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ON PLOUFFE’'S RAMANUJAN IDENTITIES

LINAS VEPSTAS

ABSTRACT. Recently, Simon Plouffe has discovered a number of idestfor the Rie-
mann zeta function at odd integer values. These identitiektained numerically and
are inspired by a prototypical series for Apery’s constantrg by Ramanujan:

oo

T3 1
C(g) = ﬁ -2 Z n3 (627rn _ 1)

n=
Such sums follow from a general relation given by Ramanuwjdrich is rediscovered and
proved here using complex analytic techniques. The gemelation is used to derive
many of Plouffe’s identities as corollaries. The resembdaof the general relation to the
structure of theta functions and modular forms is brieflytcted.

1. INTRODUCTION

Inspired by an identity fo¢(3) given in Ramanujan’s notebooks [4, chapter 14, formu-
las 25.1 and 25.3],

oo

73 1
@)= 180 22 n3 (e2™ — 1)

Plouffe describes a set of similar identitlgs[8],[9] thatre& discovered numerically using
arbitrary-precision software. For example, Plouffe gi@asdentity for(7):

oo

1977 1
7) = -2 _
< 56700 nZl n’ (e2m™ — 1)

This text provides an analytically derived formula for exgsions of this type. The result-
ing general formula, valid for integen > 1, is

= 1
((dm—-1) = =2 Z nAm=1 (g2mn _ 1)
n=1

N =

2m
_ i Baj  Bam—2;
27T 4m—1 _1] .J .7
en™ 2 Y G Tam 2y

whereB, is thek’th Bernoulli number.
Plouffe also notes similar relations for the other odd ietsgfor example,
™ T2 &S 1 2 1
) = 294 35 — nd (e2™m — 1) 35 7; nd (2™ 4 1)
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The general form for this type of expression may be shown to be
[1+ (—=4)™ —2'" T C(d4m + 1)

- 1
= 2; ndm+1 (627771 + 1)

am+1 _ (4 \m - 1
+2 [2 ( 4) } 7;1 n4m+1 (627771 _ 1)

U . Bam—dai By
) 4m+1 _4 m-+j 4dm—475+2 44
+(2m) jz::o( =1+ 21 (4))

1 i Bam—2j42 DBaj
Z(2 4m—+1 —4)J J J
+5(2m) 2 N T T @)

The methods described in this text also allow for a large g@ization of these types of
sums. Defining

= 1
Pi(7) = Z nk (eZrinT _ 1)
n=1

these generalizations follow from a modular equation g, (7) to P,.(—1/7) for odd
integersk, the derivation and proof of which is the one of the main tegitthis note. The
modular relation is not new; it appears in Ramanujan’s Novéb [4, Chapter 14 Entry
21] as

B 1 > anfl
« {§<(2n+1)+;m}
. 1 e k2n—1
=(-p) {54(2n+1)+;m}
n+1

By, Bopya_ok _
_ 22n _1 k n+1—k Qk
> (=) @l entz 2t P

k=0

wherea > 0, 8 > 0 with a3 = 7% andn any positive integer. Berndt implies that this
formula is the most studied of all the notebooks; it has badapendently discovered per-
haps a half-dozen times, and proven twice as often. It hasdpeeralized td.-functions,
and to rational values df; Berndt provides a long li$t[4] of the various proofs andgen
alizations made.

Much of this paper is devoted to (yet another! independatifigovered) proof of this
relation, followed by a series of lemmas that provide thensmtion to Plouffe’s results.
In searching for curious and interesting special casesi@fdation, one senses that only
the tip of the iceberg has been seen. Unexplored pos@siliticlude, for example, consid-
eringT € Q[i], the field of Gaussian rationals, or from considering Diaptree roots of
guadratics.

The rest of this paper is roughly laid out as follows: The secsection provides a re-
view of previous related results. The third section giveslationship between the sums
and the polylogarithm, and thence to an integral on the cexplane. The fourth sec-
tion examines the related contour integral, which is eastlygrated via Cauchy’s residue
theorem to give a finite sum involving the Bernoulli numbérke fifth section relates the
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contour integral to the polylogarithm integral, thus réisgl in a functional equation for
Py(7). The sixth section applies the functional equation, priogjch variety of lemmas,
many of which explain Plouffe’s discoveries. The seventitiea give a pair of relation-
ships on the Bernoulli numbers that arise naturally in tlietext. The eighth section
explores the modular nature of the relationsfyr), followed by a conclusion. An ap-
pendix gives a derivation of an integral representatiomefgdolylogarithm, that is central
to the analysis.

2. RELATED SUMS

A large number of similar sums have been explored before;ghétion reviews some
of these. Perhaps the most forthright is a sum given by Rajaariini a famous letter to
Hardy/[6], stating that

113 213 313 1

e2r—1 647771 efbr—1 24

A generalization of this sum,

oo
nAk+1  Bupso

e — 1 4(2k 4+ 1)

n=1
is proved by Berndi[2], and attributed to Glaishér[5]. Thred many related results are
derived by Zuckel[12], based on the theory of Jacobiant&lfpnctions. A similar result
is stated by Apostol in the form of an exercise[1, see exertisat end of chapter 1.]:

o0 n4k+1 24k+1 -1

Z T+enm  8k+4
n:l;nOdd te +

Many sums resembling those in this note are given by ZuckgrBome of these are

Bapy2

= 1 1 i coth(mma) — 1

n(erme —1) 2 e~ m

> -1)" 1 & coth(mmax) — 1

m

i 1 1 i 1 — tanh(wma)
n(e2 e 4 1) 2

m
m=1

o0

2#_%2(_1)7711_“1“—}1(””“”)

= e27rnw + 1) m

The fount of inspiration for such sums is Ramanujan. Sumarginr Chapter 14 of Part Il
of the Ramanujan’s Notebook§[4] include entry 8:

m=1

> sinh(2ank) - sin(20nk)  « Ié] k
a; 2ot ] +ﬁ; 1~ 1 coth(ak) 1 cot(k) 5

and another similar one relating cos and cosh. Abévie,any positive integekys = «
and0 < gk < .
Entry 13 generalizes the sums mentioned previously,

o0 n2k—1 o0 n2k—1 BQk
Y e L g = O

n=1
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This time, one takeg3 = w2andk > 1 an integer. The above follows from sums on the
divisor function, as is frequently noted.

Sums involving pairs of Bernoulli numbers also appear inahalysis of the Dedekind
eta function. Thus, Sho Iseki’s transformation formuladascribed by Apostal[1, see
theorem 3.5], is

Map2) =4 (1-p.a 1) _m§< ) Beal@)

n=0
whereA is given by
(@, 8,2) =Y _[Mz(r+a) —if) + Az(r + 1 — a) +iB)]
r=0
and
oo 6727rmz
AMaz) = mz::l —~

A sum linking the Bernoulli and Euler numbers is given by BH[8]:

i ot sech[(2n — 1)mv/3/2]

2n _ 1)6k+1

n=1

1 1)t k1 Eomi1 Ber—om { W}
=3 Z @m+ 1)1 (6F —2m) < (23

Perhaps the results that are closest to those presenteid paiber are those noted by
Borwein,et al[[7, Section 5], and in particular, given a very similar résmolving ¢ (4m—
1) and{(4m + 1).

3. THE POLYLOGARITHM

The recurring theme in Plouffe’s identities is the sum

= 1
_;ns (exm —1)

with s usually an odd positive integer and= 7 or x = 27 or possibly other interesting
values, such as = 7/m for some integem. This sum may be converted into a sum over
polylogarithms, and subsequently into an integral. Thegrdal may, after some difficulties,
be converted into a contour integral, whereupon it may b&eted by Cauchy’s residue
theorem. The result is a finite sum whose general structwembles those of Plouffe’s
and Ramanujan’s identities. This section develops thedartof this analysis.

To find the polylogarithm, one expands

Si(@) = 33—
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which is generally valid foftz > 0. The above is easily obtained by applying the expan-
sion

oo

1 m
1—z mZ:OZ
and the definition of the polylogarithm:
Li(z) =Y =
n
n=1
The polylogarithm may be expressed in terms of an integral as
) B 1 c+ioc0 B
Lis (e7") = 9 /Cﬂ_oo I'(z)¢(z + s)u™*dz

(See Appendix for derivation). HerE(z) is the Gamma function. The line of integration
is taken to be to the right of all of the poles in the integraramely,c > 1. Using this in
the summation, one obtains

1 oo c+io0o B
S0) = 5> [ TEKGE+ ) em) s
m:1 C—100
1 [T T(2)
- B e+ s)caniz

CcC—100
The exchange of the order of summation and integration {iptsprecisely when one has
¢ > 1. The last integral has polesat= 1 andz + s = 1 coming from the zeta functions
and poles at all of the non-positive integers coming fromGlaenma function.

If the integral can somehow be converted into a closed comothe left, then it may
be evaluated in a straight-forward way by means of Cauckgislue theorem. Performing
this closure is in fact harder than one might hope, as thera@m-zero contributions to the
contour from its closure. The next section evaluates thelaintegral, assuming that the
contour can be closed. The section after that computes titetmations from closing the
contour integral.

4. THE CONTOURINTEGRAL

Define the contour integral as

L(z) = ijé LG (2 4 s)c(2)dz

211 i

where the contouy encircles the polesat=1, 2+ s = 1andz = 0,—1,—2,...in the
usual, right-handed fashion. Then, one uses Cauchy’séhgavhich states that

f@)= o f L% a

211 zZ—a

for simple poles, and that

o) = 5 f L

T 2mi (z — a)2
for double poles. For the pole at= 1, one obtains the residue
Res(z = 1) = <5+ 1)

X
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For the poles at = —n, one obtains the residue

Res(z = —n) = "2 ¢(s — m)((—n)

n!

and so one has
oo (_

Is(x):Res(z:1—5)+@+Z
n=0

2 (s = mic(m)

n

For s not an integer, one has
I(1-s)
Res(z=1—3s) = ?C(l —3)
However, the interesting case is foe= k a positive integer. In this case, the pole overlays
another pole from the Gamma, and one has a double pole. Thistia little trickier to
evaluate:

: F(Z)C(Z +5)¢(2)dz = = 7{:1_;@ (Ldz

o2mi fo_y . a® 2mi z+k—1)2

_ 4 [(z Lk —1)2T(2) (2 + k) C(Z)]

dz T?

To perform the derivative, one will need to use the idertitie
d
—(s—1 =
2 (5= 1)¢(s) !
wherey = 0.577 ... is the Euler-Mascheroni constant, and

d B R U(n+1) n
E(Z‘*‘”)F(Z) T (=1) Tntl) (=1)

wherey(z) is the digamma function, anHl,, is then’th harmonic number. Putting these
together, one obtains

z=1-k

H, —~
n!

1 I'(2) _ (=)t
9 ?{:1—1@ = C(z+s)((2)dz = o [('(1 —Fk)+ (Hg—1 —In2m) (1 — k)]

Adding this to the other contributions, one gets

n=>0
n#*k—1
(_x)k—l
+ [¢'(1 = k) 4+ (Hp—1 —In2m) ¢(1 — k)]

(k—1)!
Whenk is an odd integer, the above simplifies in two ways. Fi¢$l, — k) vanishes,
because the zeta function vanishes at all negative evegeirsteSimilarly, the infinite sum
becomes finite: wheh is an odd integer, one has eith@k — n) = 0 or {(—n) = 0 for
alln > k. Thus, fork an odd integer, one has
k

ry g o

Ix(z) = T n!

C(k =n)¢(=n) + Z——7

n#*k-—1
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For the remainder of the paper, it is assumed that, in thitsezork > 1 is an odd integer,
unless explicitly stated otherwise. The above evaluatfahecontour integral is the main
result of this section. To see that this is a key result, ong snastitutek = 3 andx = 27

to obtain X
7T

I5(27) = — —_—

3(2m) = —((8) + 755

which should be recognizable as a portion of Ramanujanigtitye Fork = 7, one has

1977
Iz(2m) = =C(7) + £
which resembles one of the results given by Plouffe. To cetefithe connection, one must
relate the contour integrd], (z) to the sumSy (z). This is done in the next section.
First, however, to drive the point home, one must observiertiuest of the terms in the
above expression are rational multiples of powers.ofhis follows from the zeta function
being related to the Bernoulli numbes, at even integers:

_ (_1\n+1 (27T)2n3271
for integern > 0. At the negative values, one has
o Bn+1
((=m) =~

while the derivative is

¢(-2m) = (-1 g

for integern > 1. Using these in the above expressionfpfz), and rearranging terms a
bit, one gets

“ane) = <) 1= (o)

¢(2n+1)

271,
(1) /2
1 k+1 2 Nk+1—27 ) )
o S () e b

The above introduces the binomial coefficient

Although the imaginary numbeér= /—1 appears in the above, it is always squared, and
thus is just a sign-keeping device. Every term in the sum iislpueal.

When the contour integral is written in this form, it may now $een that fox being
any rational multiple ofr, that is,2 = pr/q for any integer9, ¢, that the coefficient of
¢(k) is a rational number, and that the second term is anothenadtiimesr*.

A further curiosity in this regard is noted by Plouffe: if otekesz = w\/ﬂ for
integersp andg, one also gets simple expressions: becausedd, the coefficient of (k)
is still a rational, and the coefficient of is \/p/q times some rational. For rationa) one
still has that the sum is a rational polynomiakif, and forz = \/7p/q, one still has that
the sum is a rational polynomial in. The ocean-full of rationals here suggest that some
sort of p-adic analysis might be interesting. The appearance ofdghare root suggests
that there is a relation to complex multiplication, or thaeanay have interesting results
on the field of Gaussian integers.
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5. EVALUATING THE CONTOUR INTEGRAL
The goal of this section is to relate the s¥(x) to the contour integrally ().

Theorem 5.1. For odd integersk, one has that

Sk(x) = Ii(x) + (—1)*~ /2 (%)k_l Si (%ﬁz)

For the remainder of this text, this will be referred to as thenctional equation forS},”.

Proof. To prove this result, consider evaluating the contour irgtkg, (x) for a tall rect-
angular contour surrounding the poleszat 1,0,—1,...,1 — s. Thus, writels(z) =
A+ B+ C + D with A being the integral froma — ih to ¢ 4 ih for a constant > 1 and
the heighth large, eventually taking the limit — oc. Thatis,A forms the right hand side
of the rectangular contour. In the limit &f — oo, one has by definition

A= S,(x)
Let B andC be the top and bottom of the contour, so thatirthe integral runs from
¢+ thtoih — s — ¢ leftwards. ForC, the integral runs rightwards fromih — s — e to
c —ih; here we take > 0. The integralD on the left hand side of the rectangle closes the
contour, running downwards, froh — s — e to —ih — s — €.

The integralsB andC will vanish in the limit of the height — oo. This can be easily
seen after a simple change of variable:

ith—s—e
B = ! / MC(s+z)§(z)d,z

% h+-c T?
1 75751—1 h,
T 2w ), %C(Huﬂhx(uﬂh)du

Much of the integrand i€)(1) in h, or polynomially thereabouts. The integrand is domi-
nated by the Gamma function, which, from Stirling’s approation, may be seen to be
I'u+ih) =0 (e_’rh/Q)

The complex conjugate argument applietpand thusB andC' vanish in the limit of
h — oo.
To evaluateD, begin by writing

1 th—s—e F(Z)

D - o [ e ae
ih
= —%x”e /_ih 2 T(—u—s—€)¢(—u—e€){(—u—s—e¢)du

after a change of variable= —u — s — e. One then applies the functional equations for

Gamma:
™

I(1—2)T(z) ==
sinmz
and for zeta: s
C(s) = 2°7* tsin 71"(1 —$)¢(1—s)

to obtain

D 1 (z )s+€ ( 1 )efih ( T )u sin u-2|—€7-‘— sin u+25+67r
o2mti 2w n/ J=ih o\ 42 sin(u + s 4 €)7

Fl+u+e)l(l+u+e)l(l+s+u+te)du
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Another change of variable, this time as= 1 + u + etake the integral to a slightly more
recognizable form:

w—+s

1,z \s—1 [iretih 0 N wcos ¥r cos T
D= ——|(— v 2 2 r d
¥ (27T) ~/1+éih (471'2) sin(w + S)Tr (w)C(w)Q(w + S) w

Next, by takings = k to be an odd integer, the trigopnometric piece simplifies aodds
its w dependence:

w w+k
COS 5T COS %w B 1(_1)(79‘*‘1)/2
sin(w + k)m 2

Pulling out this piece, one regains a recognizable integeathat, in the limit, — oo, one
finally reaches the claimed result:

_ 2
_ (L2 (BN (AT
D ( 1) (271') Sk( T

that is,
k—1 2
I() = A+ D = Syfa) - ()& (2) g, (‘i)

s X

for odd integelk. O

The next section will review the application of this and thregeding sections to spe-
cific, simple values of, thus regaining many of Plouffe’s sums.

6. LEMMAS AND APPLICATIONS
The first corollary demonstrates Plouffe’'s simplest sumg fdm — 1).
Corollary 6.1. For m integer, one has
Ty—1(27) = 284 —1(27).
Proof. Substituter = 27 in the functional equation. O

This corollary provides the first concrete result of this@sifion, namely that

) 1 B (27T)4m71 2m 4m
D R ki DY < 2j

which completely resolves one set of relationships giveRloyffe. The functional equa-
tion opens additional possibilities. By substitutimg= 27p/q, one obtains, fok =
4m — 1, that

¢! i B S i | (ﬂ)
— nk (827rpn/q _ 1) — nk (827rqn/p _ 1) q

Thus, for example, by choosing= 2, ¢ = 1 andk = 3, on obtains

> (1) BajBum—2;

o0

2973 2 1 4 1
3 = —_ — J—
¢@) 900 5Zn3 [e”"—1+e4”"—1]

and similarly, fork = 7,

oo

40977 2K 1 4 1
V= 2N
<= 95500 5 > n? L”"—l + 647771_1}

and one may proceed in a similar manner.
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The next corollary shows that something more is needed(for, {(9), and so on, since
the most direct approach does not give any information fonswms.

Corollary 6.2. For k an odd integer, one has
ax2\*Tt o an?
Ii(z) = (—1)k+1)/2 (i) I (i)
X x

Proof. This may be proved by applying the functional equation tvitica row. That is, it
may be proved by substituting— 472/ in the functional equation and then employing
the result. O

Corollary 6.3. For m a positive integer, one has
I4m+1 (27‘1’) =0.

Proof. Substituter = 27 in the preceding corollary. O

Following directly from the above is another corollary:

Corollary 6.4. For m a positive integer, one has

2m—+1

. Byp—2j42 DBy
0= -1)/ ! 2
JZZ:O( Vlam =2+ 21 )]

Proof. Write out the value ofy,,,+1(27) in detail. O

From the above, it should be clear that the functional equdtr S; does not provide
any statements abod, whenk = 4m + 1. To obtain results on sums involvirig =
4m + 1, one must introduce

> 1
Ts(x) = nz::l e 1)

Theorem 6.5. One has
Ts(x) = Ss(x) — 25,(2x)

Proof. This may be proved by re-writing in terms of the polylogarithalong the lines of
the earlier development:

oo

To(z) ==Y (—1)"Lis (e~™)

m=1

The even and odd terms are regrouped, as

Ts(x) = Z Li, (e_””") — 2Li, (6_2””")

m=1

which is seen to be a sum 6f’s. O

The results for (5), etc. follow from a critical observation: that
Ss(x + 2mi) = Ss(x)

is a periodic function. This periodicity is employed didgdh the next theorem.
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Theorem 6.6. For positive integern, one has

S4m+1(271') = I4m+1(277(1+i))

m | Tam+1(2m)

(- | A

+2- 4mS4m+1(27T) — 4mI4m+1(7T)

Proof. Using periodicity, one writes, fot = 4m + 1,
S (21 + 2mi) = Sk(27) = Ly (2m(1 + 1)) 4 2k~ D/2e3m(k=1/4g, (1 — 4))

The seriesS,(7(1 — ¢)) doesn’t have an imaginary part; rather, it is an alternaseres,
which may be expanded and written as

Si((1 — i) = ~Ti() 4 EETE ST
The Ty (7) term may be eliminated by writing
Tiy(m) = Sk(m) — 25y (2m)
and theS () term may be eliminated by
Sp(m) = I(m)+2'17%8(4n)
= In(m) + 27" [Su(27) — T3 (2m)]

Performing the various substitutions suggested aboveegrine theorem. O

As an example of the application of the above theorem, take 1, thatis,k = 5. One
easily finds that

=
,n_v)

9-64

() =~ 5¢(5) +

and that

=
,n_v)

9-15

1(2n(1+1)) = =3¢(6) +

Combining these, one gets

e

2
((5) = 201 " 35 [T5(2m) + 36.55(2m)]
which is given by Plouffe. The theorem may be used to gensiatiéar expressions for
all {(4m + 1).
Curiously, the theorem yields results far= 0 as well. In this case, one finds

3
Sy (27) + Ty (27) = % ~ S log2

Many identities forr are possible by taking two different expressions for a gixeta,
and subtracting them, leaving behind a rational combinatiche sums and. Thus, for
example, the following theorem for Apery’s constant:

Theorem 6.7. A series expression far’is given by

73 =720 - S3(m) — 900 - S3(27) + 180 - S3(47)
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Proof. This follows by taking the general expression ko= 4m — 1:
16™ S —1 (7T) +4S4m-1 (47T) = 16™I4—1 (7‘1’)

- —%C(Zlm —1)[16™ + 4]

2m
_ i Bym—2; Boj
—(27)4m—1 —4)) J 2J
(2m) J;O( ) (4m — 25)! (275)!

solving for¢(4m — 1) and then using

2Sum_1(27) = Lim_1(27) = —C(dm — 1) + (2m)4m~ i(_l)j _Bam-zj By
i m— £ (4m — 2j)! (2j)!

to eliminate the appearance of the zeta. The resulting sgjame may then be solved for
4m—1
iy . ([

Relationships involving square roots also arise naturally

Theorem 6.8. One has

@)= %sg (2nv3) - g Sy (2”‘/§>

72 3

Proof. This follows from the general expression given earliert tha

(22)- ()" (21 ()

Here, making the substitutian= ,/p one obtains

Sk (2my/p) + p* /25, <27TT\/5> = —%((k) (1= (=p)=-072]

(_1)(k71)/2
+T(2Tf)k
(k+1)/2
) (—p) Bryi1-2;  Baj
= (k4+1—=25)!(25)!
The specific result follows after choosikg= 3 andp = 3. O

7. SOME BERNOULLI NUMBER IDENTITIES

In addition to the previously noted identity

2m—+1

. Bum—2j42 DBy
0=S (-1) - -
JZZ:O( V am =212 2))

there are several other identities on sums of Bernoulli rensithat result from the previous
developments. These are briefly stated here.

Theorem 7.1. For integerm, one has

0— i(_él)j Bym—4j+2  Baj Bam—4;  Bujyo
2 am — 45+ 2)1 (45)]  “(dm —45)! (4] + 2)!

Proof. Consider the sums resulting fran= Iy, 1 (27(1+4)) — L1 (27(1—4)). O
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Theorem 7.2. For integerm, one has

2m m

Bym—or  Bay j_Bam—4; B
2V e © 2 s

m—1
. Bam—aj—2  Buajq2
23" (—a) j ;
72_;( Y G -1 =2 @)+ 2)

Proof. Consider the sums resulting from the identity
Lipn—1(27) = Ipm—1(27(1 +0)) + Lypp—1 (27 (1 — 7))

8. MODULAR RELATIONS

The various sums and quantities above can be seen to bemuadsiar by making
a simple change of variable, namely by making the subsiituti = 27i7. By “quasi-
modular”, it is meant that the various terms almost have Erbphaviors under the Mobius
transformation — (a7+0b)/(cT+d) forintegera, b, c andd. In this respect, the sums bear
close resemblance to theta functions, which obey similatioms. These relationships are
brought to focus here.

First, defineK(7) = I.(2mit). This change of variable results in a definition which
seems simpler than that fég. An expansion inr is often referred to as a “Fourier series”
in the context of hyperbolic geometry:

=1 _1 (2mi)* e By  Bpii-2;
K = k — 23 J + ]
() > L T G — o)

J=0

This quantity is almost a modular form of weight 1, in that

Ky, (_—1) =7 Ky(r)

-
Its only “almost” a modular form, because it is not periodicj that is
Ki(r+1) # Ki(7)
By contrast,P, (1) = Sk(2miT) is periodic:
Pr(m+1) = Py(7)

but is not quite modular under inversion:

Py (;) =711"FP(1) + Ki (;)

One may define a simple variant of the sums that does have #dirapsformation under
inversion, namely

1
My (1) = Pi(7) — §Kk(7)
which transforms as

M, (_71) =7 My(1)

However, M, is then not periodic.
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FIGURE 8.1. Phase oP_;(q) on the unit disk

This graphic shows the phase

> n
arg P_1(q) = arg ) prp
n=1

wherearg f(z) = Slog f(z) is the usual arg of a function. The color scheme is such that
black represents areas wharg > 0 and red represents areas wheare <0. The absence
of other colors indicates that the phase is rather closeifirted to the vicinity ol for
most all of the disk. Numerically, the absolute value of thage is smaller thatn—3 for
much of the disk. In particular, this indicates that theermw zeros at all in the interior of
the disk, as a zero would be surrounded by a region where #ephraps around I,
The functionP, (¢) does have poles gt= ¢>*™/" for all rationalsm /n; these are
visible at the edges of the disk. The fractal nature of thizgmis the characteristic
signature of a modular form of weight 2; the self-similaricets are just copies of the
fundamental region of the modular gro§.(2, 7).
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FIGURE 8.2. Phase oP_5(q) on the unit disk

This graphic shows the phase

e 5
n
arg P_5(q) = arg ) o1
n=1

The color scheme is as in the previous image, and similarlesionis apply: there are no
zeros at all in the interior of the disk. The absolute valuthefphase is tiny: numerically,
it is within 10~ of zero for much of the disk.

The fractal nature of this image is the characteristic digngeof a modular form of weight
6; it should be compared to the image of the modular invagiashown in the next

image.

The analytic structure aF, is curious: it has a pole at = ico and. by the inversion
formula and periodicity, at every rational valuenf This is clearly visible in the graphic
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FIGURE 8.3. Graph of the modular invariag.

Nae

This figure shows the imaginary part of the modular invarignone of the invariants of
an elliptic curve. Specifically, it shows the imaginary pafrt

87T6 e n5qn
=—[1-504
o) = 57 |13
which is a modular form of weight 6. The colors are chosen sahblack represents

areas that are negative, blue and green represent areaswdtler values, and red those
areas with the largest values.
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below, which showsP;0n theg-series or “punctured disk” coordinatgs= €277 :

> 1
P(q) = _—
() ;ns(q”—l)
In this form, the relation to modular forms becomes the mmshédiate. Consider the
Lambert series:

S L ri S
n=1 m=1

Here,o,(m) is the divisor function:

os(m) = Z n®

n|m

with the notatiom|m denoting that the sum extends over all divisersf m. This should
be compared to the Eisenstein series [1, see section 3.10]

i 2k =
Gar(q) = 2¢(2k) + % 202k—1(m)qm

etc. In essence, we are dealing with an extension of the &isi@arseries to general complex
argument. XXX unfinished; this should be elaborated on a bitemXXXX

9. CONCLUSIONS

Given any particular rational and set of sums, there is avaety of possible rela-
tionships that can be formed. It would be interesting to ab@rize the number of these
relationships as a function of the number of sums involvedisT for example, given only
S3(27), there seems to be only one relationship that can be formgided (3). However,
given S3(), S3(27) and Ss(47), there seem to be two distinct relationships, of which a
linear combination can be taken: thus there is a one-diroaakiinear space of solutions.
It would be interesting to know what the higher order comtwnal possibilities may be,
the dimensionality of the spaces they form, and how thesemtepn the selected series.

Another interesting avenue of research would be to stremgte connections to mod-
ular forms, to see if additional insights can be gained bipfahg that route. A different
and fruitful avenue for understanding almost-modularcttiees is to pose them in terms of
functions on a one-dimensional lattice (in the sense ofghmglor Potts model of physics),
where translation is described by the shift operator. Ihisvin that such lattice models are
isomorphic to measure-preserving dynamical systems, asiche Baker's map or more
generally subshifts of finite type. In particular, it seenosgible to re-express the func-
tional equation foiSy, as given in section 4, in terms of (logarithms of) eigenfiorcs of
the Baker’s map.

Thanks to Simon Plouffe for generating interest in such sums

10. APPENDIX: POLYLOG INTEGRAL
This appendix proves the following theorem:

Theorem 10.1. The polylogarithm may be written as the integral

Li, (e™") = ! /C—HOO L(r)¢(r + s)u™"dr

218 S oo
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Proof. The proof below is cribbed from the Wikipedia article on dobyarithms[10]. One
begins by writing the the Mellin transform of the polylog, as

du

M(r) = /0 "L (e

Using an integral representation of the polylogarithm,
1 o s
Lis = dt
is (w) 1"(3)/0 wlet — 1
and substituting, one obtains
u'™ 1ts 1
/ / —let+u_1dtdu

A change of variable = ab andu = a(1 — b) with dt du = a da db gives

M (T‘) _ 1 / bs—l(l . b)r—ldb /OO L da
° ~T(s) Jo 0o Yy lter—1
= F(T) Lir-l—s(y)

The inverse Mellin transform may now be employed to write

1 c+ioco
Li, (ye_“) = —/ uw”"T(r) Lip45(y) dr

21 Jolioo

By settingy = 1, one then useki, (1) = ((s + ) to obtain the desired result. O
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