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Abstract

The solitaire army is a one-person peg jumping game where a player attempts to advance
an “army” of pegs as far as possible into empty territory. The game was introduced by John
Conway and is also known as “Conway’s Soldiers”. We consider various generalizations of
this game in different 2D geometries, unify them under a common mathematical framework,
and find the minimum size army capable of advancing a given number of steps.

1. Introduction

The solitaire army is a one-person game played on an infinite board [1]. Pegs (called men)

are placed in all cells below a certain horizontal line, as in Figure 1a. The player can then
jump any man over another into an empty cell, and the jumped man is removed from the

board. The goal is to advance one man as far upward as possible. In the usual version of
the game, jumps are allowed only along columns and rows, i.e., orthogonal jumps.

This problem was introduced by John Conway in 19612, and we refer to this original
version as Conway’s army. Conway also discovered an elegant proof that no army restricted

1http://www.geocities.com/gibell.geo/pegsolitaire/
2John Beasley personal communication. The first published appearance of the solitaire army was appar-

ently 1976 [3].

http://arxiv.org/abs/math/0612612v2
http://www.geocities.com/gibell.geo/pegsolitaire/
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Figure 1: (a) Conway’s army, and (b) Skew army. X marks the target cell.

to orthogonal jumps can advance more than four steps, or levels. His argument using a
cleverly chosen weighting function of board locations has been reproduced many times, and

the puzzle has even found its way into a best-selling novel [4]. In addition, the minimum
size army to advance 1, 2, 3, or 4 levels was found to be 2, 4, 8, and 20 men, respectively [2].

The solitaire army problem has been generalized to include diagonal jumps, or to occur
on a triangular or hexagonal lattice. This paper has two goals. The first goal is to summarize

all of these generalizations and unite them under a common framework. We will discuss only

2D generalizations of the problem, although it has been studied in higher dimensions as well
[6, 7]. The second goal is to calculate minimum army sizes that are able to advance a specific

number of levels.

2. Variations on a theme

One generalization is to take the army in Figure 1a, and allow diagonal jumps in either

direction (in addition to orthogonal jumps), giving eight total jump directions possible. If
one plays with this diagonal army, it is quite easy to advance more than four levels. However,

the number of levels the army can advance is still limited, as we prove in the next section.

Suppose we take the Figure 1a army, but allow only diagonal jumps (i.e., orthogonal

jumps are not allowed). Since there are still four jump directions, one might think that

this is equivalent to Conway’s army, but there are subtle differences. If the jumps can only
be diagonal, then they are like jumps in the game of Checkers. If we color the board in

alternating black and white, like a Checkers board, we see that the game decomposes into
two separate games that cannot affect one another. If we consider the game on the color of

the finishing cell, and rotate the board 45◦ (clockwise), we see that it is related to Conway’s
army, but starting from the diagonal or skew front in Figure 1b. The army of Figure 1a with

only diagonal jumps will therefore be called the skew army.
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Figure 2: (a) Hexagonal army, and (b) Pablito’s army (both targeting level 5).

We could also consider the same problem on the hexagonal lattice in Figure 2a, the

hexagonal army. Again, our goal is to advance a man as many rows upward as possible,
and we now have six jump directions possible. Note that playing on a hexagonal board

is equivalent to playing on the usual square lattice board of Figure 1a, but allowing only
orthogonal jumps plus jumps along one diagonal.

Rather than playing on an infinite hexagonal lattice, one can play on a triangular board,
with the goal being to finish in the top-most cell (Figure 2b). We refer to this version as

Pablito’s army. It is not clear that this version differs greatly from the hexagonal army in
Figure 2a, but we will see that the supply of men is more limited.

In the hexagonal army, jumps can be made along two diagonal lines or along a horizontal
line. If a hexagonal army reaches a certain level using no horizontal jumps at all, then this

solution can be immediately translated into a skew army solution reaching the same level.

Thus we see that the skew army is very similar to the hexagonal army, and we will see that
solutions can often be translated in this fashion.

In total, we shall consider five types of solitaire army:

1. Conway’s army, with 4 jump directions.

2. Skew army, with 4 jump directions.

3. Diagonal army, with 8 jump directions.

4. Hexagonal army, with 6 jump directions.

5. Pablito’s army, with 6 jump directions.

The diagonal army was first studied by Aigner [5] in 1997, and has been generalized to

n-dimensions by Eriksen et al. [7]. The hexagonal army was studied by Duncan and Hayes
[9] in 1991. Pablito’s army first appeared in 1998 [12, 13], and became more widely known

after inclusion in a weekly email puzzle list [18]. The skew army of Csákány and Juhász [8]
was introduced in 2000. A 2006 summary article [16] obtains an upper bound on the highest

level reachable by most of these army types.
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3. Pagoda functions

As one begins to jump men upward, gaps form in the army. In order to continue advancing,

these gaps must somehow be spanned, and crossing the gaps introduces more gaps. It is not
hard to believe that the army cannot advance indefinitely, but proving this is non-trivial.

The idea used by Conway is to apply a potential or weighting function, which he called
a pagoda function due to its shape (as a bar graph over the cells of the board). The total

weight of a board position is defined to be the sum of the weights associated with cells that
are occupied by men. However, not just any weighting function will be useful. The weighting

is called a pagoda function if it has the property that the total weight cannot increase as
men are jumped [1].

Suppose we choose 0 < σ < 1 such that σ2 + σ = 1, i.e., σ = (
√

5 − 1)/2 ≈ 0.618. Then

σi + σi−1 = σi−2. (1)

6 5 4 3 2 1 0 1 2 3 4 5 6
7 6 5 4 3 2 1 2 3 4 5 6 7
8 7 6 5 4 3 2 3 4 5 6 7 8
9 8 7 6 5 4 3 4 5 6 7 8 9
10 9 8 7 6 5 4 5 6 7 8 9 10
11 10 9 8 7 6 5 6 7 8 9 10 11
12 11 10 9 8 7 6 7 8 9 10 11 12

row 0:
row 1:
row 2:
row 3:
row 4:
row 5:
row 6:

Figure 3: Pagoda function exponents for Conway’s army. For a board location labeled i the
weighting is σi.

We assign to each board cell the weight σi, where the exponent i is the number shown
in Figure 3. Note that σi+1 < σi since σ < 1. To set up the solitaire army problem for

level n, we place men in all cells of all rows numbered n and higher. The cell marked “0”
(in light blue) is the target cell we wish to reach, and has weight σ0 = 1. Notice that any

vertical or horizontal jump into this cell must use two men with exponents 2 and 1, ending
at 0. Before this jump, the total weight of these three cells was σ2 + σ, while after the jump

it is σ0 = 1 and, by construction, these two quantities are exactly equal. This weighting is

useful because every orthogonal jump which brings a peg closer to the target cell maintains
the total weight (while any orthogonal jump away from the target cell decreases the total

weight).

If the board location labeled a has weight σa, we require that our weighting satisfy the

pagoda condition,
σa + σb ≥ σc, (2)

for every possible solitaire jump from a over b into c. One possible jump uses the same three

cells in the opposite direction, so we must also have

σc + σb ≥ σa. (3)
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These two conditions can only be met by certain choices of the exponents (a, b, c). An
exhaustive calculation finds that three integers (a, b, c) satisfy Equations (2) and (3) if and

only if they fall into one or more of the following types:

1. (a, b, c) are drawn from a set of one or two consecutive integers, or (a, b, c) is any per-

mutation of three consecutive integers. For example (3, 3, 3), (2, 2, 3), (4, 3, 4), (4, 5, 3)
or (5, 4, 3) all satisfy this criterion.

2. a = c and a < b. For example (2, 5, 2).

3. a ≥ b and b ≤ c. For example (5, 1, 3).

The first of these types is the most important, and covers all of the jumps in Figure 3. If
every jump is (at least) one of these three types, then the pagoda condition (2) guarantees

that the total weight cannot increase as the game is played. It follows that if we are to reach
the final board position with weight σ0 = 1, the total weight of the starting position must be

greater than or equal to 1.

At this point we need a few summation identities in order to calculate the total weight

of our solitaire armies:

∞
∑

i=n

σi =
σn

1 − σ
= σn−2, (4)

∞
∑

i=n

σ2i =
σ2n

1 − σ2
= σ2n−1, (5)

∞
∑

i=n

iσi = n
∞

∑

i=n

σi +
∞

∑

i=n+1

∞
∑

j=i

σj = nσn−2 + σn−3. (6)

Any Conway’s army capable of reaching the final cell must have total weight greater than

or equal to 1. We can compute the total weight of row n, assuming that it is entirely filled
by men, using the Identities (4) and (1), as

R1,n =
∞

∑

i=n

σi +
∞

∑

i=n+1

σi = σn−2 + σn−1 = σn−3,

where the first subscript refers to the army type, and the second the row. Therefore, the
sum of rows n and beyond is

S1,n =

∞
∑

i=n

R1,i =

∞
∑

i=n

σi−3 = σn−5.

The total weight of rows 5 and higher is S1,5 = σ0 = 1, so it is impossible for any finite army
to reach level 5. This completes the proof that a Conway’s army cannot reach a level greater

than 4.
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The exponents of Figure 3 are not a valid pagoda function when diagonal jumps are
allowed, this requires a different weighting function with exponents as shown in Figure 4.

Note that both of these exponent patterns are based on a distance metric from the target
cell, where Figure 3 uses the Manhattan or taxi cab metric (ℓ1 norm), and Figure 4 the

number of chess king moves (ℓ∞ norm).

6 5 4 3 2 1 0 1 2 3 4 5 6
6 5 4 3 2 1 1 1 2 3 4 5 6
6 5 4 3 2 2 2 2 2 3 4 5 6
6 5 4 3 3 3 3 3 3 3 4 5 6
6 5 4 4 4 4 4 4 4 4 4 5 6
6 5 5 5 5 5 5 5 5 5 5 5 6
6 6 6 6 6 6 6 6 6 6 6 6 6

row 0:
row 1:
row 2:
row 3:
row 4:
row 5:
row 6:

Figure 4: Pagoda function exponents for skew and diagonal armies.

For the skew army, recall that, for each row, only every other cell contains a man. Thus

the sum of row n, using (5) is

R2,n = (n + 1)σn + 2σn

∞
∑

i=1

σ2i = (n + 1)σn + 2σn+1.

The sum of rows n and beyond is, using (4) and (6),

S2,n =
∞

∑

i=n

R2,i = σn−3((n − 1)σ + 3).

Direct calculation shows that S2,6 ≈ 1.44, but that S2,7 < 1, so level 7 cannot be reached.

At this point we do not know whether level 6 can be reached, but we will show that it is
possible.

For the diagonal army, the sum of row n using (4) and (1) is

R3,n = (2n + 1)σn + 2

∞
∑

i=n+1

σi = 2nσn + σn−3.

Hence the sum of rows n and beyond is, using (4) and (6),

S3,n =
∞

∑

i=n

R3,i = σn−5((4n − 2)σ + 3 − 2n).

Direct calculation shows that S3,8 ≈ 1.31, but that S3,9 < 1, so level 9 cannot be reached.

Again, we will show that level 8 can be reached.

For Pablito’s army, we use the weighting function given by Figure 5b. The row sum is

simply
R5,n = (n + 1)σn,
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6 5 4 3 2 1 0 1 2 3 4 5 6
7 6 5 4 3 2 1 1 2 3 4 5 6 7

7 6 5 4 3 2 2 2 3 4 5 6 7
8 7 6 5 4 3 3 3 3 4 5 6 7 8

8 7 6 5 4 4 4 4 4 5 6 7 8
9 8 7 6 5 5 5 5 5 5 6 7 8 9

9 8 7 6 6 6 6 6 6 6 7 8 9

row 0:
row 1:
row 2:
row 3:
row 4:
row 5:
row 6:

0
1 1

2 2 2
3 3 3 3

4 4 4 4 4
5 5 5 5 5 5

6 6 6 6 6 6 6

Figure 5: Pagoda function exponents for (a) hexagonal army, and (b) Pablito’s army.

and so the sum of rows n and beyond is

S5,n = σn−3((n + 1)σ + 1).

Here S5,6 ≈ 1.26, but S5,7 < 1, and 6 is the highest level that can be reached. The hexagonal

army uses the weighting function of Figure 5a, which adds on a bit more

R4,n = R5,n + 2

∞
∑

i=n+1

σi = (n + 1)σn + 2σn−1,

and, using (4) again,

S4,n = S5,n + 2σn−3 = σn−3((n + 1)σ + 3).

One can calculate that S4,7 ≈ 1.16, but S4,8 < 1, so the hexagonal army cannot reach level 8.

Table 1 summarizes upper bounds on the number of levels each type of army can advance.
We will show that all these upper bounds can be attained.

Conway’s Skew Pablito’s Hexagonal Diagonal

4 6 6 7 8

Table 1: Upper bounds on the highest level reachable by each type of army.

4. Minimum size armies

4.1 A simple lower bound

The pagoda function arguments give an upper bound on the number of levels an army can

reach, and they can also give an idea of what an army capable of reaching a certain level
must look like. Instead of adding the pagoda function by rows, we can add it in order of

decreasing weight (increasing exponent) and see exactly when this sum becomes at least 1.
This provides a lower bound on the army size capable of reaching a certain level.
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For example, for Conway’s army to reach level 4, the front-most men are in row 4 in
Figure 3, and one has weight σ4. After that there are 3 with weight σ5, 5 with weight σ6,

etc. The total weight of the army in order of decreasing weight is

σ4 + 3σ5 + 5σ6 + 7σ7 + · · ·

When does this sum become at least 1? If we start with 19 men, the greatest possible total

weight is
T = σ4(1 + 3σ + 5σ2 + 7σ3 + 3σ4).

We can calculate this by collapsing the sum from right to left using the Identity (1). This
can be accomplished in tableau form, which is really a form of peg solitaire in 1-dimension:

1 3 5 7 3
3 −3 −3

4 −4 −4
4 −4 −4
5 3 0 0 0

Therefore T = σ4(5 + 3σ). In fact T is identically equal to 1 because 5 + 3σ = σ−4. We
can show this by deriving an identity which connects the golden ratio σ−1 and Fibonacci

numbers:
σi = (−1)i[Fi−1 − Fiσ], i ∈ Z, (7)

where Fi are the Fibonacci numbers, identified by F1 = F2 = 1, and Fi = Fi−2 + Fi−1.

Equation (7) can be proved by induction, and applies to all i ∈ Z if we extend the Fibonacci
numbers by defining F0 = 0, F−i = (−1)i+1Fi. Table 2 gives powers of σ in terms of linear

combinations of 1 and σ.

n σn σ−n

1 σ 1 + σ
2 1 − σ 2 + σ
3 −1 + 2σ 3 + 2σ
4 2 − 3σ 5 + 3σ
5 −3 + 5σ 8 + 5σ
6 5 − 8σ 13 + 8σ
7 −8 + 13σ 21 + 13σ
8 13 − 21σ 34 + 21σ
9 −21 + 34σ 55 + 34σ
10 34 − 55σ 89 + 55σ

Table 2: Powers of σ = (
√

5 − 1)/2.

This shows that a lower bound on the army size to reach level 4 is 19. Using the same

argument on pagoda functions for each type of army, we can derive lower bounds on army
size for all five armies over all feasible levels. However, it turns out that the above pagoda
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functions tend to overestimate how well we can utilize the men towards the left or right edges
of the army. An improved lower bound can be found using a modification of the pagoda

functions above, as we show in the next section.

If Ln is the minimum size army needed to reach level n in some geometry, the final jump

must involve two pegs at levels n − 1 and n − 2. Therefore, it is clear that

Ln ≥ Ln−1 + Ln−2, (8)

showing that if we have lower bounds on Ln−1 and Ln−2, we can obtain lower bounds for all

higher Ln. Moreover, since L0 = 1 = F2 and L1 = 2 = F3, Ln in any geometry is always
bounded below by the Fibonacci number Fn+2,

Ln ≥ Fn+2. (9)

4.2 An improved lower bound

6 5 4 3 2 2 2 3 4 5 6 7 8
6 5 4 3 2 1 2 3 4 5 6 7 8
6 5 4 3 2 2 2 3 4 5 6 7 8
6 5 4 3 3 3 3 3 4 5 6 7 8
6 5 4 4 4 4 4 4 4 5 6 7 8
6 5 5 5 5 5 5 5 5 5 6 7 8
6 6 6 6 6 6 6 6 6 6 6 7 8

row 0:
row 1:
row 2:
row 3:
row 4:
row 5:
row 6:

8 7 6 5 4 4 4 4 4 4 5 6 7
8 7 6 5 4 3 3 3 3 4 5 6 7
8 7 6 5 4 3 2 2 3 4 5 6 7
8 7 6 5 4 3 3 3 3 4 5 6 7
8 7 6 5 4 4 4 4 4 4 5 6 7
8 7 6 5 5 5 5 5 5 5 5 6 7
8 7 6 6 6 6 6 6 6 6 6 6 7

Figure 6: Improved pagoda function exponents for the diagonal or skew armies when (a) the
last two jumps are diagonal, and (b) the last jump is vertical.

Let us consider the diagonal army and suppose the last two jumps are diagonal jumps.

Before these jumps are made, the board must look like Figure 6a (or its reflection), with
three men shown in light blue. This figure shows exponents for an improved pagoda function,

with the total weight of the position shown 2σ2+σ3 = σ+σ2 = 1. However, the lower bound
on the army size will be tighter using this pagoda function. This is because the weight of

each row in Figure 6a is less than the weight of that row in Figure 4—for example row 5
contains nine 5’s, while in Figure 4 it had eleven 5’s. The alert reader may notice that the

value of the final position is now σ2, but this is not significant because we still need to pass
through a board position with total weight 1.

As an example let us compute the lower bound for the diagonal army to reach level 5
using the pagoda function in Figure 6a. We can place at most 9 men in row 5 with exponent

5, and 13 men in rows 5 and 6 with exponent 6. We can calculate (using Table 2) that

9σ5 + 3σ6 = 1− σ8 < 1, but 9σ5 + 4σ6 = 1 + σ7 > 1, which gives a lower bound on the army
size of 9 + 4 = 13.

What if the last two jumps are not diagonal? If the last jump is vertical, then we must
have the situation of Figure 6b (or its reflection). This configuration will give a larger lower
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bound, because there are only eight 5’s in row 5. The same pagoda function works if the last
jump is diagonal and the second to the last jump is vertical. This argument proves that at

least 143 men are required to reach level 8 if either of the last two jumps is vertical. But using
two diagonal jumps as in Figure 6a, we obtain a lower bound of 15+19+23+27+31+7 = 122.

Assuming these lower bounds are close to the actual minimums, the smallest army capable
of reaching level 8 must finish with two diagonal jumps.

7 6 5 4 3 2 2 3 4 5 6 7 8
7 6 5 4 3 2 1 2 3 4 5 6 7 8

7 6 5 4 3 2 2 3 4 5 6 7 8
8 7 6 5 4 3 3 3 4 5 6 7 8 9

8 7 6 5 4 4 4 4 5 6 7 8 9
9 8 7 6 5 5 5 5 5 6 7 8 9 10

9 8 7 6 6 6 6 6 6 7 8 9 10

row 0:
row 1:
row 2:
row 3:
row 4:
row 5:
row 6:

8

1 8

2 2 8

3 3 3 8

4 4 4 4 8

5 5 5 5 5 8

6 6 6 6 6 6 8

Figure 7: Improved pagoda function exponents for (a) hexagonal army, and (b) Pablito’s
army.

Similar reasoning on the hexagonal army gives the improved pagoda function exponents

in Figure 7a. For Pablito’s army, the best pagoda function is shown in Figure 7b. The
exponent values ∞ are just board weights of σ∞ = 0. This pagoda function indicates that

one edge of the board is of no use towards accomplishing our goal; we might as well leave it
empty.

If we take each of these improved pagoda functions, and calculate the total weight in
order of increasing exponents, we obtain the lower bounds on army size given in Table 3.

The reader is encouraged to construct maximum total weight armies as in the level 5 example

to understand the bounds in Table 3.

Level # Lower bounds on the army size to reach level n
(n) Fn+2 Conway’s Skew Pablito’s Hexagonal Diagonal

1 2 2 2 2 2 2
2 3 4 3 3 3 3
3 5 8 5 5 5 5
4 8 19 9 9 9 8
5 13 Impossible 18 18 16 13
6 21 Impossible 43 51 35 23
7 34 Impossible 140 45
8 55 Impossible 122
9 89 All Impossible

Table 3: Lower bounds on the army size required to reach level n, from equation (9) and the
pagoda function of Figures 3, 6a, 7b, 7a and 6a respectively.
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4.3 Minimum size diagonal armies

How good are the lower bounds in Table 3? It turns out they are very good—to see this
we must produce small size diagonal armies capable of reaching a certain level. One way

to do this is in an inductive fashion. It is easy to find an 8-man diagonal army capable of
reaching level 4. Next, we try to find an army at level 5 that, after some sequence of jumps,

reproduces the previous 8-man army one row forward from the starting line. This technique
has been used [3, 5] for Conway’s armies, but in general it is useful only for the lowest levels.

To find the smallest army that can reach levels 7 or 8, a different technique is needed.

R B
Y

Red BlueYellow

Figure 8: An army divided into 3 regiments.

A better idea comes from our target configuration of three men in Figure 6a, reproduced

in Figure 8. Following Duncan and Hayes [9], we separate our army into differently colored
regiments, and the goal of each regiment is to reach the target cell of its color. We may even

be able to use symmetric regiments (red and blue), symmetric about the dashed line, with
the remaining yellow target cell filled by the (nonsymmetric) central yellow regiment. We

cannot always achieve such a symmetric army, but we shall see that often it is possible.

Proposition 1 Let us consider an army on some board, with a pagoda function weighting
σe where all the exponents e are integers. Suppose there are no jumps of Type 1.2.1 in Table 4,

and that the maximum exponent of any occupied cell is E. Then

1. A jump either loses nothing, or loses at least σE .

2. If we perform any number of jumps that lose nothing, the maximum exponent E of

any occupied cell cannot increase.

Proof: The proof is contained in Table 4, which shows the amount lost by all possible

jump exponents in a valid pagoda function of the form σe. Each line lists one pattern of three
exponents in a jump, and the maximum exponent is always a. The amount lost is always

either zero or ≥ σa (with the exception of Type 1.2.1, which by hypothesis cannot occur).
Note that none of the pagoda functions in this paper contain a jump of Type 1.2.1. For the
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Type Exponents of the three jump cells Jump right loses Jump left loses

1.1.1 (a, a, a) σa σa

1.2.1 (a, a, a − 1) σa+2 σa−1

1.2.2 (a, a − 1, a) σa−1 σa−1

1.2.3 (a, a − 1, a − 1) σa σa−1 + σa+1

1.2.4 (a − 1, a, a − 1) σa σa

1.3.1 (a, a − 1, a − 2) 0 2σa−1

1.3.2 (a, a − 2, a − 1) 2σa 2σa−1

1.3.3 (a − 1, a, a − 2) 0 2σa

2.1.1 (a − i, a, a − i), any i > 0 σa σa

3.1.1 (a, a − i − j, a − j), any i > 0 and j > 0 ≥ σa ≥ σa−j

Table 4: The amount lost by various types of jump (these types further subdivide the types
presented in section 3). For each type, a is the largest exponent.

second part of the proposition, note that the two jump types that lose nothing always place
men in cells with smaller exponents.

Theorem 1 The armies of Figure 9 have the smallest possible size for the levels they

attain.

Proof: The level 4–6 armies have size equal to the lower bound in Table 3, hence they

must be of minimum size. The armies to levels 7 and 8 have size only one larger than the
lower bound of Table 3, so we need to show that no 45-man army can advance 7 levels, and

that no 122-man army can advance 8 levels. For any configuration of men, the slack is the
amount by which the total weight exceeds 1. Any army capable of reaching a certain level

must begin with slack greater than or equal to zero. The target board position is the
3-man position of Figure 6a, plus any other men that happen to be left. If only these three

men remain, the slack of the target board position is identically zero, otherwise it could be
positive. The basic argument is that if the slack ever becomes negative, the target board

position can no longer be reached. The army of 45 men with the greatest total weight has
slack

S = σ7
(

13 + 17σ + 15σ2
)

− 1 = σ7 (7 − 11σ) = σ11 + σ13 (10)

using Table 2.

We note that the starting army has maximum exponent E = 9. We have from Proposi-

tion 1 that any jump either loses nothing or loses at least σ9, which would make the slack
negative because σ9 > σ11 +σ13. Even if we perform any number of jumps that lose nothing,

E cannot increase, and so any jump that loses weight will make the slack negative. The only
remaining possibility is that we could reach some target board position using only jumps

that lose nothing. Since the starting slack is σ11 + σ13, the target board position must also
have this slack, and the only way this can happen is if we have the 3-man position of Fig-

ure 6a, plus at least one man at row 11 or higher. However, the starting army has no men
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Level 4, Size 8 Level 5, Size 13

Level 6, Size 23
Level 7, Size 46

Level 8, Size 123

Figure 9: Minimum size diagonal armies for levels 4–8.

below row 9, so getting a man to row 11 or higher requires a downward jump, which loses
total weight. This contradicts our assumption that the solution uses only jumps that lose

nothing.

This only proves that a 45-man army with maximum total weight cannot reach level 7.

It still could be possible that a 45-man army with somewhat smaller total weight (but still at
least 1) could reach level 7. If we take the starting position with maximum total weight and

move a man from a cell with exponent n to a cell with exponent n + 1, the slack decreases
by σn+2 (this follows directly from (1) with i = n + 2). So if we move a man from exponent

9 to 10 then S = σ13. Proposition 1 again implies that the slack cannot be reduced to zero,
as the highest exponent E = 10. If we move any other man to a cell with higher exponent

the slack becomes negative, so a 45-man army cannot reach level 7.

We use the same argument for a 122-man army to reach level 8, but there are more cases.
The maximum total weight 122-man army has slack

S = σ8
(

15 + 19σ + 23σ2 + 27σ3 + 31σ4 + 7σ5
)

− 1 = σ14 + σ16. (11)

This army has E = 13, and again the slack cannot be reduced to zero. If we let ni be the
number of men with exponent i, the possible cases are listed in Table 5. In cases 1–6, the
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slack is too small to reduce to zero by Proposition 1. Case 7 has zero slack but there is no
way to get to the man with exponent 17 without losing total weight, and this man must be

used since the slack of the army without him is negative.

Case n12 n13 n14 n15 n16 n17 Slack

1 31 7 0 0 0 0 σ14 + σ16

2 31 6 1 0 0 0 2σ16

3 31 6 0 1 0 0 σ16

4 30 8 0 0 0 0 σ16

5 31 5 2 0 0 0 σ18

6 31 6 0 0 1 0 σ18

7 31 6 0 0 0 1 0
Figure 9e 28 11 0 0 0 0 0

Table 5: Number of men of each exponent, and slack, for an army of 122 men, or 123 men
(last row). In all cases ni = 4i − 17 for 8 ≤ i ≤ 11.

It remains, of course, to show that the armies of Figure 9 are capable of reaching their
specified levels. For the smallest armies, the jumps leading to a solution are relatively

obvious. But for the armies to reach levels 7 and 8, the jumps may not be so clear. These
make interesting puzzles to solve by hand, but see [19] to view solutions.

All the armies in Figure 9 have zero slack, or equivalently total weight exactly 1. We
can see this by calculating the weight of the entire army, or each regiment. For example, for

the 123-man army to reach level 8, the total weight of the blue or red 51-man regiments is

T = σ8(5 + 7σ + 9σ2 + 12σ3 + 13σ4 + 5σ5). We can simplify this using the tableau:

5 7 9 12 13 5
5 −5 −5

8 −8 −8
9 −9 −9

8 −8 −8
13 8 0 0 0 0

By Table 2, 13+8σ = σ−6, so T = σ2, exactly the weight of the target cell. When playing
from an army with zero slack, every jump must be of the Type 1.3.1, (a, a − 1, a − 2), in

other words over a decreasing sequence of exponents3. For the diagonal armies of Figure 9,
this means that nearly all jumps must be upward, and that horizontal jumps can only occur

near the right and left edges of the army.

Minimum size armies usually have zero slack (with respect to the improved pagoda

functions). Intuitively, if an army with maximum exponent E does not have zero slack,

3Technically the jump could also be of Type 1.3.3, namely (a− 1, a, a− 2), but this pattern never occurs
in the pagoda functions in this paper.
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then Proposition 1 indicates it must have a slack of at least σE , in which case its size could
probably be reduced by 1. However, this is not always the case, and in Section 5.1 we will

see an example of a minimum size army with non-zero slack.

4.4 Other minimum size armies

Can we use the same arguments as in the previous section to find minimum size armies of

other types? Suppose we look at Pablito’s army to reach level 5, here the maximum total
weight 18-man army has slack

S = σ5
(

5 + 6σ + 7σ2
)

− 1 = 2σ9. (12)

Since the maximum exponent E = 7, and S = 2σ9 < σ7, this army cannot reduce its slack

to zero, by Proposition 1. However, if we move two starting men from a cell with exponent
7 to a cell with exponent 8, the slack becomes zero. What this indicates is that an 18-man

army capable of reaching level 5 probably has 5, 6, 5, and 2 men with exponents 5, 6, 7,
and 8, respectively. If you look for such an army, however, you will not be able to find one

that can reach level 5. This is also a problem with Conway’s army to level 4—we saw at the
beginning of Section 4 that there are 19-man armies with zero slack, yet none of them can

reach level 4 [2, 5]. For these situations, we need to develop a new technique to prove our
armies have minimum size.

5. An integer programming model

5.1 The model

We can generalize the solitaire army problem by allowing any integer number of men in a
cell. A jump adds (−1,−1, +1) to a consecutive triple of cells. This reduces the problem to

a question in linear algebra. We can even state the question of minimum army size directly
as an integer programming (IP) model. Suppose we have a board with M cells, and let N

be the total number of jumps possible on this board.

Parameters are:

• Let Am,n be the jump matrix describing the effect of each jump on the number of men
in each cell. For example if jump 3 starts with a man at cell 7, jumps over a man at

cell 8 and ends at cell 9, we would have A7,3 = −1, A8,3 = −1 and A9,3 = +1, with all
other Am,3 = 0 for m 6∈ {7, 8, 9}.

• Let SMAXm be the maximum number of starting men in cell m. For the solitaire army

problem, we would set SMAXm to 0 up to a certain row, and 1 beyond it.

• Let SMINm be the minimum number of starting men in cell m. Normally we let this
be zero everywhere unless we want to force a man at some location.
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• Let FINm be the final number of men in cell m. For a solitaire army problem, we would
set all these to zero except for the final top-most cell, set to 1.

Decision variables are:

• STAm, equal to 1 if there is initially a man in cell m, 0 otherwise. A binary variable.

• Jn, the number of jumps of index n present in the solution. A non-negative integer

variable.

Objective function is to:

minimize total starting men =
∑

m∈M

STAm.

Constraints that must be satisfied by the solution:

STAm +
∑

n∈N JnAm,n = FINm, ∀m ∈ M , jumps applied to the starting configura-
tion gives the final configuration, and

SMINm ≤ STAm ≤ SMAXm, ∀m ∈ M , starting number of men must fall
within bounds.

It is important to realize that the above IP problem is not equivalent to the original

solitaire army problem4. In the original problem the jumps occur in a specific order, and
it may be impossible to order the jumps in a solution to the IP model so that any cell

contains either zero or one man at any time during the solution, and each jump can be
legally executed. See [17] for examples of problems where the IP model is solvable but the

solution cannot be translated into a peg solitaire solution.

However, any solution to the original solitaire army problem is a solution to the IP model.

Therefore, the number coming out of the above IP minimization is a lower bound on the size
of a solitaire army. In practice we have never seen a case where we cannot order the jumps

from a solution to the IP model to create a solution to the solitaire army problem, although
this ordering process can be quite difficult for the largest problems.

The IP model can only be satisfied by a linear combination of jumps that takes the board
from the initial state to the final state. This is related to the lattice criterion that appears

in the literature [10, 11]. The difference is that the lattice criterion allows Jn to take on any
integer value, while the above IP model requires Jn ≥ 0. A jump Jn = −1 changes three

consecutive cells by (+1, +1,−1), which adds a man rather than removing one. If we allow

Jn to take on any integer value, a one-man army can advance an arbitrary number of levels.
This is easy to see using the tableau:

4It is possible to create an IP model which is equivalent to the original peg solitaire problem [14, 15], but
this model will be considerably more complicated, and take much longer to solve optimally.
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+1 0 0 0
−1 +1 +1

−1 −1 +1
0 0 0 +1

Lower bounds on the army size to reach level n
Level # (n) Conway’s Skew Pablito’s Hexagonal

4 20 (1 sec) − − −
5 Impossible 19 (1 sec) 19 (1 sec) 17 (1 sec)
6 Impossible 46 (2 sec) 53 (7 sec) 36 (3 sec)
7 Impossible 144 (Section 5.2)

Table 6: Lower bounds on the army size required to reach level n, using the IP model. Solve
times in parenthesis.

The only difficulty in applying the IP model is in deciding how large to make the board.
If we make the board too small, a solution may be eliminated, giving us a larger army than

the smallest possible one. The pagoda function arguments can be useful here to decide how

many rows to include.

Level 4, Size 9

Level 5, Size 19

Level 6, Size 53

Figure 10: Minimum size Pablito’s armies to reach levels 4–6.

We have programmed the IP models in the GAMS language, and solved them using

several commercial solvers available at the NEOS server [20]. Table 6 shows the results of the
IP model applied to all remaining unsolved problems. All bounds shown have been improved

from those given in Table 3. Xpress-MP solved all the problems in under 10 seconds, with
the exception of the hexagonal army to level 7, to be discussed in the Section 5.2. All solve

times quoted are for the Xpress-MP solver run on the NEOS server newton.mcs.anl.gov,
a 2.4GHz Intel Xenon with 2 GB of memory.

For all cases except for the hexagonal army to level 7, we can find armies with size equal to
the lower bounds in Table 6. Figure 10 shows minimum size Pablito’s armies. The Pablito’s

army to reach level 5 is the only army shown in this paper with non-zero slack. We can
convert this army into another minimum size army with zero slack by moving the bottom

two yellow men to the cells marked by crosses. These zero slack armies only use upward
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Level 6, Size 46

Figure 11: A minimum size skew army to reach level 6.

jumps in their solution. Hence these solutions can be immediately converted to skew army
solutions, and those for levels 4 and 5 are of minimum size. Figure 11 shows a minimum size

skew army to reach level 6.

Level 5, Size 17
Level 6, Size 36

Level 7, Size 145

Figure 12: Hexagonal armies to reach levels 5–7. The first two are minimum size, the last
can possibly be reduced by one man.

Finally, Figure 12 shows minimum size hexagonal armies. The level 7 army is divided

into five regiments. The two blue regiments are separated by a green regiment, and either

blue regiment is capable of reaching the blue target cell. This is the only minimum army that
was converted directly from an IP solution. For a more symmetrical army, which involves

more men (and hence is not minimum size), see [9]. See [19] for diagrams showing how each
army can advance to its specified level.
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5.2 The hexagonal army to level 7

Advancing any size hexagonal army to level 7 is the most difficult solitaire army problem
in this paper, and the reader should try it by hand. In our experience, it cannot be done

without significant advance planning.

The determination of the minimum size hexagonal army to level 7 is a difficult IP model

to solve. A direct run of the IP model presented above ran for ten hours, and returned the
145-man solution shown in Figure 12, but only gave a lower bound of 143 on the minimum

army size.

As before, let ni be the number of men with exponent i. Consider what the sequence ni

must look like for a minimum size army. First, it is impossible to have ni = 0 anywhere in the

middle of the army, with ni−1 > 0 and ni+1 > 0. For if this were the case, then there would
have to be some jump in the solution that places a man into a cell with exponent i. After

this jump, the army is smaller but can still reach the same level, hence the original army
was not of minimum size. For similar reasons, it must be that, for the maximum exponent

E, nE−1 ≥ nE . In addition, the value of the slack cannot be too small, by Proposition 1.
Table 7 shows the possible values of the sequence ni for a minimum size army of 143 or 144

men.

Case Men n13 n14 n15 n16 n17 Slack IP run time

1 143 25 23 8 0 0 0 40 sec
2 144 25 22 9 1 0 0 > 10 hrs
3 144 24 24 9 0 0 0 > 10 hrs
4 144 25 23 7 1 1 0 4 min
5 144 25 24 8 0 0 σ14 30 min
6 144 25 23 9 0 0 σ15 50 min

Figure 12c 145 25 21 10 2 0 0

Table 7: Number of men of each exponent, and the slack, for the hexagonal army to reach
level 7. For all cases ni = 3i − 14 for 7 ≤ i ≤ 12.

We can run the IP model on each of these cases separately by adding additional con-

straints. Suppose Mi is the subset of cells with exponent i. The added constraints are of the
form

∑

m∈Mi

STAm = ni.

Several other ideas can be used to speed up the IP model. First, if the slack is zero,
there is no reason to include any jump that loses weight, which reduces the jump set N by

a factor of 3. Instead of targeting a one-man finish, we set FINm as the 3-man configuration

in Figure 7a. This breaks the left-right symmetry of the original problem and the IP solver
does not have to search through mirror symmetric board positions.
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Cases 5 and 6 solve more quickly with the additional constraint that there is only one
jump that loses exactly σj, where j = 14 or 15. If Nj is the subset of jumps N that lose

exactly σj , then these constraints are of the form

∑

n∈Nj

Jn = 1.

With all of these improvements, some of the cases in Table 7 run relatively quickly, re-
turning “global search complete—integer infeasible”. But two in particular are problematic,

and do not finish a global search in ten hours of run time on the NEOS solvers. For this
reason, although we believe a 144-man solution to be unlikely, it cannot be ruled out.

6. Summary and future work

We have determined the minimum size army to reach all levels for all five army types, with
the exception of the hexagonal army to level 7. These results are summarized in Table 8.

Note that three of the columns in Table 8 are sequences in the On-Line Encyclopedia of

Integer Sequences [21].

Minimum army size to reach level n
Level # (n) Conway’s Skew Pablito’s Hexagonal Diagonal

OEIS id: A014225 A014227 A125730

1 2 2 2 2 2 = F3

2 4 3 3 3 3 = F4

3 8 5 5 5 5 = F5

4 20 9 9 9 8 = F6

5 Impossible 19 19 17 13 = F7

6 Impossible 46 53 36 23 > F8

7 Impossible 144 or 145 46
8 Impossible 123
9 All Impossible

Table 8: The minimum army size required to reach level n.

We have presented a number of techniques for determining minimum size armies. We

have found useful the improved pagoda function technique, as well as dividing the army into
regiments whose target is to reach a particular cell, short of the goal. The IP model is a

powerful technique for obtaining tight lower bounds on army size.

The armies presented in this paper have minimum size, but their shape is not unique. It
is known that, for Conway’s army, there are exactly four different configurations of 20 men
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that can reach level four (plus their reflections) [5]5. It would be interesting to count the
number of minimum size armies for each entry in Table 8.

We could also consider how “quickly” an army can advance. All 20-man Conway’s armies
that reach level four do so in exactly 19 jumps, because we start with 20 men, end with one,

and one man is lost per jump. However, we can define a move as one or more jumps by
the same man, and it is not hard to verify that only ten moves are needed to advance the

fastest 20-man army.

It is possible to advance the 53-man Pablito’s army shown in Figure 10c using only
26 moves [19] (a significant improvement over the 73-man army advancing in 43 moves given

in [12]). It is not known whether this is the smallest number of moves for this army (or any
53-man army) to reach level 6. These move minimization problems appear very difficult for

the largest armies in this paper.
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