Somos 4 sequence, an easy computation
confirms that −v = W2 and v2A(w) = −W3 , and given the recursion and four
consecutive Ah one can readily identify the curve C and the initial ‘translation’
M = (w0,−e0).

Comment 10. One might worry (I did worry) that Ah−2Ah+2 = aAh−1Ah+1+bA2
h

does not give a rationally defined elliptic curve if a is not a square. No worries.
One perfectly happily gets a quadratic twist by a of a rationally defined curve.

For example, 4-Somos, the sequence (Ch) = (. . . , 2 , 1, 1, 1, 1, 2, 3, 7, . . . )
with Ch−2Ch+2 = Ch−1Ch+1 + C2

h arises from

C : Z2 − (X2 − 3)Z − (X − 2) = 0 with M = (1,−1);

equivalently from E : V 2 − V = U3 + 3U2 + 2U with ME = (−1, 1).
Christine Swart and I found a nice inductive proof [19] that if (Ah) satisfies (19)

then for all integers m and n ,

Ah−mAh+mW 2
n = W 2

mAh−nAh+n − Wm−nWm+nA2
h .

Our argument obviates any need for talk of transcendental functions and is purely
algebraic.

It also is plain that Ah−1Ah+1 = ehA2
h yields Ah−1Ah+2 = eheh+1AhAh+1 and

Ah−2Ah+3 = eh−1e
2
he2

h+1eh+2AhAh+1 . However, although (10) directly entails

eh−1e
2
he2

h+1eh+2 = −v2A(w)eheh+1 +
(

v4 + 2wv3A(w)
)

,

it requires some effort to see this. Whatever, (19) eventually also gives

W1W2Ah−mAh+m+1 = WmWm+1Ah−1Ah+2 − Wm−1Wm+2AhAh+1 . (21)

For details see [17] and [19].
The case m = 2 of (21) includes all Somos 5 sequences. The sequence 5-Somos,

(Bh) = ( . . . , 2, 1, 1, 1, 1, 1, 2, 3, 5, 11, . . . ) with Bh−2Bh+3 = Bh−1Bh+2 + BhBh+1 ,
arises from

Z2 − (X2 − 29)Z + 48(X + 5) = 0 with M = (−3,−8);

equivalently from E : V 2 + UV + 6V = U3 + 7U2 + 12U with ME = (−2,−2).
Actually, a Somos 5 sequence (Ah) may also be viewed as a pair (A2h) and

(A2h+1) of Somos 4 sequences coming from the same elliptic curve but with different
translations (in fact differing by half its point S ); see the discussion in [17].

3.4. Higher genus Somos sequences

My purpose in studying the elliptic case was to be able to make impact on higher
genus cases. That’s been only partly achieved, what with little more than (17) at
page 218 to show for the effort. I tame (17) by defining a sequence (Th), one hopes
of integers, by way of Th−1Th+1 = dhT 2

h . We already know that then Th−2Th+2 =
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dh−1d
2
hdh+1T

2
h ; also Th−3Th+3 = dh−2d

2
h−1d

3
hd2

h+1dh+2T
2
h follows with only small

extra effort. Thus (17) yields

Th−3Th+3 = v3Th−2Th+2 − v2A(w)T 2
h . (22)

Then the sequence (Th) = ( . . . , 2 , 1, 1, 1, 1, 1, 1, 2, 3, 4, 8, 17, 50, . . .)
satisfying Th−3Th+3 = Th−2Th+2 + T 2

h is readily seen to derive from the genus 2
curve

C : Z2 − Z(X3 − 4X + 1) − (X − 2) = 0 . (23)

A relevant piece of the associated continued fraction expansion is

Z + 2X − 1

X2 − 1
= X − Z + X

X2 − 1

Z + X

−(X2 − 2)
= −X − Z + X − 1

−(X2 − 2)

Z0 :=
Z + X − 1

X2 − X − 1
= X + 1 − Z + X − 1

X2 − X − 1

Z + X − 1

−(X2 − 2)
= −X − Z + X

−(X2 − 2)

Z + X

X2 − 1
= X − Z + 2X − 1

X2 − 1

· · ·

illustrating that M is the divisor class defined by the pair of points (ϕ, ϕ) and
(ϕ, ϕ) — here, ϕ is the golden ratio, a happenstance that I expect will please
adherents to the cult of Fibonacci.

Comment 11. There does remain an issue here. Although (10) is concocted on
the presumption that eh is never zero, it continues to make sense if some eh

should vanish — for instance in the singular case. However, (17) is flat out false if
dh−1dhdh+1 = 0. Indeed, a calm study of the argument yielding (17) sees us divid-
ing by v(eh + w) at a critical point. These considerations together with Cantor’s
results [8] suggest that (22) should always be reported as multiplied by Th and,
more to the point, that the general genus 2 relation when u 6= 0 will be cubic
rather than quadratic.

4. Other Viewpoints

My emphasis here has been on continued fraction expansions producing sequences
M + hS of divisors — in effect the polynomials Qh — obtained by repeatedly
adding a divisor S to a starting ‘translation’ M . That viewpoint hints at arithmetic
reasons for the integrality of the Somos sequences but does not do that altogether
convincingly in genus greater than one.

4.1. The Laurent phenomenon

As it happens, the integrality of the Somos sequences is largely a combinatorial phe-
nomenon. In brief, as an application of their theory of cluster algebras, Fomin and
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Zelevinsky [10] prove results amply including the following. Suppose the sequence
(yh) is defined by a recursion

yh+nyh = αyh+ryh+n−r + βyh+syh+n−s + γyh+tyh+n−t ,

with 0 < t < s < r ≤ 1

2
n . Then the yh are Laurent polynomials∗ in the variables

y0 , y1 , . . . , yn−1 and with coefficients in the ring Z[α, β, γ] . That deals with all
four term and three term quadratic recursions and thus with the cases Somos 4 to
Somos 7. Rather more is true than may be suggested by the given example.

4.2. Dynamic methods

Suppose we start from a Somos 4 relation Ah−2Ah+2 = αAh−1Ah+1 + βAh2

and appropriate initial values A0 , A1 , A2 , A3 . Then one obtains rationals eh =
Ah−1Ah+1/A

2
h satisfying the difference equation

eh+1 =
1

eh−1eh

(

α +
β

eh

)

.

The point is that this equation has a first integral given by

J := J(eh−1, eh) = eh−1eh + α
( 1

eh−1

+
1

eh

)

+
β

eh−1eh

= J(eh, eh+1)

and one can now construct an underlying Weierstrass elliptic function ℘ . Indeed,
the readily checked assertion that given y ∈ C there are constants α and β so that

(

℘(x + y) − ℘(y)
)(

℘(x) − ℘(y)
)2(

℘(x − y) − ℘(y)
)

= −α
(

℘(x) − ℘(y)
)

+ β

reveals all; particularly that α = ℘′(y)2 , β = ℘′(y)2(℘(2y) − ℘(y)).
Specifically, after fixing x by J ≡ ℘′′(x) one sees that

−eh = ℘(x + ny) − ℘(y) .

A program of this genre is elegantly carried out by Andy Hone in [12] for Somos 4
sequences. In [5], the ideas of [12] are shown to allow a Somos 8 recursion to
be associated with adding a divisor on a genus 2 curve. Incidentally, that result
coheres with the guess mooted at Comment 11 above that there always then is a
cubic relation of width 6.
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