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Abstract

We describe the computation of a catalogue containing all matroids with up to
nine elements, and present some fundamental data arising from this cataogue. Our
computation confirms and extends the results obtained in the 1960s by Blackburn,
Crapo & Higgs. The matroids and associated data are stored in an online database,
and we give three short examples of the use of this database.

1 Introduction

In the late 1960s, Blackburn, Crapo & Higgs published a technical report describing the
results of a computer search for all simple matroids on up to eight elements (although the
resulting paper [2] did not appear until 1973). In both the report and the paper they said
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“It is unlikely that a complete tabulation of 9-point geometries will be either

feasible or desirable, as there will be many thousands of them. The recursion

g(9) = g(8)3/2 predicts 29260.”

Perhaps this comment dissuaded later researchers in matroid theory, because their cata-
logue remained unextended for more than 30 years, which surely makes it one of the longest
standing computational results in combinatorics. However, in this paper we demonstrate
that they were in fact unduly pessimistic, and describe an orderly algorithm (see McKay
[7] and Royle [11]) that confirms their computations and extends them by determining the
383172 pairwise non-isomorphic matroids on nine elements (see Table 1).

Although this number of matroids is easily manageable on today’s computers, our exper-
iments with 10-element matroids suggests that there are at least 2.5 × 1012 sparse paving
matroids of rank 5 on 10 elements. However we refrain from making any analogous predic-
tions about the desirability or feasibility of constructing a catalogue of 10-element matroids!

We give some fundamental data about these matroids, and briefly describe how they are in-
corporated into an online database that provides access to a far greater range of data; this on-
line database is accessible at http://people.csse.uwa.edu.au/gordon/small-matroids.
html.

2 Matroids, flats and hyperplanes

We assume that the reader is familiar with the general idea of a matroid as being a combi-
natorial generalization of a multiset of vectors in a vector space, in that it consists of a set of
elements and combinatorially defined concepts of dependence, independence etc. with prop-
erties analogous to the same concepts in vector spaces (see Oxley [8] for a gentle introduction
to matroids, and Oxley [9] for complete details).

There are many equivalent ways to make this description precise, but for definiteness we
will take a matroid M = (E, r) to be a set E together with a rank function

r : 2E → Z

satisfying the three conditions:

(R1) If A ⊆ E then 0 ≤ r(A) ≤ |A|.
(R2) If A ⊆ B ⊆ E then r(A) ≤ r(B).
(R3) If A, B ⊆ E, then r(A ∩ B) + r(A ∪B) ≤ r(A) + r(B).

The matroid equivalents of various concepts from linear algebra may then be defined using
the rank function so that, for example, a set of elements A ⊆ E is independent if |A| = r(A),
and spanning if r(A) = r(E). The rank of the matroid itself is defined to be r(E).
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∅

0 1 2 3 4 5 6

02 34 05 15 45 16 013 124 046 2356

0123456

Figure 1: The lattice of flats of a rank 3 matroid on 7 elements

A flat is a set of elements F ⊆ E such that for all e ∈ E\F ,

r(F ∪ e) > r(F ).

A flat is the matroid equivalent of a subspace, and as with subspaces, a crucial property
of flats is that the intersection of two flats is again a flat. The intersection of all the flats
containing a subset A ⊆ E is called the closure of A and denoted by cl(A); it can be viewed
as analogous to the subspace generated by a set of vectors.

The collection of flats of a matroid M under inclusion, together with the two operations

A ∧ B = A ∩B A ∨B = cl(A ∪ B)

forms a geometric lattice L(M). Figure 1 shows this lattice for a rank-3 matroid with 7
elements, where a label such as 013 is shorthand for the subset {0, 1, 3}. In this lattice we
say that A covers B if A ⊂ B and there are no flats C such that A ⊂ C ⊂ B. The rank
function of M can be uniquely recovered from L(M) — the rank of a flat is the length of
the maximal chain from ∅ to that flat, and the rank of any other subset A ⊆ E is the rank
of cl(A). In fact more is true, because the hyperplanes (i.e. the flats of rank r(E) − 1) are
sufficient to determine the remaining flats, and hence the entire matroid.
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Two matroids M1 = (E1, r1) and M2 = (E2, r2) are isomorphic if there is a bijection
ρ : E1 → E2 such that r2(ρ(A)) = r1(A) for all A ⊆ E. For most (but not all) applications,
it is appropriate to treat isomorphic matroids as equal and when counting and cataloguing
matroids we are usually interested only in pairwise non-isomorphic matroids.

We can determine matroid isomorphism by using the hyperplane graph of the matroid,
which is the bipartite graph whose vertices are the elements and hyperplanes of the matroid
and where a hyperplane-vertex is adjacent to an element-vertex if and only if the hyperplane
contains the element. From our previous discussion, it is clear that two matroids are isomor-
phic if and only if their hyperplane graphs are isomorphic as bipartite graphs (i.e. with the
bipartition fixed). Although the theoretical complexity of graph isomorphism is not known,
in practice Brendan McKay’s program nauty [6] can easily process graphs with thousands
of vertices (except for a few pathologically difficult, but poorly understood graphs). As
the hyperplane graphs of the nine-element matroids have an average of only 74 vertices,
isomorphism for matroids of this size is very easy to resolve in practice.

We note that using hyperplanes is a somewhat arbitrary choice and that any other collec-
tion of subsets that determines the matroid, such as the set of flats or the set of independent
sets, could be used analogously.

3 Extensions and modular cuts

If M = (E, r) is a matroid and e ∈ E, then the restriction of r to the subsets of E\e is
itself a rank function, and so determines a matroid M\e = (E\e, r |E\e). We say that M\e
is obtained by deleting e from M and conversely that M is an single-element extension of
M\e.

Now suppose that we have a listMk of the matroids on k elements (or more precisely, one
representative from each isomorphism class of matroids on k elements). Then we can form
the list Mk+1 of all matroids on k + 1 elements by first finding all possible single-element
extensions of every matroid inMk and then eliminating unwanted isomorphic copies.

The key to extending a matroid in all possible ways lies in understanding the relationship
between the flats of a matroid M and the flats of a single-element deletion N = M\e. Letting
F(M) denote the set of flats of a matroid M , it is easy to see that

F(M\e) = {F\e | F ∈ F(M)}. (1)

Thus suppose that we are given the matroid N and wish to add a new element e, thereby
finding all matroids M such that M\e = N . By (1), every flat of M is of the form F or
F∪{e} where F ∈ F(N). More precisely, for each flat F ∈ F(N) exactly one of the following
three situations must hold in M :
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1. F ∈ F(M) and F ∪ {e} ∈ F(M)

2. F ∈ F(M) but F ∪ {e} /∈ F(M)

3. F /∈ F(M) but F ∪ {e} ∈ F(M)

Thus the flats of M\e are partitioned into three parts in such a way that M can be uniquely
recovered from M\e and this partition. Thus we can construct every possible single-element
extension of a matroid N by considering all “suitable” partitions of F(N) into three parts
and forming the different candidates for M accordingly.

This is feasible in practice because Crapo [4] showed that only certain highly structured
partitions of F(M\e) can actually arise, and therefore only a very limited number of par-
titions need be considered when extending a matroid. To describe this result we need one
more piece of terminology: two flats F, G ∈ F(M) are a modular pair if

r(F ) + r(G) = r(F ∪G) + r(F ∩G).

What Crapo showed was that if N = M\e and F(N) = F1 ∪ F2 ∪ F3 is the partition of
the flats of N according to the three possibilities listed above (respectively), then

1. F3 is an up-set in the lattice L(N) i.e. if F ∈ F3 then any flat containing F is in F3.

2. F3 is closed under taking intersections of modular pairs of flats.

3. F2 is the set of flats covered in L(N) by a member of F3.

The set F3 is called a modular cut and F2 the collar of the modular cut. As the modular
cut determines its collar and F1 consists of the remaining flats, it follows that the modular
cut alone determines the entire partition. Therefore we have the following result:

Theorem 1. There is a 1-1 correspondence between modular cuts of N and single-element

extensions of N .

Figure 2 shows the modular cut {45, 0123456} and the corresponding partition for the
matroid of Figure 1.

The minimal elements of a modular cut form an anti-chain in L(N), and thus an easy
way to determine the modular cuts of N is simply to compute all the anti-chains of L(N),
form their up-sets and then check that the resulting set of flats is closed under intersection
of modular pairs.

Blackburn, Crapo & Higgs used a more complicated scheme for computing modular cuts
that avoids creating up-sets that are not modular cuts, but the overhead of the simpler scheme
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∅

0 1 2 3 4 5 6

02 34 05 15 45 16 013 124 046 2356

0123456

Modular cut F3

Collar F2

Remaining flats F1

Figure 2: A modular cut (black nodes) and its collar (white nodes)

was sufficiently modest that we never had any need to implement the more complicated one.
This also enhances our confidence in the correctness of our results in that existing very-well
tested programs (for independent sets in graphs) could be used for computing anti-chains
rather than necessarily less-tested bespoke programs.

4 An orderly algorithm

Our sole remaining task therefore is to consider matroid isomorphism and how to eliminate
unwanted isomorphic copies of the matroids that are constructed, and for this we imple-
mented a straightforward (partially) orderly algorithm (Read [10], McKay [7], Royle [11]).

In combinatorial construction, an orderly algorithm is one that is structured in such a way
that it never outputs more than one representative of each isomorphism class of the objects
being constructed, in this case matroids. What this means in practice is that as each matroid
is produced by the extension procedure, it can be subjected to a test not involving any other
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matroids that determines whether it should be added to the output or rejected. Thus there
is never any need to compare pairs of matroids, or test a newly-constructed matroid against
a list of previously-constructed ones to check if it is really new.

Our algorithm falls into the category of “canonical construction path” orderly algorithms.
Suppose that M is a matroid and that it has hyperplane graph H(M). Then nauty can be
used to compute the canonical labelling ofH(M) and thereby identify a distinguished element
of M — for example, the element that receives the lowest canonical label. This then identifies
a distinguished single-element deletion of M , namely the matroid obtained by deleting the
distinguished element. The essence of the canonical construction path orderly algorithm
is that it only accepts matroids that are constructed as an extension of this distinguished
single-element deletion — whenever an isomorphic copy of M arises as an extension of one
its other single-element deletions, it is rejected.

Although this ensures that the matroids generated by extending one matroid never need
be compared with the matroids generated by extending a different matroid, it is still possible
that two extensions from the same matroid may be isomorphic. Indeed this will necessar-
ily happen if a matroid has two different, but isomorphic, modular cuts. However rather
than perform isomorph rejection directly on modular cuts (many of which may lead to ma-
troids that are subsequently rejected) we instead implemented simple “compare-and-filter”
isomorph rejection on the set of matroids that were accepted when extending a single matroid.

Putting all this together, we get the procedure described in Algorithm 1.

Algorithm 1 Isomorph-free extension of a set Xk of k-element matroids

1: For Each matroid N ∈ Xk Do

2: Set N+ ← ∅.
3: For Each modular cut of N Do

4: Form the single element extension M determined by the modular cut.
5: Canonically label H(M) and add M to N+ if and only if the newly added element

is in the same orbit as the lowest canonically labelled element-vertex of H(M).
6: End For

7: Filter isomorphic matroids from N+ and add the remainder to Xk+1.
8: End For

Notice that each matroid in Xk is processed entirely independently of the remaining ma-
troids in Xk and therefore the computation can be arbitrarily partitioned between as many
computers as desired.

Theorem 2. If Xk contains one representative from each isomorphism class of k-element

matroids, then Xk+1 contains one representative from each isomorphism class of (k + 1)-
element matroids.

Proof. Let M be an arbitrary (k + 1)-element matroid, and let M ′ be its distinguished
single-element deletion. By the hypothesis that Xk contains one representative from each
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isomorphism class of k-element matroids, a matroid isomorphic to M ′ will be processed at
some stage, and so a matroid isomorphic to M will be constructed and then accepted. The
filtering stage ensures that only one isomorph of M will be accepted during the processing
of M ′ and the orderly aspect of the algorithm ensures that any isomorph of M is rejected
whenever it is constructed as an extension of any matroid other than M ′. Therefore Xk+1

contains exactly one matroid isomorphic to M .

5 Results

We implemented the algorithm described in the previous section, and the resulting numbers
of matroids constructed are summarized in Table 1 (the totals form sequence A055545 in
Neil Sloane’s OEIS [12]).

r\n 0 1 2 3 4 5 6 7 8 9
0 1 1 1 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7 8 9
2 1 3 7 13 23 37 58 87
3 1 4 13 38 108 325 1275
4 1 5 23 108 940 190214
5 1 6 37 325 190214
6 1 7 58 1275
7 1 8 87
8 1 9
9 1
Total 1 2 4 8 17 38 98 306 1724 383172

Table 1: All matroids on up to 9 elements

These numbers are symmetric with respect to rank because of the theory of matroid duality

— if M = (E, r) is a matroid of rank r, then the function r∗ : 2E → Z given by

r∗(A) = |A|+ r(E\A)− r(E)

is a rank function that determines a matroid M∗ = (E, r∗) of rank |E|−r known as the dual of
M . We emphasize that our algorithm did not exploit duality to reduce computation time by
only constructing matroids of rank up to |E|/2, but rather we used the fact that our collection
was closed under duality as a “sanity check” on the correctness of our implementation.

A loop in a matroid is an element of rank 0. If a matroid M has a loop ℓ then it appears
in every flat, and the lattice L(M) has exactly the same structure as the lattice L(M\ℓ).
Therefore loops play little structural role in M and it is common to consider them as trivial,
and to consider only loopless matroids.
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Two elements e and f are said to be parallel in a loopless matroid M if r({e, f}) = 1. In
this situation e and f are essentially duplicate elements and each flat either contains both of
them or neither of them. Replacing {e, f} with a single element wherever they occur does
not alter the structure of the lattice L(M), and so again it is fairly common to consider
them as trivial.

A matroid is called simple if it contains no loops and no parallel elements. Every matroid
can be obtained from a unique simple matroid by adding a number of loops and parallel
elements, and so in some sense the simple matroids are the “building blocks” from which all
matroids can be constructed. Conversely, the unique simple matroid obtained from M by
removing all loops and replacing each parallel class (i.e. set of mutually parallel elements)
by a single element is called the simplification of M .

The catalogue of Blackburn, Crapo & Higgs only contains the simple matroids, and so we
give their numbers in Table 2 and note that our computations are in complete agreement
with theirs. In addition, Acketa [1] used Blackburn, Crapo & Higgs’ catalogue to compute
the numbers of all matroids (by adding loops and parallel elements in all possible ways) and
our computations are also in complete agreement with his. More recently, Dukes [5] has
given additional data about the matroids on up to 8 elements and again our results are in
accordance with his.

r\n 0 1 2 3 4 5 6 7 8 9
0 1
1 1
2 1 1 1 1 1 1 1 1
3 1 2 4 9 23 68 383
4 1 3 11 49 617 185981
5 1 4 22 217 188936
6 1 5 40 1092
7 1 6 66
8 1 7
9 1
Total 1 1 1 2 4 9 26 101 950 376467

Table 2: Simple matroids on up to 9 elements

We remark that declaring loops and parallel elements — but not their duals — to be trivial
displays a somewhat graph-theoretical bias. In a matroid arising from a graph, a loop comes
from a loop in the graph and parallel elements come from multiple edges, both of which
are routinely excluded in much of graph theory. However, from a matroidal perspective,
a matroid and its dual have equal status, and thus a loop is no more or less trivial than
its dual, which is a coloop. Similarly, parallel elements are no more or less trivial than the
dual structure, which are elements in series. In graphs, coloops correspond to cut-edges and
elements in series correspond to paths with internal vertices of degree two. Graph theorists
are understandably reluctant to declare these structures trivial because it would mean doing
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away with both trees and cycles! Matroidally however, the natural building blocks are those
matroids that are both simple and cosimple (i.e. the dual matroid is also simple) and so we
give their numbers in Table 3.

r\n 0 1 2 3 4 5 6 7 8 9
0 1
1
2 1 1 1 1 1 1
3 1 6 20 65 380
4 1 20 525 185620
5 1 65 185620
6 1 380
7 1
Total 1 0 0 0 1 2 8 42 657 372002

Table 3: Simple and cosimple matroids on up to 9 elements

6 Paving Matroids

A circuit in a matroid is a minimal dependent set. It is possible for a matroid to have no
circuits (in which case it consists entirely of coloops) but otherwise a matroid of rank r must
have a circuit of size at most r + 1. If the minimum circuit size is equal to r + 1, then the
matroid is a uniform matroid Ur,n which has the property that the rank of a set A is equal
to min(r, |A|). If the minimum circuit size is at least r, then the matroid is called a paving

matroid.

We need some more terminology before we can understand why paving matroids form an
important class of matroids.

A d-partition of a set E is a set S of subsets of E all of size at least d, such that every
d-subset of E lies in a unique member of S. Therefore a 1-partition of a set is simply a
normal partition, while a 2-partition of a set is known as a pairwise balanced design with
index 1. Obviously the set S = {E} is a d-partition for any d, and we call this the trivial

d-partition.

The connection between paving matroids and d-partitions is given by the following result:

Theorem 3. If M = (E, r) is a paving matroid of rank d + 1 ≥ 2 then its hyperplanes form

a non-trivial d-partition of E. Conversely, the elements of any non-trivial d-partition of E
form the set of hyperplanes of a paving matroid of rank d + 1.

The discrete d-partition of a set E consists of all the d-subsets of E and the corresponding
paving matroid is the uniform matroid Ud+1,|E|.
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Based on the rather limited evidence in the catalogue of matroids on up to 8 elements,
Welsh [14] asked whether most matroids are paving matroids. Examining the catalogue
of 9-element matroids and tabulating the results in Table 4 we see that 71.71% of the
simple matroids on 9 elements are paving matroids, compared to 49.50% of the 8-element
simple matroids, thus providing some additional evidence that paving matroids do indeed
predominate.

r\n 0 1 2 3 4 5 6 7 8 9
0 1
1 1
2 1 1 1 1 1 1 1 1
3 1 2 4 9 23 68 383
4 1 2 5 18 322 147163
5 1 2 5 39 119050
6 1 2 6 178
7 1 2 6
8 1 2
9 1
Total 1 1 1 2 4 8 18 50 439 266784

Table 4: Simple paving matroids on up to 9 elements

A d-partition is called sparse if it contains no subsets of size greater than d + 1, and
similarly we call a paving matroid of rank d + 1 sparse if its hyperplanes all have size d or
d + 1. A sparse paving matroid is determined completely by its hyperplanes of size d + 1 —
the d-partition must consist of these hyperplanes together with every d-set not yet contained
in one of these. These hyperplanes are necessarily circuits, and so they form the set of
circuit-hyperplanes of the matroid.

Sparse paving matroids have the attractive property that their duals are also sparse paving
matroids — in fact the circuit-hyperplanes of M∗ are the complements of the circuit-
hyperplanes of M . Moreover if M and its dual are both paving matroids, then they are
necessarily sparse and so the sparse paving matroids forms the largest possible dual-closed
family of paving matroids.

Computationally, sparse paving matroids are attractive because they can be viewed simply
as independent sets in a certain graph. The Johnson graph J(n, d + 1) is the graph whose
vertices are all the (d+1)-subsets of an n-set, and where two vertices are adjacent if and only
if the intersection of the corresponding subsets has size d. Therefore an independent set of
vertices in J(n, d+1) is precisely the set of circuit-hyperplanes of a sparse paving matroid of
rank d + 1, and conversely. Moreover the automorphism group of J(n, d + 1) is equal to the
symmetric group Sn except in the special case where n = 2(d + 1) in which case the graph
has an additional automorphism of order 2 induced by complementation on (d + 1)-sets.

We note in passing that the size of the maximum independent set in the Johnson graphs
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J(n, d+1) has been intensively studied because such an independent set is directly equivalent
to a constant weight code of length n, weight d + 1 and minimum distance 4.

More generally, we can form the analogous graph on the d + 1, d + 2, . . ., n − 1 sets of
an n-set where again two vertices are adjacent if the corresponding sets meet in set of size
d. Then an independent set in this graph corresponds to a not-necessarily-sparse paving
matroid

7 Representability

A matroid M = (E, r) of rank k is representable over a field F if there is a mapping

ρ : E → F
k

such that for any set A ⊆ E,
r(A) = dim span(ρ(A)).

To prove that a matroid is representable, it suffices to provide a suitable representation ρ,
but it is considerably harder to prove that a matroid is not representable. However, Ingleton
showed that if M = (E, r) is representable and A, B, C, D ⊆ E, then

r(A) + r(B) + r(A ∪B ∪ C) + r(A ∪ B ∪D) + r(C ∪D)

≤ r(A ∪B) + r(A ∪ C) + r(A ∪D) + r(B ∪ C) + r(B ∪D).

It is therefore sometimes possible to show that a matroid is not representable by displaying
four subsets A, B, C and D for which this inequality is violated. For want of a convenient
term, we will call such matroids Ingleton non-representable.

Figure 3 gives a schematic diagram of the Ingleton-non-representable matroids on 8 ele-
ments; all of the matroids are sparse paving matroids and the diagram shows how they are
related to each other under relaxation of a circuit-hyperplane, so that for example, the ma-
troid F8 is obtained from AG(3, 2)′ by relaxing a circuit-hyperplane. Any named matroids
are listed according to their names in Oxley [9] while the remainder are given just by their
number in the database. Dual pairs of matroids are connected by dotted lines.

In addition to the 39 Ingleton-non-representable matroids, there are five other rank-4
matroids on 8 elements that are non-representable. Four of these are related to the sparse
paving matroid P8. The matroid P8 is a ternary matroid which has the representation
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V8

V +

8

AG(3, 2)′

F8

1490 1492 1491 Q8

1494 1499 1501 1500 1502

1508 1510 1509 1518 1520 1524 1525 1526 1532 1527 1529 1528 1531

1549 1568 1572 1576 1578 1579 1580

1641 1646 1654 1656 1660 1657

Figure 3: The 39 Ingleton-non-representable matroids on 8 elements
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







0 1 2 3 4 5 6 7

1 0 0 0 0 1 1 −1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 −1 1 1 0









The circuit-hyperplanes of this matroid are {0, 1, 2, 3}, {0, 1, 3, 6}, {0, 2, 3, 5}, {1, 2, 3, 4},
{0, 3, 4, 7}, {1, 2, 5, 6}, {0, 4, 5, 6}, {1, 4, 5, 7}, {2, 4, 6, 7} and {3, 5, 6, 7}. We define four
associated sparse paving matroids as follows: P1 is obtained from P8 by relaxing the circuit-
hyperplane {3, 5, 6, 7}, P ′

2 is obtained from P1 by relaxing {0, 3, 4, 7}, P ′′
2 is obtained from P1

by relaxing {1, 2, 5, 6} and P3 is obtained from P1 by relaxing both {0, 3, 4, 7} and {1, 2, 5, 6}.

Proposition 1. The four matroids P1, P ′
2, P ′′

2 and P3 are all non-representable, but not

Ingleton non-representable.

Proof. Let M ∈ {P1, P
′
2, P

′′
2 , P3} and consider the basis B = {0, 1, 2, 3}. Then following

Section 6.4 of Oxley [9] a representation for M may be assumed to have the following form
where a, b, c, d, e 6= 0 are unknown elements of some field.

A =









0 1 2 3 4 5 6 7

1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 a
0 0 1 0 1 b 0 c
0 0 0 1 1 d e 0









Now the sets {0, 4, 5, 6}, {1, 4, 5, 7} and {2, 4, 6, 7} are circuits in M and so the submatrices
of A defined on those particular sets of columns each have determinant 0. This gives the
following three conditions respectively: b(e − 1) + d = 0, b − c − d = 0 and a + e − 1 = 0
which implies that

a = (1− e), c = be and d = b(1− e)

However consider the submatrix of A with columns {3, 5, 6, 7}. The determinant of this is

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 1
0 0 1 1− e
0 b 0 be
1 b(1− e) e 0

∣

∣

∣

∣

∣

∣

∣

∣

= 0

contradicting the fact that {3, 5, 6, 7} is independent in M .

Checking Ingleton non-representability of a matroid is a task best left to a computer.
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The fifth non-representable matroid of size 8 for which Ingleton’s condition gives no infor-
mation is obtained from the matroid L8 by relaxing a circuit-hyperplane, where L8 is the
sparse paving matroid whose circuit-hyperplanes are the 6 faces and the 2 colour-classes of
a cube (see Oxley [9] p510). It can be shown to be non-representable using an analogous
argument.

How effective is Ingleton’s criterion for detecting non-representability among 9-element
matroids? Perhaps surprisingly, it gives no additional information at all — that is, a 9-
element matroid is Ingleton non-representable if and only if it contains an Ingleton-non-
representable matroid on 8 elements as a minor.

8 A matroid database

One of the major uses of any sort of combinatorial catalogue is to compile data regarding
the various combinatorial properties of the objects in the catalogue, and then to use this to
answer questions or explore conjectures concerning the existence, or number of objects with
various combinations of properties.

A common limitation of combinatorial catalogues is that their use is often restricted to
their immediate creator and/or those researchers willing and able to download the raw
data files and write their own programs, often resulting in significant duplication of effort.
We have attempted to ameliorate this problem by incorporating the data into a relational
database (using MySQL, although this is not important) and providing an online interface
that permits “end users” to search, browse and investigate the data.

Currently we have computed a fairly substantial subset of what might be termed the
“fundamental properties” of matroids. This includes various counts associated with each
matroid such as numbers of loops, coloops, circuits, cocircuits, independent sets, bases,
hyperplanes, flats and circuit-hyperplanes. It includes numerical properties such as the size of
the automorphism group, the number of orbits of the automorphism group, the connectivity,
the minimum circuit size. Various structural properties such as whether the matroid is binary,
ternary, regular, paving, base-orderable, transversal and so on have also been included. More
importantly however, we have incorporated information about the relationships between the
matroids — relationships such as duality, deletion and contraction of elements, relaxation
of circuit-hyperplanes, truncations and simplifications. Finally we have included auxiliary
information such as information about rank polynomials and representations over small finite
fields.

Rather than present a large number of tables of data in this paper, we give three simple
examples of the use of the database, and invite readers to explore their own particular inter-
ests by using the database at http://people.csse.uwa.edu.au/gordon/small-matroids.
html.
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8.1 Excluded minors for GF (5)

One of the most fundamental results in matroid theory is Tutte’s characterization of matroids
representable over GF (2) in terms of excluded minors: a matroid is binary if and only if it
does not contain U2,4 as a minor.

Similar characterizations are known for matroids representable over GF (3) where there
are 4 excluded minors and GF (4) where there are 7 excluded minors. The analogous char-
acterization for GF (5) is not known or even conjectured, with prevailing opinion suggesting
that such a characterization is likely to be extremely complex and unwieldy. In fact, Whittle
[15] suggests that “It is not clear that the problem for finding the specific excluded minors
for GF (5) is that well motivated” and that the real question in representability is to resolve
Rota’s conjecture that the list of excluded minors for representability over any field is finite.

It is straightforward to determine the matroids on up to 9 elements that are representable
over GF (5) by finding all sets of at most 9 points in the projective space PG(3, 5) that are
pairwise inequivalent under the action of the group PGL(4, 5), identifying the corresponding
matroids (which have rank at most 4) and then finding their duals.

Once this is done, we can identify the matroids that are not GF (5)-representable but for
which every single-element deletion and single-element contraction is GF (5)-representable
and thus determine the excluded minors on at most 9 elements. Table 5 shows the numbers
of matroids that were found, confirming the belief that an excluded minor characterization
of GF (5)-representable matroids in the traditional style would indeed be very cumbersome.

Size Rank No. Comment
7 2 1 Uniform U2,7

7 3 5
7 4 5
7 5 1 Uniform U5,7

8 3 2
8 4 92
8 5 2
9 3 9
9 4 219
9 5 219
9 6 9

Table 5: Excluded minors for GF (5) on up to nine elements
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8.2 Numbers of bases

In a matroid of rank r on n elements, the number b of bases must necessarily satisfy 1 ≤
b ≤

(

n
r

)

. In 1969, Welsh [13] conjectured that for every triple (n, r, b) such that 0 ≤ r ≤ n
and 1 ≤ b ≤

(

n
r

)

, there is a matroid of rank r on n elements with exactly b bases — in other
words, everything that can happen, does.

We can check this all matroids on up to 9 elements with a single SQL statement (though
note that binomial is not a built-in function, but must be programmed):

SELECT tmp.size, tmp.rank, COUNT(*) FROM

(SELECT DISTINCT size, rank, numBases FROM matroids9) as tmp

GROUP BY tmp.size, tmp.rank

HAVING COUNT(*) <> binomial(tmp.size, tmp.rank);

The inner SELECT statement first creates a list of all the distinct triples (n, r, b) represented
in the database and gives it the alias tmp. The outer SELECT .... GROUP BY statement
counts the triples in tmp for each fixed pair (n, r), while the HAVING statement extracts the
pairs where this count is not equal to

(

n
r

)

, thus representing one or more “missing” triples.

+------+------+----------+

| size | rank | COUNT(*) |

+------+------+----------+

| 6 | 3 | 19 |

+------+------+----------+

The output shows that there are only 19 triples of the form (6, 3, b), rather than the
expected 20. In fact, the missing triple is (6, 3, 11) — there are no rank-3 matroids on 6
elements with exactly 11 bases — a fact that was previously observed by Anna de Mier
(personal communication). The absence of any other missing triples with n ≤ 9 and the
exponential explosion in numbers of matroids as n reaches 10 leads us to strongly believe
the following conjecture:

Conjecture 1. For every triple (n, r, b) such that 0 ≤ r ≤ n and 1 ≤ b ≤
(

n
r

)

there is a

matroid of rank r on n elements with exactly b bases except when

(n, r, b) = (6, 3, 11).

8.3 Transversal matroids

Given two bases A and B of a matroid, the subsets X ⊆ A and Y ⊆ B are called exchangeable

if both A\X ∪ Y and B\Y ∪X are bases.
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Rank \Size 2 3 4 5 6 7 8 9

2

1 3 7 13 23 37 58 87

1 3 7 13 23 37 58 87

1 3 7 13 23 37 58 87

1 3 7 13 22 34 50 70

3

1 4 13 38 108 325 1275

1 4 13 37 101 284 956

1 4 13 37 101 284 956

1 4 13 37 92 209 442

4

1 5 23 108 940 190214

1 5 23 101 677 70569

1 5 23 101 644 55081

1 5 23 100 432 1804

5

1 6 37 325 190214

1 6 37 284 70569

1 6 37 284 55081

1 6 37 272 2806

6

1 7 58 1275

1 7 58 956

1 7 58 956

1 7 58 817

Table 6: Numbers of matroids, base-orderable matroids, strongly base-orderable matroids
and transversal matroids.

A matroid is called base-orderable if for any two bases A and B there is a bijection ϕ : A→
B such that a and ϕ(a) are exchangeable, while it is strongly base-orderable if the bijection
can be selected so that X and ϕ(X) are exchangeable for every subset X ⊆ A. A matroid
on a set E is a transversal matroid if there is a bipartite graph G with bipartition E ∪ F
such that the independent sets of M are precisely the subsets of E that are the endpoints of
a matching (i.e. an independent set of edges) of G.

It is obvious that strongly base-orderable matroids are base-orderable, but less obvious that
transversal matroids and their duals (which need not be transversal matroids) are strongly-
base orderable. These classes of matroids are important but not fully understood, and
therefore the numbers of matroids in each of these classes is of some interest. Determining
whether a matroid is base-orderable or strongly base-orderable is straightforward, and we
implemented the algorithm given by Brualdi & Dinolt [3] for testing transversality.

Table 6 gives these numbers where each cell of the table contains four numbers which,
reading from top to bottom are the total number of matroids and the number of base-
orderable, strongly base-orderable and transversal matroids respectively. For the omitted
ranks (ranks 0, 1, 7, 8 and 9) all the matroids in the catalogue are transversal.
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Size Number Size Number Size Number Size Number
0 1 8 521367 16 579539500 24 1355
1 2 9 3539486 17 329728133 25 250
2 3 10 18146294 18 130254690 26 58
3 13 11 69516384 19 35087875 27 13
4 73 12 197898106 20 6400127 28 4
5 575 13 416277780 21 818999 29 1
6 5838 14 642315652 22 84722 30 1
7 59818 15 720126836 23 9263

Table 7: Independent sets in J(10, 4)

9 Matroids on ten elements?

Given that 30+ years have elapsed since the catalogue of matroids on 8 elements was cre-
ated and with the benefit of advances both in raw computational power and techniques in
combinatorial construction, it may seem rather unambitious to extend the catalogue only to
9 elements.

However our initial experiments on the feasibility of constructing the matroids on 10 el-
ements lead us to the conclusion that even counting the 10-element matroids would be a
major undertaking, let alone constructing them.

This is very unfortunate because we have a strong feeling that the absence of geometric
representations available for rank-3 and rank-4 matroids means that rank-5 matroids are
in some sense much less well understood than their lower rank counterparts. One of our
original motivations in embarking on this project was the belief that the rank-5 matroids
on 10 elements might be a fertile source of interesting and/or counterintuitive examples and
counterexamples for this reason.

9.1 Paving matroids of rank 4

From our analysis above, the sparse paving matroids of rank 4 on 10 elements are in 1-
1 correspondence with independent sets in the Johnson graph J(10, 4), with isomorphism
of matroids and isomorphism under the automorphism group S10 of the graph being the
same. Therefore a straightforward orderly algorithm as outlined in Royle [11] can be used to
construct them. This computation was performed in a few days using idle time on a network
of about 50 computers, and the resulting numbers are presented in Table 7 which shows a
total of 3150333219 (i.e. ≈ 3.150× 109) sparse paving matroids of rank 4 on 10 elements.

Computation of the non-sparse paving matroids of rank 4 on 10 elements is a somewhat
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Max. hyp. k No. k-hyps. No. matroids
5 1 1222076172
5 2 147724716
5 3 5558695
5 4 64194
5 5 232
5 6 6
6 1 2369590
6 2 164
7 1 435
8 1 5
9 1 1

Total 1377794210

Table 8: Non-sparse paving matroids of rank 4 on 10 elements

fiddly bookkeeping exercise, but it involves no qualitatively different techniques. The essence
of our approach is to divide the search according to whether the largest hyperplane has size
k = 5, 6, 7, 8 or 9. For each size k, we construct an auxiliary graph G(k) defined on the
4-, 5-, . . ., k-sets that meet a fixed k-set (e.g. {0, 1, . . . , k − 1}) in less than 3 points and
with adjacency again defined by intersection in at least 3 points. Then an independent set
of G(k) together with {0, 1, . . . , k − 1} and all 3-sets not already covered forms the set of
hyperplanes of a non-sparse paving matroid. However we need to be a little careful with
isomorphism — this procedure distinguishes a particular k-set and so if a matroid has c orbits
on hyperplanes of size k, then it will contribute c pairwise non-isomorphic independent sets
to G(k). Therefore each independent set contributes 1/c to the total count of matroids,
where c is the number of orbits that the corresponding matroid has on hyperplanes of size k.
Of course if the matroid has only one hyperplane of size k, then c = 1 follows immediately
with no special calculation.

Table 8 shows the results of this calculation broken down according to the size of the
largest hyperplane k and how many hyperplanes of this size are in the matroid.

Adding the numbers of sparse and non-sparse paving matroids, we conclude that there are
4528127429 (≈ 4.528× 109) paving matroids of rank 4 on 10 elements.

9.2 Paving matroids of rank 5

We have been unable to complete the analogous computation for the sparse paving matroids
of rank 5 on 10 elements. These correspond to independent sets in the Johnson graph J(10, 5)
but with one additional complication. The automorphism group of J(10, 5) is S10 × Z2

with the additional Z2 being induced by complementation of 5-sets. This means that each
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independent set of J(10, 5) produced by the orderly algorithm corresponds to a dual pair of
matroids — usually two matroids, but only one when the matroid is self-dual. Thus the total
number of matroids is twice the number of independent sets of J(10, 5) minus the number
of self-dual matroids.

We can determine the number of self-dual sparse paving matroids on 10 elements in a
separate computation by exploiting the fact that the corresponding independent sets must
have a non-trivial automorphism involving the Z2 part of the automorphism group of J(10, 5).
This separate computation yields a total of 99022169 self-dual sparse paving matroids.

However the sheer number of independent sets in J(10, 5) makes it infeasible for us to
complete the first part of the computation. We can however make an “informed guess” of
the magnitude of the number by executing a fixed percentage of the search. First, the or-
derly algorithm was used to compute the entire collection of independent sets of size 9, of
which there are 20680075. A random sample of this collection was selected, and the search
completed just using these as the starting points. Although it is hard to say anything sta-
tistically precise, our prior experience with such orderly algorithms suggest that the number
of independent sets produced is roughly proportional to the size of the random sample of
starting points.

A sample of 60000 starting points (0.2901% of the search space) yielded 3.875× 109 inde-
pendent sets giving an estimate of 1.336 × 1012 independent sets in J(10, 5). Therefore we
estimate that there are about 2.65× 1012 sparse paving matroids of rank 5 on 10 elements.
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