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LOWER ORDER TERMS IN THE 1-LEVEL DENSITY FOR FAMILIES OF
HOLOMORPHIC CUSPIDAL NEWFORMS

STEVEN J. MILLER

ABSTRACT. The Katz-Sarnak density conjecture states that, in thit &mthe conductors tend to
infinity, the behavior of normalized zeros near the centogthipof families of L-functions agree with
the N — oo scaling limits of eigenvalues nearof subgroups of/ (V). Evidence for this has been
found for many families by studying the-level densities; for suitably restricted test functiohs t
main terms agree with random matrix theory. In particuliroae-parameter families of elliptic
curves with rank- over Q(T") and the same distribution of signs of functional equatioamsehthe
same limiting behavior. We break this universality and fiachfly dependent lower order correction
terms in many cases; these lower order terms have applisatimging from excess rank to modeling
the behavior of zeros near the central point, and dependeoartthmetic of the family. We derive
an alternate form of the explicit formula fé¥L(2) L-functions which simplifies comparisons, re-
placing sums over powers of Satake parameters by sums ofdheents of the Fourier coefficients
A¢(p). Our formula highlights the differences that we expect tstefcom families whose Fourier
coefficients obey different laws (for example, we expecoSaite to hold only for non-CM families
of elliptic curves). Further, by the work of Rosen and Sifwan we expect lower order biases to the
Fourier coefficients in families of elliptic curves with taover Q(7'); these biases can be seen in
our expansions. We analyze several families of elliptiozearand see different lower order correc-
tions, depending on whether or not the family has complexipiigiation, a forced torsion point, or
non-zero rank ove®(T).

1. INTRODUCTION

Assuming GRH, the non-trivial zeros of aryfunction have real part equal to/2. Initial
investigations studied spacing statistics among zero$rdan the central point, where numeri-
cal and theoretical results [Hej, Mdn, Od1, ©0d2,| RS] showearkkent agreement with eigenval-
ues from the GUE ensemble. Further agreement was found diyistumoments of_-functions
[CE,ICEKRS| KeSn1, KeSn2, KeSn3] as well as low-lying zeresds near the critical point); we
concentrate on low-lying zeros in this paper.

Katz and Sarnak [KaSal, KaSa2] conjectured that, in the smthe conductors tend to infinity,
the behavior of the normalized zeros near the central pgi@eawith theNV — oo scaling limit of
the normalized eigenvalues ndaof a subgroup of/(N). Evidence is provided by analyzing the
n-level densities of many families, such as all Dirichlet igdters, quadratic Dirichlet characters,
L(s,v) with ) a character of the ideal class group of the imaginary quiadfietd Q(v/—D),
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families of elliptic curves, weight level N cuspidal newforms, symmetric powers @1.(2) L-
functions, and certain families 6fL.(4) andGL(6) L-functions; see [DMI, F[, Gii, HR, HM, ILS,
KaSa2| Mil2/ OS, RR, Ro, Rub, Yo2]. Thelevel density is

1 1
Dn]: = | Z Z ¢1 <7f€1 Ong) . ¢n <7f7én ngf) ) (11)

fe]-'é .....
j:ék
where theg; are even Schwartz test functions whose Fourier transfoigme hompact support,
% + 7y, runs through the non-trivial zeros 6f s, f), andQ is the analytic conductor of. As the
¢ are even Schwartz functions, most of the contributio®ior(¢) arises from the zeros near the
central point; thus this statistic is well-suited to invgating the low-lying zeros.

Sometimes it is more convenient to incorporate weights ¢iaample, the harmonic weights
facilitate applying the Petersson formula to families o$midal newforms). Often we writé =
UnFn, WhereFy is the sub-family withQ); = N (or some similar restriction, such &g, <
[N,2N]). The Katz-Sarnak conjecture is

i = 1 log @ log Q¢
J&EHMD"’FN(QS) N zx}l_r,noo | Fn| Z Z o1 (W’Zl o )¢n (vmn 27

= / /¢1 xl ¢n xn) n,G(F (.Tl, s 7~Tn>dx1 e dxm (12)

whereG(F) is the scaling limit of NV x N unitary, symplectic or orthogonal matrices. For example,
for test functionsy supported in—1, 1), the one-level densities are

be u)W1 soevenfu)du = ?( u) + ;?b( )

J o(u)Wr, SO(odd)(U)dU = ?( u) + 3¢(0)

Jo(w)Wio = o(u) + 56(0) (1.3)
f¢u>wlu5p >u — o) — 10(0)

J o)W u(u = o(u).

Different classical compact groups exhlblt a differentdioocehavior of eigenvalues nearthus
breaking the global GUE symmetry. This correspondencevallgs, at least conjecturally, to assign
a definite “symmetry type” to each family of primitive-functions. For families of zeta ok-
functions of curves or varieties over finite fields, the cep@nding classical compact group can be
determined by the monodromy (or symmetry group) of the famand its scaling limit. No such
identification is known for number fields, though functiondi@analogues often suggest what the
symmetry type should be. See also [DM2] for results abousyinemetry group of the convolution
of families, as well as determining the symmetry group ofmaifaby analyzing the second moment
of the Satake parameters.

Now that the main terms have been shown to agree with randamixntfaeory predictions (at
least for suitably restricted test functions), it is nattioestudy the lower order terms. In this paper
we see how various arithmetical properties of families dpet curves (complex multiplication,
torsion groups, and rank) may affect the lower order terms. dxample, while the main terms
for one-parameter families of elliptic curves of ranlover Q(7") and given distribution of signs
of functional equations all agree with the scaling limit bEtsame orthogonal group, in [Mill]
potential lower order corrections were observed (see [61] Yor additional examples, and [MII3]
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for applications of lower order terms to bounding the averagler of vanishing at the central point
in a family). The problem is that these terms are of dizég R, while trivially estimating terms
in the explicit formula lead to errors of sizeg log R/ log R. These lower order terms are useful in
refining the models of zeros near the central point for snmadticictors. This is similar to modeling
high zeros of/(s) at heightT” with matrices of sizeV = log(7'/27) (and not theNV — oo scaling
limits) [KeSn1, KeSn2]; in fact, even better agreement itamied by a further adjustment of
arising from an analysis of the lower order terms (see [BBODWKMS)).

For families of elliptic curves these lower order terms happeared in excess rank investigations
[Mil3], and in a later paper [DHKMS] they will play a role in plaining the observed repulsion
(seelMil4]) of the first normalized zero above the centrahpim one-parameter families of elliptic
curves.

Remark 1.1. Recently Conrey, Farmer and Zirnbauer [CFZ1, CFZ2] conject formulas for the
averages over a family of ratios of products of shiffeflinctions. TheirL-functions Ratios Con-
jecture predicts both the main and lower order terms for npoplems, ranging from-level cor-
relations and densities to mollifiers and moments to vangsht the central point (see [CS]). The
Ratios Conjecture’s prediction (up to error terms of €ieX ~/2+<)!) has recently been verified for
the 1-level density of the family of quadratic Dirichlet charaxg for test functions of suitable sup-
port (Miller [Mil6] shows perfect agreement between numtheory and the Ratios Conjecture for
even Schwartz test functiogssuch thasupp(g) C (—1/3,1/3)). Khiem is currently calculating
the predictions of the Ratios Conjecture for certain fagsilbf elliptic curves.

Remark 1.2. The proof of the Central Limit Theorem provides a useful agglfor our results. If
X1,..., Xy are ‘nice’ independent, identically distributed randomafles with meamn and vari-
anceos?, then asN — oo we have(X; + - - -+ Xy — Nu)/ov/N converges to the standard normal.
The universality is that, properly normalized, the maimtes independent of the initial distribu-
tion; however, the rate of convergence to the standard natemends on the higher moments of
the distribution. We observe a similar phenomenon withithevel density. We see universal an-
swers (agreeing with random matrix theory) as the condsdead to infinity; however, the rate of
convergence (the lower order terms) depends on the higheremis of the Fourier coefficients.

Below we derive an alternate version of the explicit formfolea family 7 of GL(2) L-functions
of weightk which is more tractable for such investigations. Hgt V) be the set of all holomorphic
cuspidal newforms of weigtit and levelN. Eachf € H; (V) has a Fourier expansion

f(z) = Zaf(n)e(nz). (1.4)

n=1

Let \;(n) = as(n)n~k~Y/2, These coefficients satisfy multiplicative relations, dhg(p)| < 2.
The L-function associated tf is

L(s, f) = i M) I1 (1 _ N0 X°§§’>)_1, (1.5)

n® , p® p

whereyy is the principal character with modulé. We write

Ar(p) = ay(p) + B (p). (1.6)
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Forp\ N, ay(p)Bs(p) = 1 and|as(p)| = 1. If p|N we takea,(p) = A¢(p) and;(p) = 0. Letting

1/2 s
Lo(s, f) = @—;) (g) r (g + %) r (% + %) (1.7)

denote the local factor at infinity, the completedunction is
A(s, f) = Loo(s)L(s, f) = efA(1 —s, f), € ==£l. (1.8)

Therefore H}(N) splits into two disjoint subsets,"(N) = {f € H;(N) : ¢, = +1} and
H, (N) ={f € H{(N) : ¢, = —1}. EachL-function has a set of non-trivial zerp$; = 3+ 8.
The Generalized Riemann Hypothesis asserts that ale R.

We now give a useful expansion for tihdevel density for a familyF of GL(2) cuspidal new-

forms. LetN, be the level off € F and let¢ be an even Schwartz function such thétas finite

~

support, sayupp(¢) C (—o,0). We weight eaclf € F by non-negative weightsx(f), where
log R is related to the weighted average of the logarithms of thielse and we rescale the zeros
near the central point bifog R)/27; setWr(f) = >_ ;.- wr(f). Thel-level density for the family
F with weightswg(f) and test functiom is

Dirto) = i L o (s 5 )

feF
. Zfe}‘ wr([f)(A(k) + log Ny) &5(0)
B Wgr(F)log R
1 ar(p)™ + By(p)™ logp o ( logp 1
—2 zp:mz::l WalF) J;wR(f) pm/2 log R ¢ (mlog R) + Ok <log2 R)
S erwnlf)(A(R) +log ;) |
= W (F)log R #(0) + S(F) + Oy <log72R) : (1.9)

with ¢(2) = T"(2)/T'(2), A(k) = ¥(k/4) 4+ ((k + 2)/4) — 2log 7, and

_ — 1 ay(p)™ + By(p)™ logp ~( logp
S(F) = 2;; A feszR(f) e o R ¢ (mlOgR) . (1.10)

The above is a straightforward consequence of the expbieitdila, and depends crucially on having
an Euler product for ouf.-functions; see [ILS] for a proof. Ag is a Schwartz function, most of
the contribution is due to the zeros near the central poihe &ror of sizel / log® R arises from
simplifying some of the expressions involving the analgtomductors, and could be improved to
be of sizel/log® R at the cost of additional analysis (sée [Yo1] for details)wa are concerned
with lower order corrections due to arithmetic differenbeswveen the families, the above suffices
for our purposes.

The difficult (and interesting) piece in thelevel density isS(F). Our main result is an alternate
version of the explicit formula for this piece. We first se¢ tiotation. For eacli € F, let

S(p) = {f € F:p{ Ns}. (1.11)
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Thus forf ¢ S(p), s (p)™ + B;(p)™ = As(p)™. Let
A r(p) = ﬁm S wn(HM), Al(p) = ﬁm 3

fer
fes(p)

f¢S(p)

wr(f)Ar(p)";

we use the convention thalt = 1; thus A, #(p) equals the cardinality of (p).

Theorem 1.3(Expansion fotS(F) in terms of moments ok¢(p)). We have

= - 2;; m/2 112512 5( f;g;)
qm% oy M 5 (peer)
2 AR (k) O S
o AQ’;&;E” o (2rr) w20 T

r/2

A, —1)logp
) F(p
¢ ZZ p+ 1 r+1 logR +

p r=3

o

=)
log® R

= Su(F) + SolF) + S1(F) + Sa(F) + Sa(F) + O (k)gl R) (1.13)
If we let
i 1 Ar(p)?
A = 1.14
then by the geometric series formula we may repléigeF) with S ;(F), where
~ A 2(p —
S1F) = 200 Ar(p)p**(p —1)logp. (1.15)

~ (p+1)3logR
Remark 1.4. For a general one-parameter family of elliptic curves, wewarable to obtain exact,
closed formulas for the™ moment termsi,. =(p); for sufficiently nice families we can find exact
formulas forr < 2 (see [ALM,Mil3] for some examples, with applications towarconstructing
families with moderate rank ove(7") and the excess rank question). Thus we are forced to
numerically approximate thd, (p) terms when > 3. This greatly hinders comparison with the
L-Functions Ratios Conjecture, which gives useful intagirens for the lower order terms. In [CS]
the lower order terms are computed for a symplectic familguadratic Dirichlet.-functions. The
(conjectured) expansions there show a remarkable relagbomeen the lower order terms and the
zeros of the Riemann zeta function; for test functions wititably restricted support, the number
theory calculations are tractable andlin [Mil6] are showadoee with the Ratios Conjecture.
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We prove Theorerin 1.3 by using the geometric series formula 9. . (a(p)/\/p)™ (and sim-
ilarly for the sum involving3,(p)™) and properties of the Satake parameters. We find terms like

L AP =3M(p) 1 Ap(p)* =2

Prp+1=XNp)vp  PPr+1-=2(p)yp
While the above formula leads to tractable expressionsdorputations, the disadvantage is that
the zeroth, first and second moments\¢fp) are now weighted byt /(p + 1 — A\s(p)/p). For
many families (especially those of elliptic curves) we caifcalate the zeroth, first and second
moments exactly up to errors of sizgN<; this is not the case if we introduce these weights in the
denominator. We therefore apply the geometric series faragain to expand/ (p+1—X¢(p)/p)
and collect terms.

An alternate proof involves replacing each(p)™ + 3(p)™ for p € S(p) with a polynomial
S, emaeAf(p)™, and then interchanging the order of summation (which regusome work, as
the resulting sum is only conditionally convergent). Thensoverr collapses to a linear combi-
nation of polylogarithm functiofls and the proof is completed by deriving an identity expregsi
these sums as a simple rational function.

Theorem 1.5([Mil5]) . Leta,; be the coefficient df* in Hﬁ;é(kQ —j%), and leth, ; be the coefficient
of k' in (2k + 1) Hﬁ;é(k; —Jj)(k+1+ 7). Thenfor|z| < 1and?¢ > 1 we have

(1.16)

. . 2 214z
agoli_op(z) + - - + agoliop(z) = (20! (1 E x)2@21
) ) 1 2(1+z
beoer1Li_op—1(z) + -+ - + beoLip(x) = ( ) (1.17)

@0+ 1) (1 —z)22

While Theoreni_ 15 only applies to linear combinations ofyfmarithm functions withs a neg-
ative integer, it is interesting to see how certain speaahlginations equal a very simple rational
function. One application is to use this result to deducati@hs among the Eulerian numbers
(which arise as coefficients in the_,,(x) terms).

Remark 1.6. An advantage of the explicit formula in Theorém]1.3 is thatdmswer is expressed
as a weighted sum of moments of the Fourier coefficients. nQftach is known (either theoret-
ically or conjecturally) for the distribution of the Fourieoefficients, and this formula facilitates
comparisons with conjectures. In fact, often theum can be collapsed by using the generating
function for the moments ok;(p). Moreover, there are many situations where the Fourier-coef
ficients are easier to compute than the Satake parametersllifgic curves we find the Fourier
coefficients by evaluating sums of Legendre symbols, and plass to the Satake parameters by
solvingag(p) = 2,/pcos g (p). Thus it is convenient to have the formulas in terms of therieou
coefficients. AsAr(p) = O(1/p)), these sums converge at a reasonable rate, and we cantevalua
the lower order terms of size/ log R to any specified accuracy by simply calculating moments and
modified moments of the Fourier coefficients at the primes.

We now summarize the lower order terms for several diffefamilies of GL(2) L-functions;
many other families can be computed through these techsiidine first example is analyzed in 83,

The polylogarithm function i8is(x) = Y oo, k~*zk. If sis anegative integer, say= —r, then the polylogarithm
function converges fofz| < 1 and equa@:;:o(;)x"*j/(l —z)" 1, where the(’;) are the Eulerian numbers (the
number of permutations dfl, . .., v} with j permutation ascents).
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the others in[85. Below we merely state the final answer; seedlbvant sections for expressions
of these constants in terms of prime sums with weights daepgrah the family. For sufficiently
small support, the main term in thelevel density of each family has previously been shown to
agree with the three orthogonal groups (we can determinehalfy calculating th@-level density
and splitting by sign); however, the lower order terms affedint for each family, showing how
the arithmetic of the family enters as corrections to themtarm. For most of our applications
we have weigh® cuspidal newforms, and thus the conductor-dependent tiertine lower order
terms are the same for all families. Therefore below we gdil describe the family-dependent
corrections.

¢ All holomorphic cusp forms: Let F;, 5 be either the family of even weigltand prime
level N cuspidal newforms, or just the forms with even (or odd) fioral equation. Up
to O(log~* R), for test functionsp with supp($) C (—4/3,4/3), asN — oo the (non-
conductor) lower order term is approximately

— 1.33258 - 26(0)/ log R. (1.18)

Note the lower order corrections are independent of theiloigion of the signs of the func-
tional equations.

e CM Example, with or without forced torsion: Consider the one-parameter familigs=
3+ B(6T + 1)" overQ(T), with B € {1,2,3,6} andx € {1,2}; note these families
have complex multiplication, and thus the distributiontoéit Fourier coefficients does not
follow Sato-Tate. We sieve so th@iT" + 1) is (6/x)-power free. Ifx = 1 then all values
of B have the same behavior, and is very close to what we would tyet average of the
Fourier coefficients immediately converged to the corriggiting behavidf. If x = 2 the
four values ofB have different lower order corrections; in particularpBif= 1 then there
is a forced torsion point of order threg), 67 + 1). Up to errors of sizé)(log™® R), the
(non-conductor) lower order terms are approximately

B=1k=1: —2124-24(0)/logR,
B=1k=2:  —2201-24(0)/logR,
B=2k=2:  —2.347-26(0)/log R
B=3k=2:  —1.921-26(0)/logR
B=6,k=2:  —2.042-24(0)/logR. (1.19)

e CM Example, with or without rank: Consider the one-parameter familigs = 2% —
B(36T + 6)(367 + 5) overQ(T), with B € {1,2}. If B = 1 the family has rank 1, while
if B = 2 the family has rank 0; in both cases the family has complexipligation. We
sieve so that367" +6)(367 +5) is cube-free. The mostimportant difference between these
two families is the contribution from thé ;(F) terms, where thé = 1 family is approx-

imately —.11 - 25(0)/105; R, while the B = 2 family is approximately63 - 25(0)/log R.

2In practice, it is only a® — oo that the average moments converge to the complex multijdicalistribution;
for finite p the lower order terms to these moments mean that the answianfidies of elliptic curves with complex
multiplication is not the same as what we would obtain byaejlg these averages with the moments of the complex
multiplication distribution.
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This large difference is due to biases of sizein the Fourier coefficients,(p) in a family

of rankr. Thus, while the main term of the average moments opthEourier coefficients
are given by the complex multiplication analogue of Satte Ta the limit, for eactp there
are lower order correction terms which depend on the ranis i$ltin line with other results.
Rosen and Silverman [RASi] prove, ., @ (p) is related to the negative of the rank of
the family overQ(T"); see Theorern 5.8 for an exact statement.

e Non-CM Example: Consider the one-parameter familyy = z* — 3z + 127 overQ(T).
Up toO(log® R), the (non-conductor) lower order correction is approxihat

—2.703 - 26(0)/ log R, (1.20)

which is very different than the family of weigBtcuspidal newforms of prime leveV.

Remark 1.7. While the main term of thé-level density depends only very weakly on the faﬁlily
and is universal, we see that the lower order correctiondelepend on finer arithmetical properties
of the family. In particular, we see differences dependingwdether or not there is complex
multiplication, a forced torsion point, or rank. Furthdretliower order correction terms are more
negative for families of elliptic curves with forced addéireduction a2 and3 than for all cuspidal
newforms of prime levelV — oo. This is similar to Young’s results [Y01], where he consgter
two-parameter families and noticed that the number of psidieiding the conductor is negatively
correlated to the number of low-lying zeros. A better congmar would perhaps be to square-free
N with the number of factors tending to infinity, arguing aslit] to handle the necessary sieving.

The paper is organized as follows. In §2 we review the stahegplicit formula and then prove
our alternate version (replacing averages of Satake paeasneith averages of the Fourier coef-
ficients). We analyze all cuspidal newforms [ §3. After sgmaliminary expansions for elliptic
curve families in B4, we analyze several one-parameteflifesiin §5.

2. EXPLICIT FORMULAS

2.1. Standard Explicit Formula. Let ¢ be an even Schwartz test function whose Fourier trans-
form has finite support, sa@upp(gz?) C (—o0,0). Let f be a weightt cuspidal newform of level

N; see[(1.4) througH (1.8) for a review of notation. The expfarmula relates sums af over

the zeros of\ (s, f) to sums of$ and the Fourier coefficients over prime powers. We have (@ee f
example Equations (4.11)—(4.13) of [ILS]) that

log R  Agn(o ar(p)™ + Be(p)™ logp ~ log p
Z¢( ) B logR ZZ pm/? 1ogR¢ "ogR) "

p m=1

2.1)

3All that matters are the first two moments of the Fourier coiffits. All families have the same main term in
the second moments; the main term in the first moment is jestahk of the family. See [Mil2] for details for one-
parameter families of elliptic curves
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where
2
Apn(9) = 26(0)log <g> + > Arni(0)
j=1

> B
Ap (@) = /_ (G <Oéj + % + 1207;2) o(z)dz,

(2.2)

with ¢(z) =T"(2)/T'(z), ay = &2 anday = &L,

In this paper we concentrate on the first order correctiomgeto thel-level density. Thus
we are isolating terms of siz&/ log R, and ignoring terms that a@(1/log* R). While a more
careful analysis (as in [Yo1]) would allow us to analyze thesnductor terms up to an error of size
O(log™? R), these additional terms are independent of the family ans tiot as interesting for our
purposes. We use (8.363.3) df [GR] (which saya + b8) + 1(a — bB) = 2 (a) + O(b*/a?) for
a, b real andz > 0) and find

Ans(@) = 0N (aj D e ( — 5 bng). 2.3)

This implies that

Aex(@) = 3(0)logN +3(0) (w (%)w(%)_zlogﬂ)

1
+0 <(aj 1) Tog? R) . (2.4)

As we shall consider the case/ofixed andN — oo, the above expansion suffices for our purposes
and we write

Aex(6) = 3(0)log N+ (0)A(K) + Oy (ﬁ) | (2.5)

We now averagé (2.1) over agflin our family 7. We allow ourselves the flexibility to introduce
slowly varying non-negative weighisg(f), as well as allowing the levels of thé € F to vary.
This yields the expansion for thelevel density for the family, which is given bl (1.9).

We have freedom to choose the weightg(f) and the scaling paramet&. For families of
elliptic curves we often take the weights tobfor ¢ € [V, 2N] such that the irreducible polynomial
factors of the discriminant are square or cube-free, and athrerwise (equivalently, so that the
specializationF; yields a global minimal Weierstrass equatiotyg R is often the average log-
conductor (or a close approximation to it). For families aspidal newforms of weight and
square-free leveV tending to infinity, we might take z( f) to be the harmonic weights (to simplify
applying the Petersson formula) aRcaroundi? N (i.e., approximately the analytic conductor).

The interesting piece in (1.9) is

_ )™+ B¢(p)™ logp ~( logp
= -2 Z WR ZwR pTE ok <mlogR) . (2:6)

p m=1 f€.7:
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We will rewrite the expansion above in terms of the momenthefFourier coefficienta (p). If
pINy thenay(p)™ + B¢(p)™ = Ag(p)™. Thus

_ - 1 As(p)™ logp ~( logp
=T 2%:; Wg(F) f; wnlf) P TogR ” <m10g R)
p|Ny
= ay(p)™ + By(p)™ logp ~( logp
Zmz: ; wr(f) pm/2 log R ¢ <mlogR) '
PINy

2.7)

In the explicit formula we have terms suchgﬁm logp/log R). As gg is an even function, Taylor

expanding gives
~( logp ~ logp
o (mlogR> = ¢(0)+ O ((mlogR) > : (2.8)

As we are isolating lower order correction terms of sizéog R in S(F), we will ignore any term

which iso(1/log R). We therefore may replacz?ﬁm logp/log R) with g/bf(logp/ log R) at a cost of
O(1/log® R) for all m > 3, which yields

As(p)™ logp ~(  logp
Z Z WR Z r(f) p™/2 log R ¢ (mlogR)

p m=1 feFx
p|N¢
1 As(p) logp ~ (logp
-2
Zp: Wr(F) fze; wa(f) pl/2 log R ¢ log R
pyNy
Ar(p)? —2logp ~(_logp
-2 2
Z WR fezf w(f) P log R ¢ log R
pyNy
ar(p)™+ Br(p)™ logp ~ (logp 1
—1].(2.9
;; WR fezf r(f) pm/2 log R ¢ log R o log® R (29)
P Ng

We have isolated the: = 1 and2 terms fromp| NV, as these can contribute main terms (and not just
lower order terms). We used fpf N, thata s (p)+ 3, (p) = Ay (p) anday (p)*+5¢(p)? = As(p)*—

2.2. The Alternate Explicit Formula.
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Proof of Theorerh 113We use the geometric series formula for the> 3 terms in [2.9). We have

o [N, (BN as(p)? Bs(p)®
Malp) = 2 () ~(R) | = sno wasw)
(ar(p)® + B4(p)*)/p — (ay(p)* + B (p)?)
p(p+1-=2(p)y/P)
A(0)°/D = N (p)? — 3A;(p) /D + 2

p(p+1—=2s(p)\/P) ’
(2.10)

where we usev;(p)® + 05(p)® = Ar(p)® — 3X\s(p) anday(p)® + Br(p)* = Af(p)* — 2. Writing

-1
(p+1=X¢(p)y/p) ‘as(p+1)~" (1 - M) , using the geometric series formula and collecting

i p+1
terms, we find

2 VPBp+DAi(p) (PP +3p+DA(p)? =2 — DAs(p)"

M) = oD T per? st 2 Ty
(2.11)

We usel(2.B) to replaoﬁ(log p/log R) in (2.9) with &5(0) + O(1/log? R) and the above expansion
for M;(p); the proof is then completed by simple algebra and recathegdefinitions of4, »(p)
and A, x(p), (L12). O

2.3. Formulas for the » > 3 Terms. For many families we either know or conjecture a distribaitio
for the (weighted) Fourier coefficients. If this were theegahen we could replace thg. ~(p) with
the v moment. In many applications (for example, using the Pstersormula for families of
cuspidal newforms of fixed weight and square-free levelitantb infinity) we know the moments
up to a negligible correction.

In all the cases we study, the known or conjectured disinbus even, and the moments have a
tractable generating function. Thus we may show

Lemma 2.1. Assume for > 3 that

P e G (212)
’ O (@) otherwise,

and that there is a nice functiapn, such that
gu(z) = Moa® + Maz® + -+ = Z M, zt. (2.13)
(=2

Then the contribution from the> 3 terms in Theorem 1.3 is

26(0) p (p—1)logp 1
logR ;QM<(J?+1)2)' p+1 +O<log3R)' (219
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Proof. The big-Oh term inA,. =(p) yields an error of sizé/log® R. The contribution from the
r > 3 terms in Theorern 113 may therefore be written as

26(0) —1)logp ( )é ( 1 )
— +0| —— ). 2.15
log R ; p+1 Z log® R ( )
The result now follows by using the generating functignto evaluate thé-sum. U

Lemma 2.2. If the distribution of the weighted Fourier coefficientsisi¢s Sato-Tate (normalized
to be a semi-circle) with errors in the moments of 4@ / log” R), then the contribution from the
r > 3 terms in Theorem 1.3 is

2514 QAS(O) 1
- 240 7 2.16
log R * (log3 R) ( )
where 2+ 1)(p - 1)1
p+1)(p—1)logp
Verd = D oo £ 1) ~ .4160714430. (2.17)

If the Fourier coefficients vanish except for primes congtue a mod b (where¢(b) = 2) and the
distribution of the weighted Fourier coefficients for= a mod b satisfies the analogue of Sato-
Tate for elliptic curves with complex multiplication, théére contribution from the > 3 terms in

Theoreni 113 is R
2vcMap (0) < 1 )
-+ O — ], 2.18
log R * log® R (2.18)
where 23p + 1)1
D+ ogp
YCM,a,b = Z . (2.19)
p=a mod b (p T 1)3
In particular,
Yomis A 38184489, vyeana &~ 0.46633061. (2.20)

Proof. If the distribution of the weighted Fourier coefficientsisti¢s Sato-Tate (normalized to be

a semi-circle here), thehl, = C, = @%1 (2;) the /™ Catalan number. We have

1—+1—4z >
gst(z) = T—l—x:2x2+5x3+14x4+~-~: E Cy 2
P 2p+1
- T 2.21
o () = i &2

The value foryy,, ; was obtained by summing the contributions from the firstionlbrimes.

For curves with complex multiplication/, = D, = 2 - %(Qf) while the actual sequence is just
(25) = (¢+1)C,, we prefer to write it this way as the firgemphasizes that the contribution is zero
for half the primes, and it i§(>) that is the natural sequences to study. The generatingidurist

1—-V1—14 C
gCM(.I) = ﬁ —2x = 6$2+20$3+126$4+ = ZDg .TZ

p _ 2(3p+ 1)
gont ((p+ 1)2) -+ 1)* (2.22)
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The numerical values were obtained by calculating the dmutton from the first million primes.
0

Remark 2.3. It is interesting how close the three sums are. Part of thdsiésto the fact that these
sums converge rapidly. As the small primes contribute motbése sums, it is not surprising that
Yemia > Youms (the first primes foryon 4 are5 and11, versus? and13 for yowm 3)-

Remark 2.4. When we investigate one-parameter families of elliptiovesroverQ(7), it is im-
plausible to assume that for eaplthe r moment agrees with thé" moment of the limiting
distribution up to negligible terms. This is because theeca mosip data points involved in the
weighted averages, ~(p); however, it is enlightening to compare the contributicnirther > 3
terms in these families to the theoretical predictions wiverhave instantaneous convergence to
the limiting distribution.

We conclude by sketching the argument for identifying thespnce of the Sato-Tate distribution
for weight% cuspidal newforms of square-free levél— co. In the expansion ok (p)", to first
order all that often matters is the constant term; by therBsda formula this is the case for cuspidal
newforms of weight: and square-free leve&Y — oo, though this is not the case for families of
elliptic curves with complex multiplication. If is odd then the constant term is zero, and thus to
first order (in the Petersson formula) these terms do notibomé. Forr = 2¢ even, the constant

termis (%) = g!gﬁ)! = (), the/™ Catalan number. We shall write
r/2
AP = b (7). (2.23)
k=0

and note that if- = 2¢ then the constant term s, = C,. We have

1

Ar,]—‘(p) = m JZE; wR(f))‘f(p)r
fesp)
1 r/2 . r/2
_ r—2 _
- WR(F) fze; wR(f)kZ:%br,r—Qk)\f(p ) - kzngr,r—ZkAr,F;k(p)v (224)
fes(p)
where
Arae) = G 2 wnl )M ), (2.25)

feF
fesp)

We expect the main term to b, r., which yields the contribution described [n(2.16).

3. FAMILIES OF CUSPIDAL NEWFORMS

Let F be a family of cuspidal newforms of weightand prime levelV; perhaps we split by
sign (the answer is the same, regardless of whether or nophte $Ve consider the lower order
correction terms in the limit ad — oc.
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3.1. Weights. Let

OIEEDSETN | (R

n|No° p|N
Z(S, f) _ f:)‘f(?2> _ CN(S)L(Saf@)f); (31)
~ n ¢(s)
o () Z(s. ) (@)
S S, __ GON
L(s,sym*f) = T s Z(1,f) = @L(lasmef)- (3.2)
To simplify the presentation, we use the harmonic We%hts
wr(f) = (n(2)/Z2(1, f) = ((2)/L(1,sym*f), (3.4)
and note that AU
waF) = 3 waln) = E N o, 35)
fEH(N)

We have introduced the harmonic weights to facilitate aipglyhe Petersson formula to calculate
the average moments$. ~(p) from studyingA, #..(p). The Petersson formula (see Corollary 2.10,
Equation (2.58) of [ILS]) yields, formn,n > 1 relatively prime to the level,

1 _ 1/410g 2mnN
T fEHZW) wr(HIAIA () = G + O (<mn> / W) 3.6)

where),,,, = 1 if m = n and0 otherwise.

3.2. Results. From Theoreni 113, there are five terms to analyggi(F), So(F), Si(F), Sa(F)
andS,(F). One advantage of our approach (replacing sums;0f)” + (;(p)” with moments of
Ar(p)") is that the Fourier coefficients of a generic cuspidal nemfehould follow Sato-Tate; the
Petersson formula easily gives Sato-Tate on average as nyweheforms while letting the level
tend to infinity, which is all we need here. Thds »(p) is basically the™ moment of the Sato-Tate
distribution (which, because of our normalizations, is miseircle here). The odd moments of the
semi-circle are zero, and thig¢)'"" moment isC,. If we let

(p—Dlogp [ p
PO = ; p+1 <<p+1)2) ’ 5.7
then one finds -~
Sao(F) = —%@;@P(f), (3.8)

and we are writing the correction term as a weighted sum aéxpected main term of the moments
of the Fourier coefficients; see Lemial2.2 for another wayritfiwg this correction. These expan-
sions facilitate comparison with other families where tbefticients do not follow the Sato-Tate
distribution (such as one-parameter families of elliptieves with complex multiplication).

4The harmonic weights are essentially constant.[By[IZ, Hig)tcan fluctuate within the family as
N7 <y wr(f) <, N7 (3.3)
if we allow ineffective constants we can repla¥é with log NV for N large.
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Below we sketch an analysis of the lower order correctiomseof sizel/ log R to families of
cuspidal newforms of weiglitand prime levelV — oo. We analyze the five terms in the expansion
of S(F) in Theorem 1.B.

The following lemma is useful for evaluating many of the subhat arise. We approximategyr
below by using the first million primes (see Remark 3.3 for k@raate, more accurate expression
for vpnT). The proof is a consequence of the prime number theoreneaeton 8.1 of[[Yol] for
details.

Lemma3.1.Letd(t) = > _ logpandE(t) = 0(t) —t. If ¢ is a compactly support even Schwartz
test function, then -

2logp ~(,logp\ _ ¢(0)  2¢(0) * B(t) 1
zp:plogR¢ (210gR) 2 T log R (1 +/1 2 dt) +0 <10g3 R) ’ (3.9)
where

> E(t
YeNT = 1+/ %dt ~ —1.33258. (3.10)
1

Remark 3.2. The constantpnt also occurs in the definition of the constants andc, » in [Yo1],
which arise from calculating lower order terms in two-paeden families of elliptic curves. The
constants;, ; andc, » are in error, as the value gbxr used in|[Yol] double counted thel.

Remark 3.3. Steven Finch has informed us thait = —y — >_(logp)/(p* — p); see
http://ww. research. att. conf ~nj as/ sequences/ A083343 for a high precision
evaluation and |Lan, RoSc] for proofs.

Theorem 3.4.Let ¢ be supported in—o, o) for somes < 4/3 and consider the harmonic weights

wr(f) = ¢(2)/L(1,sym*f). (3.11)
Then
$(0) 2(—sT0 +YsTR2 — YsT.4 T ven)9(0) 1
S(F) = ’ O—— 3.12
(%) 2 T log R * log® R ( )
where
VST = >, ik ~ 0.7691106216
Yere = Y, WEADIR & 1851820642
(3.13)
Ysrd = 2 CeP(l) = 0.4160714430
venr = 1+ [P0 a o~ —1.33258
and
—Ysm0 T sz — Yerg = O (3.14)

The notation above is to emphasize that these coefficieists fiaom the Sato-Tate distribution.
The subscripd (resp. 2) indicates that this contribution arises from thg »(p) (resp. A, =(p))
terms, the subscriptl indicates the contribution frony z(F) (the A, x(p) terms withr > 3),
and we use PNT for the final constant to indicate a contributiom applying the Prime Number
Theorem to evaluate sums of our test function.
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Proof. The proof follows by calculating the contribution of the fipeces in Theorern 1.3. We
assumep is an even Schwartz function such thapp(¢) C (—o,0), with ¢ < 4/3, F is the
family of weight4 and prime levelV cuspidal newforms (wittv' — oo), and we use the harmonic
weights of §3.1. Straightforward algebra shbws

(1) SA/(f) < N-12,

(2) Su(F) = —%jt() (m) +0 (28 +0 (%) In particular, for test
functions supported if—4/3,4/3) we haveS,(F) = —%ﬁTj}fw) + O (R™°), wherevygy. 1

~ 4160714430 (see LemeIZ)
3) So(F) :¢(0)+2@V‘°NT 151:090) 1 (1 3R> whereygro = 57 282~ (7691106216,

log R p p(p+1)

venr = 1+ [7° B8 dt ~ —1.33258.
1/4

(4) S1(F) < sE 5 2 b < Ni1°=llog N.
(5) Assumer < 4. Then

$(0)  2ypnt (0) | Y5122 9(0) 1
So(F) = — — ’ O
2(F) 2 log R + log R - log® R
(4p* +3p+ 1) logp
) = ~ 1.1851820642 A
YST;2 E S 8518206 (3.15)

p

andypyr is defined in[(3.100).
The S4/ (F) piece does not contribute, and the other four pieces candritmultiples ofysr.o,
YsT;2: YsT:3 andypnr. U

Remark 3.5. Numerical calculations will never suffice to show thatst,; + vsri2 — Vgp. 7 1S
exactly zero; however, we have

9 4P +3p+1  (2p+1)(p—1)
J— . 9 1 - o 1
YsT0 +YSTi2 — Vst A Z ( p(p+1) + p(p+1)3 p(p+1)3 ey

= ZO logp = (3.16)

This may also be seen by calculatlng the lower order termmgyuesidifferent variant of the explicit
formula. Instead of expanding in terms®@f(p)™ + (;(p)™ we expand in terms ok;(p™). The
terms which depend on the Fourier coefficients are given by

As(p)™logp ~( logp logp ~ (., logp
§ YA e -V 2y =6 (2
el emoe ke *\"og k) T MplogR¢ log R

p|N m= W feH,;(N)
A(p™)logp (~( logp 1~ logp\\
PN m= 1 feH;;(N)
(3.17)

this follows from trivially modifying Proposition 2.1 of [¥1]. For N a prime, the Petersson formula
shows that only the second piece contributessfer 4/3, and we regain our result that the lower

5Except for theS 4 (F) piece, where a little care is required; see Appehdix A foailet
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order term of sizd / log R from the Fourier coefficients is jUQtYPNTQ/ﬁ\(O)/IOg R. We prefer our
expanded version as it shows how the moments of the Fourggficents at the primes influence
the correction terms, and will be useful for comparisonhvi@milies that either do not satisfy
Sato-Tate, or do not immediately satisfy Sato-Tate witHigége error for each prime.

4. PRELIMINARIES FOR FAMILIES OF ELLIPTIC CURVES

4.1. Notation. We review some notation and results for elliptic curves;[Bge'Sil, Si2] for more
details. Consider a one-parameter family of elliptic csrve
E: y? = 2*+ ATz + B(T), A(T),B(T) € Z[T). (4.1)

For eacht € Z we obtain an elliptic curver; by specializingl’ to t. We denote the Fourier
coefficients bya,(p) = M\(p)./p; by Hasse’s bound we haye,(p)| < 2,/p or |\(p)| < 2. The
discriminant and-invariant of the elliptic curveds; are

A(t) = —16(4A(t)* +27B(t)?), j(t) = —1728-4A(t)*/A(2). (4.2)
Consider an elliptic curvg? = 2° + Az + B (with A, B € Z) and a primep > 5. Asp > 5,

the equation is minimal if either* does not divided or p® does not divideB. If the equation is
minimal atp then

-y (AR - N (4.3)

z mod p

where N, (p) is the number of points (including infinity) on the reducedveur mod p. Note that
at+mp(p) = a+(p). This periodicity is our analogue of the Petersson formwiale it is significantly
weaker, it will allow us to obtain results for sufficiently athsupport.

Let £ be an elliptic curve with minimal Weierstrass equatiorpaaind assume divides the
discriminant (so the reduced curve moduyls singular). Themg(p) € {—1,0, 1}, depending on
the type of reduction. By changing coordinates we may whiereduced curve dg — ax)(y —
pr) = 23, If a = 3 then we say has a cusp and additive (or unstable) reductign ahdaz(p) =
0. If o # [ thenE has a node and multiplicative (or semi-stable) reductiom &t «, 3 € Q we
say F has split reduction andg(p) = 1, otherwise it has non-split reduction angd(p) = —1. We
shall see later that many of our arguments are simpler whene s no multiplicative reduction,
which is true for families with complex multiplication.

Our arguments below are complicated by the fact that for mathere aret such thaty? =
x3 + A(T)x + B(T) is not minimal atp when we specializ&' to ¢. For the families we study, the
specialized curve af = t is minimal atp providedp”* (k depends on the family) does not divide a
polynomial D(t) (which also depends on the family, and is the product of irc#ale polynomial
factors ofA(t)). For example, we shall later study the family with complexitiplication

y* = 2 + B(6T +1)", (4.4)

whereB|6> (i.e.,p| B impliespis2 or3) andx € {1,2}). Up to powers of and3, the discriminant

is A(T) = (6T + 1)*, and note that6t + 1,6) = 1 for all t. Thus for a givert the equation is
minimal for all primes provided thdi + 1 is sixth-power free itk = 1 and cube-free ik = 2. In
this case we would takB(t) = 6t + 1 andk = 6/x. To simplify the arguments, we shall sieve our
families, and rather than taking allc [V, 2N] instead additionally require tha@(t) is k™ power
free. Equivalently, we may take alle [N,2N] and set the weights to be zerolif(t) is not k™
power free. Thus throughout the paper we adopt the followoryentions:
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e the family isy? = 2 + A(T)z + B(T) with A(T), B(T') € Z|T], and we specializ&' to
t € [N,2N] with N — o0;

e we associate polynomial3;(7),..., D4(T) and integers, ..., k; > 3, and the weights
arewp(t) = 1if t € [N,2N] and D;(t) is k;" power free, and otherwise;

e log R is the average log-conductor of the family (see [DM2] for soestimates on its rate
of growth).

4.2. Sieving. For ease of notation, we assume that we have a family whéT8 is an irreducible
polynomial, and thus there is only one power, $ayhe more general case proceeds analogously.
We assume thdt > 3 so that certain sums are small ff < 2 we need to assume either the ABC
of Square-Free Sieve Conjecturept 6* N¢ exceed the largest value @ (t)| for ¢ € [N, 2N]. We

say at € [N,2N] is goodif D(t) is k™ power free; otherwise we sayis bad. To determine the
lower order correction terms we must evaluéter), which is defined in[(1.10). We may write

S(F) = %Zwmsg). (4.5)

As wg(t) = 0 if t is bad, for bad we have the freedom of defining(¢) in any manner we may
choose. Thus, even though the expansionafdp) in (4.3) requires the elliptic curvé; to be
minimal atp, we may use this definition for all We use inclusion - exclusion to write our sums
in a more tractable form; the decomposition is standard (seexample,[[Mil2]). Letting/ be an
integer (its size will depend athandk), we have

2N
1
D(t) ki;i\;/er free
1 log N 2N 1 SNd/k 2N
- Soud Y s+ oo Y s,
WR(‘F) d=1 t=N WR(F) _ £ t=N
D(t)=0 mod dF d=1+log" N D(t)=0 mod dF
(4.6)
For many families we can show that
2N
N
Yo S =0 (ﬁ) 4.7)
t=N
D(t)=0 mod dF
If this conditiorfi holds, then applying the Cauchy-Schwarz inequality to)(¢i€lds
1 log N 2N 1 SNd/k N
S(F) = — d SO +0 | — VN
F = Z () Z (t) TS Z[ Var
- D(¢)=0 mod dk d=1+log" N
1 log? N 2N N
= u(d S(t)+ 0O < - (log N _(ék_l){) . (4.8
W) 2 M Z 1)+ 0 ( g7+ (og )

D(t)=0 mod dF

6Actually, this condition is a little difficult to use in prace. It is easier to first pull out the sum over all primes
and then square; see [Mil2] for detalils.
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For all our familiesiVz(F) will be of size N (see[Mil2] for a proof). Thus fof sufficiently large
the error term is significantly smaller thaplog® R, and hence negligible. Note it is important that
k > 3, as otherwise we would have obtainied /V to a non-negative power (as we would have
summedl /d). For smallerk we may argue by using the ABC or Square-Free Sieve Conjecture

The advantage of the above decomposition is that the sunovarein arithmetic progressions,
and we may exploit the relation.,,(p) = a:(p) to determine the family averages by evaluating
sums of Legendre symbols. This is our analogue, poor as ithealp the Petersson formula.

There is one technicality that arises here which did nof inlgM There the goal was only
to calculate the main term in thelevel densities; thus “small” prime® (ess than a power of
log N) could safely be ignored. If we fix @& and consider alt with D(¢) = 0 mod d*, we ob-
tain a union of arithmetic progressions, with each progoesbaving step sizel*. We would
like to say that we basically haveV/d*)/p complete sums for each progression, with summands
Aty (D), Gyyrarp(P)s Aryr2ar,(p), @and SO ON. The problem is thaifd then we do not have a complete
sum, but rather we have the same term each time! We discustohmamdle this obstruction in the
next sub-section.

4.3. Moments of the Fourier Coefficients and the Explicit Formula Our definitions imply that
A, r(p) is obtained by averaging;(p)” over allt € [N,2N] such thap | A(¢); the remaining
yield A} (p). We will have sums such as

1 logt N 2N
AT dould D S (4.9)
f d=1 D(t)zt():god dk

In all of our familiesD(T") will be the product of the irreducible polynomial factors&fT"). For
ease of exposition, we assurbgT’) is given by just one factor.

We expandS(F) andS(t) by using Theorem 113. The sum §ft) overt with D(t) = 0 mod d*
breaks up into two types of sums, those whare) = 0 mod p and those wheré(¢) # 0 mod p.
For a fixedd, the goal is to use the periodicity of thesums to replacel, ~(p) with complete sums.

Thus we need to understand complete sums.dffN,2N], d < log® N andp is fixed, then the
set oft such thatD(¢) = 0 mod d* is a union of arithmetic progressions; the number of aritliene
progressions equals the number of distinct solution® ¢ = 0 mod d*, which we shall denote
by vp(d*). We will have(N/d*)/p complete sums, and at mgssummands left over.

Recall

1 1

A, = — w Ae(p)', Al = — w Me(p)",  (4.10
fes(p) f€S(p)
and set
Arrp) = D al) =" Y M), =) = > alp) (4.11)
P TAl b A N

Lemma 4.1. Let D be a product of irreducible polynomials such that (i) for@afio two factors are
divisible by the same prime; (ii) the sarhe> 3 (see the conventions on pdge 18) is associated to
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each polynomial factor. For an§> 7 we have

A, #(p

AT’,]: (p) = P 7;5/2)
-7 (P)

A;’,}—(p) = P _’;7‘/2

1
+O0O | ———
<logé/2N

1
+0(—7— .
| <logé/2N>

(4.12)

Proof. For our family, thed > log" N terms give a negligible contribution. We rewrite »(p) as

Ar,]: (p) =

1
Wr(F) Z

Ae(p)”

t€[N,2N],p 4 D(t)
D(t) k—power free

log! N

1 logt N
— u(d
Wr(F) ; (

1
~ Wg(F)

logt N

d=1

2N

D

te[N,2N],p { D(t)
D(t)=0 mod dF

A(p)" + O (1og—f/2 N)

p(d*)N/d*
) / > M) | +0
v

Wgr(F)

11(d)dp|a M > Nlp)

t mod p

pD(t)

2.

logt N
p2'

d

(4.13)

whereé,q = 1 if p|d and 0 otherwise. For sufficiently small support the big-Otmt@bove is

negligible. Ask > 3, we have

Wr(F) =

NI (1— VD(gk>) +0

p

(o)
log?? N

Ny u<d>;5<d’f> 0 (L) |

log?? N

(4.14)

For the terms withu(d)d, 4 in (4.13), we may writel asdp, with (d, p) = 1 (the u(d) factor forces
d to be square-free, gd|d). For sufficiently small support, (4.1.3) becomes

A, 7(p) vp(p") vp(P*)\ —02 A7) .
e | (1 +0 (log™2N)
this is because
1 hiN p(dvp(d)N I(iN p(d VD dk
Wr(F) 4= dk N
pld p+d

Y l<1—“D;f’”>*+o<bg%

N)] (4.16)

(4.15)
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(the last line follows because of the multiplicativity mf (see for example [Nag]) and the fact that
we are missing the factor correspondingjoThe proof forA; »(p) follows analogously. 0

We may rewrite the expansion in Theorem|1.3. We do not statetist general version possible,
but rather a variant that will encompass all of our examples.

Theorem 4.2(Expansion forS(F) for many elliptic curve families)Lety? = 23 + A(T)x + B(T)

be a family of elliptic curves ovéd(T"). Let A(T') be the discriminant (and the only primes dividing
the greatest common divisor of the coefficientd¢f’) are 2 or 3), and letD(7") be the product of
the irreducible polynomial factors ak(7"). Assume for alt that no prime simultaneously divides
two different factors oD(¢), that each specialized curve has additive reductiohand3, and that
there is ak > 3 such that forp > 5 each specialized curve is minimal provided t#(T") is k™
power free (if the equation is a minimal Weierstrass equata all p > 5 we takek = oo); thus
we have the samefor each irreducible polynomial factor dd(7"). Letvp(d) denote the number
of solutions toD(t) = 0 mod d. Setwy(t) = 1if t € [N,2N] and D(t) is k" power free, and)
otherwise. Let

Arp) = D ) =07 ) M), Asp) = D ab)

t mod p t mod p t mod p
pLA() PHA(H) PIAH)
- a(p)? Ai(p)?
Ar(p) = =
W= Y e —aG) T 2 Lo AGIVE
PRA(L) pLA(H)
vp(pF v (pF)\ 7!
Hpp(p) = 14720 <1— olp )) . (4.17)
p p
We have
p)Hp (p)logp
S(F) = _2¢ ZZ m+1 log R
p m=l1

-~ 2./40]:( )HDk 1ng 2./40]-‘ HD k( )lng -~ logp
-9 E + 2 E 2
4(0) p*(p+1)logR p?log R log R

B Am (p)Hp(p) logp ~ (logp -~ Az (p)Hpk(p)(3p + 1) logp
2 Z p? log R ¢ <log R) +20(0) Z P(p+ 1)2 log R

Az 7(p)Hp x(p)logp ~ ( logp ~ Az 7(p)Hp 1(p) (4p® + 3p + 1) logp
—2 2 2 ’ ’
Z p*log R ¢ log R +2¢(0) Z p(p+1)3logR

p

_2&5(0) Z A]:(p)HDﬁ(p)p?’ﬂ(p —1)logp L0 < 1 )

. p(p+ 1)2log R log® R
1
= Sa(F)+ So(F) + S1(F) + S2(F)+ Sz(F)+ O (log3R> ) (4.18)

If the family only has additive reduction (as is the case for examples with complex multiplica-
tion), then thed;, ~(p) piece contributes.
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Proof. The proof follows by using Lemma 4.1 to simplify Theorém]lad [2.8) to replace the
¢(mlogp/log R) terms with¢(0) + O(log™* R) in the A, (p) terms. See Remafk1.4 for com-

ments on the need to numerically evaluatethep) piece. O
For later use, we record a useful variant of Lenima 3.1.

Lemma 4.3. Let p be the Euler totient function, and

Oup(t) = > logp, Eap(t) = O,4(t) oL (4.19)

p=a mod b

If g/bf is a compactly support even Schwartz test function, then

2logp ~ (logp\ _ (0) | 26(0) /°° 2E1,5(t) 1
2zz})log;113¢<2log;R) 2 +logR L+ 1 12 dt)+0 log® R/’ (4.20)

p

where

% 2, 4(t
YPNT;1,3 = 1+/ ;’( ) dt ~ —2.375
1
2 4(t
TeNTLA = 1+/ ;’24( )t ~ 2204 (4.21)
1

venT:1,3 andypnr:1 4 Were approximated by integrating up to the four milliontinpe, 67,867,979.

Remark 4.4. Steven Finch has informed us that, similar to Reniark 3.3gusesults from[[Lan,
Mor] yields formulas forypxr.1 3 andypnr.1,4 Which converge more rapidly:

1 1
’}/pNT.l 3 — —27 _— 4 10g 27T + 10g 3 + 6 ].Og F - _— 2 Z &
e 3 p2 — p61,3(p)
p=1,2 mod 3
~ —2.375494
1 log p
YPNT:1,4 = —2’)/ — 310g27r—|—410gf‘ (1) -2 Z m
p=1,3 mod 4
N~ —2.224837; (4.22)

here~ is Euler’s constant anél ,,(p) = 1 if p = 1 mod n and0 otherwise.

5. EXAMPLES: ONE-PARAMETER FAMILIES OF ELLIPTIC CURVES OVERQ(T)

We calculate the lower order correction terms for severalparameter families of elliptic curves
overQ(T'), and compare the results to what we would obtain if there wstsint convergence (for
each primep) to the limiting distribution of the Fourier coefficients. e/gtudy families with and
without complex multiplication, as well as families withréed torsion points or rank. We perform
the calculations in complete detail for the first family, andrely highlight the changes for the other
families.

5.1. CM Example: The family y? = 23 + B(6T + 1)~ over Q(T).
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5.1.1. Preliminaries. Consider the following one-parameter family of ellipticrees overQ(7")
with complex multiplication:

yv* = 2 + B(6T +1)", Be{1,2,3,6}, vc{l,2}, k=6/x. (5.1)

We obtain slightly different behavior for the lower ordem@xtion terms depending on whether
or not B is a perfect square for all primes congruent to 1 modulo 3.e&xample, ifB = b* and

k = 2, then we have forced a torsion point of order 3 on the ellipticve overQ(7"), namely
(0,b(67 + 1)). The advantage of usirgj’ + 1 instead of! is that(67" + 1,6) = 1, and thus we
do not need to worry about the troublesome priesd3 (eacha,(p) = 0 for p € {2,3}). Up to
powers of2 and3 the discriminant ig67" + 1)”; thus we takeD(T") = 67" + 1. For each prime
the specialized curvé&; is minimal atp provided thap? | 6¢ + 1. If p*|6t + 1 thenwg(t) = 0,

so we may define the summands any way we wish; it is converoensé [(4.B) to define,(p),
even though the curve is not minimalzatin particular, this implies that;(p) = 0 for any¢ where
p3|6t + 1.

One very nice property of our family is that it only has additreduction; thus ip|D(t) but
p* D(t) thena,(p) = 0. As our weights restrict our family tO(¢) beingk = 6/~ power free, we
always usel(4]3) to defing(p).

It is easy to evaluatel, »(p) and A, #(p). While these sums are the average first and second
moments over primesot dividing the discriminant, as;(p) = 0 for p|A(¢) we may extend these
sums to be over all primes.

We use Theorem 4.2 to write the 1-level density in a tractaddener. Straightforward calcula-
tion (see Appendik Bl1 for details) shows that

p—1 ifp>5
A = .
07(p) {0 otherwise

./41,]:(]9) = 0

292 —2p if p=1mod3
AZ}'(p) _ {p p p

5.2
0 otherwise. (5.2)

Not surprisingly, neither the zeroth, first or second morseeipend orB or onx; this universality
leads to the common behavior of the main terms invtHevel densities. We shall see dependence
on the parameter® andx in the higher moments!, ~(p), and this will lead to different lower
order terms for the different families.

As we are using Theorelm 4.2 instead of Theofrerh 1.3, each grimas weighted by

vp(p¥) (1 ~vp(PY)

-1
ok o ) = Hpi™(p) + Hp3 (p), (5.3)

with Hp3(p) = 1. Hp%°(p) arises from sieving our family td(t) being (6/r)-power free. We
shall calculate the contribution of these two pieces seéplgra\We expect the contribution from
H]%‘f,ge(p) to be significantly smaller, as eagksum is decreased by approximatejip*.

Hpi(p) = 1+

5.1.2. Contribution fromH 335" (p).

We first calculate the contributions from the four piecesH§§%"(p). We then combine the
results, and compare to what we would have had if the Fouoiefficients followed the Sato-Tate
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distribution or for each prime immediately perfectly falled the complex multiplication analogue
of Sato-Tate.

~

Lemma 5.1. Letsupp(¢) C (—o,0). We have

2@3(0)-(27PNT—V(25-) _7(1)) 1 o—
So(F) = (0) + R 0(10g3 R)+0<N D 64
where
(>5) 4logp
Tomo = Z ~ 0.709919
Splp+1)
2log2 2log3
W= 02g n ‘;g ~ 1.4255554, (5.5)

andypnr is defined in Lemma3.1.
Note~Grry is almostysr, (see[3:IB)); the difference is that here> 5.
Proof. Substituting forA, »(p) and using[(2.8) yields
2(5(0) 4logp 2logp ~ [ logp 1
S = — 2 2 O ——). 5.6
o(F) log R Z (p+1) + ZplogR¢ log R * log® R (56

p=>5 p p>5

The first prime sum converges; using the first million primes fimd 7(02M5;)0 ~ 0.709919. The
remaining piece is

2logp ~ (. logp\ 20(0) (2log2 2log3 1
2 2 — Ool——). 5.7
Zp: plog R ¢ ( log R log R 2 * 3 i log® R ®.7)
The claim now follows from the definition 0;52 and using Lemmg_3.1 to evaluate the remaining
sum. U

~

Lemma 5.2. Letsupp(¢) C (—o,0) and

2(5p* +2p +1)logp
(1,3)
Yoo = E ~ (.6412881898. (5.8)
o p=1mod 3 p(p + 1)3
Then
oy 1,3)
o(0)  26(0) - (—vpNT 23 + Yorra) 1 -1
= — ’ O —— O(N° 5.9

whereypnt.1 3 = —2.375494 (see Lemmia 4.3 for its definition).

Proof. Substituting our formula foA, ~(p) and collecting the pieces yields

21ogp~ [ logp 26(0) 2(5p* +2p+ 1) logp
_ 9 . 5.10
52 (F) Z log R ¢ ( log R * log R pEl%)d3 plp+1)> (510

The first sum is evaluated by Lemmal4.3. The second sum caseand was approximated by
taking the first four million primes. U

p=1mod 3
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Lemma 5.3. For the familiesFp .: y* = 2* + B(6T + 1)" with B € {1,2,3,6} andx € {1, 2},
we haveS ;(F) = —2¢%% . 5(0)/log R + O(log™® R), where

CM;A, B,k
7((311\7/?;),4;1,1 ~ 3437
7((31@314;172 ~ 4203
7((311\7/?;)14;2,2 ~ 5670
7((31@314;372 ~ 1413
7((31@314;672 ~.2620; (5.11)

the error is at most0367.

Proof. As the sum converges, we have written a program in C (using BAR library) to approxi-
mate the answer. We used all primes. 48611 (the first 5000 primes), which gives us an error of
at most abou% . m ~ .0367. The error should be significantly less, as this is assuming n
oscillation. We also expect to gain a factorlg® as half the primes have zero contribution. [
Remark 5.4. Whenx = 1 a simple change of variables shows that all four valueB t¢ad to the
same behavior. The caserof= 2 is more interesting. Ik = 2 andB = 1, then we have the torsion
point (0,67 + 1) on the elliptic surface. IB € {2, 3,6} and (f) = 1then(0, 6t + 1 mod p) is on

the curveE, mod p, while if (f) = —1then(0, 6t + 1 mod p) is not on the reduced curve.

5.1.3. Contribution fromH 3% (p).

Lemma 5.5. Notation as in Lemm&5.3, the contributions from tHg°(p) sieved terms to the
lower order corrections are

B Q(Vélﬁ/??siovo;ou + 7(011\,/5[’)7)810‘/0;3’“)5(0) N (L) | 512)
log R log® R
7(011\’/?,) sievero12 ~  —.004288
7(011\’/?,) sieve;1,1 .000446
7(011\’/?,) sieves;1,2 .000699
7((311(/?,) sevediz2  ~ 000761
781\’/:1)’,) sieve:s2  ~ 000125
YL sevessz 000199, (5.13)

where the errors in the constants are at mo&t!® (we are displaying fewer digits than we could!).

Proof. The presence of the additional factorigfp® ensures that we have very rapid convergence.
The contribution from the > 3 terms was calculated at the same time as the contributioanmha
5.3, and is denoted clﬂi)sieve;B,H- The other termsr{ € {0, 1,2}) were computed in analogous

manners as before, and grouped together-fig O

sieve;012*
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5.1.4. Results.We have shown

Theorem 5.6. For o < 2/3, the Hp3"(p) terms contributep(0)/2 to the main term. The lower
order correction from thed 35 (p) and H3%°(p) terms is

2(/5(0) ’ (27PNT - fy(CZI\/?)O 7513) YPNT;1,3 T W(CII\’/:[S)Q Véll\?)A B 7(011\/:[5) sieve;012 rygl\?) sieve; B /1)
log R
+0 ( ! ) (5.14)
log® R

Using the numerical values of our constants for the five @dwaf( B, ) gives, up to errors of size
O(log™® R), lower order terms of approximately

B=1k=1: —2124-2¢(0)/logR,
B=1k=2:  —2201-24(0)/logR,
B=2k=2:  —2.347-26(0)/log R
B=3k=2:  —1921-24(0)/logR
B=6,k=2:  —2.042-2¢(0)/logR. (5.15)
These should be contrasted to the family of cuspidal nev&owhose correction term was
YPNT %«2 ~ —1.33258 - iif(]g (5.16)

Remark 5.7. The most interesting piece in the lower order terms is fromwleighted moment
sums withr > 3 (see Lemm&5]3); note the contribution from the sievinggsiicantly smaller
(see LemmaX5]5). As each curve in the family has complex pligdition, we expect the limiting
distribution of the Fourier coefficients to differ from Salate; however, the coefficients satisfy
a related distribution (it is uniform if we consider the teld curve over the quadratic field; see
[Mur]). This distribution is even, and the even moments are, 20, 252 and so on. In general, the
2" momentisD, = 2- %(zf) (the factor of2 is because the coefficients vanish fo= 2 mod 3, so
those congruent ®modulo3 contribute double); note tH#™" moment of the Sato-Tate distribution
is Cy = 75 (%). The generating function is

1—y1-4 -
g(nw(l’) = ﬁ —2xr = 6.132 + 20373 + 126374 +- = Z D[.TZ;
£=2

these numbers are the convolution of the Catalan numbertharakntral binomial. The contribu-
tion from ther > 3 terms is

26/(0) (p—1)logp ‘
" logR Z p+1 Z (p+1 ) ' (5.18)

p=1mod 3

(5.17)

Using the generating function, we see that theum is just2(3p + 1)/(p — 1)(p + 1)?, so the
contribution is

-~

13
25(0) Z 23p+ Dlogp _ Deneq 90)
log R _ (p+1)3 logR

(5.19)
mod 3
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where taking the first million primes yields

yéllvi’)A ~ .38184489. (5.20)

It is interesting to compare the expected contribution ftbenComplex Multiplication distribution
(for the moments > 3) and that from the Sato-Tate distribution (for the moments 3). The
contribution from the Sato-Tate, in this case, was showremind 2.2 to be

2’731“;,1 ¢(0)
logR '’
Note how close this is to .38184489, the contribution fromm@omplex Multiplication distribution.

5.2. CM Example: The family y? = 23— B(36T +6)(367 +5)x overQ( ). The analysis of this
family proceeds almost identically to the analysis for tmiliesy? = x>+ B(6T + 1)~ overQ(T),

with trivial modifications becaus®(7') has two factors; note no prime can simultaneously divide
both factors, and each factor is of degieeThe main difference is that now(p) = 0 whenever

p = 3 mod 4 (as is seen by sending— —z). We therefore content ourselves with summarizing
the main new feature.

There are two interesting cases. Af = 1 then the family has rank over Q(7") (see Lemma
[B.5); note in this case that we have the pdiséT" + 6,367 + 6). If B = 2 then the family
has rankd over Q(7"). This follows by trivially modifying the proof in Lemmia B.5esulting in
Ay 7(p) = —2p(1%) if p = 1 mod 4 and0 otherwise (which averages toby Dirichlet’s Theorem
for primes in arithmetic progressions).

As with the previous family, the most interesting piecesthedower order correction terms from
S z(F), namely the pieces frof/ 35" (p) and H3%(p) (as we must sieve). We record the results

CM; A B

from numerical calculations using the first 10,000 primeg. Wyite the main term as (the
1,4)

(1,4) denotes that there is only a contribution frene 1 mod 4) and the sieve term agy; ceve.5-
We find that

Sao(F) = — g7 ~ 0.4160714430. (5.21)

1,4 1.4
ryéM)A 1 ~ —0.1109 ryéM)smvo 1 ~ —.0003 ( )
5.22
14 1,4
ryéM)A 2 ~ 06279 rYéM)smvo 2 ~ 0013

What is fascinating here is that, whéh = 1, the value ofyéll\;AB is significantly lower than

what we would predict for a family with complex multiplicati. A natural explanation for this is
that the distribution corresponding to Sato-Tate for camuth complex multiplication cannot be
the full story (even in the limit) for a family with rank. Ros@nd Silvermarn [RoSi] prove

Theorem 5.8(Rosen-Silverman)Assume Tate’s conjecture holds for a one-parameter fafhdf/
elliptic curvesy? = 23+ A(T)x+ B(T') overQ(T) (Tate's conjecture is known to hold for rational
surfaces). Letlg(p) = £ 3=, o, @(p). Then

lim —Z —Ag(p)logp = rank E(Q(T)). (5.23)

p<X

Thus if the elliptic curves have positive rank, there is giglbias among the;(p) to be negative.
For a fixed primep the bias is roughly of size-r for eacha,(p), wherer is the rank ovef)(7") and
eacha,(p) is of size,/p. While in the limit asp — oo the ratio of the bias ta,(p) tends to zero, it
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is the small primes that contribute most to the lower ordensge Asvélﬁ)j 5 arises from weighted

sums ofa,(p)?, we expect this term to be smaller for curves with rank; thisarn out beautifully
by our data (seé (5.22)).

5.3. Non-CM Example: The family y? = 23 — 3z + 127 over Q(T'). We consider the family
y? = 23 — 32+ 12T overQ(T); note this family does not have complex multiplication. Bbr the
above is a global minimal Weierstrass equation, @) = a,(3) = 0. Straightforward calculation
(see Appendik BI3 for details) shows that

p—2 ifp>5
A pr—
07(p) {0 otherwise
3 -3 .
3+ (7)) if p>5
PR (GG
17(P) {0 otherwise
2 -3\
p—2p—2—p(—) ifp>5
A = p 5.24
27(p) {0 otherwise. ( )

Unlike our families with complex multiplication (which onhad additive reduction), here we
have multiplicative reductidhand must calculatel;, ~(p). We have

0 ifp=2,3
AL F(p) = (2 if m is even (5.25)
)+ () if misodd;
this follows (see Appendix Bl3) from the fact that for a giyetinere are only twé modulop such
thatp|A(#), and one has;(p) = (%) and the other has,(p) = ().
We sketch the evaluations of the terms frdm (4.18) of The@n for this family, note that
Hp (p) = 1. We constantly use the results from Apperidix|B.3.

Lemma 5.9. We haveS_y (F) = —27%)(0)/ log R + O(log™® R), where

1 1 1
A =SBy B S BP |  _0.082971426.  (5.26)
el ~ -1 ~ -1

p=1 mod 12 pP=5 mod 12

Proof. As A, »(p) = ()™ + (-))", the result follows by separately evaluatimgeven and odd,

and using the geometric series formula. O
Lemma 5.10. We have

24/5(0) : (7(3) + - 29pNT) 1
So(F) = ¢(0) — s on 5’3 +0 (—loggR) (5.27)
where 4 21
3) p — 2)logp
— ———== & (0.331539448, 5.28
0 p; P(p+1) 529

vpnr is defined in Lemmia 3.1 amég is defined in LemmaB.1.

’As we have multiplicative reduction, for eatlsp — oo thea,(p) satisfy Sato-Tate; see [CHT, Tay].
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Proof. Forp > 5 we haveA, ~(p) = p — 2. They term comes from collectlng the pieces whose

prime sum converges for any bound@dand repIaC|ng¢(2 logp/log R) with gb( ) at a cost of
O(log™? R)), while the remaining pieces come from using Lenima 3.1 tduewa the prime sum

which converges due to the compact supporb.of O
Lemma 5.11. We haveS; (F) = -2+ (0)/log R + O(log® R), where
(3 _ §) (—_3)] (p—1)logp
= + = = —0.013643784. 5.29
n ; Kp p pi(p+1)? (5.29)

Proof. As the prime sums decay like/p?, we may replaceg(logp/ log R) with $(0) at a cost of
O(log™* R). The claim follows fromA, (p) = (%) + (7’) and simple algebra. O

D
Lemma 5.12. We have

23(0) - (o = 1)
52(f') _ _¢(20) o (b( ) (ry loggRry 3 +’YPNT) —|—O <10g13 R) (530)
where
I Gl ) i e ) i3 M
2 p>5 p(p+1)>
~ .085627. (5.31)

Proof. Forp > 5 we haved, »(p) = p* —2p—2— (‘73)1). Thewég’) term comes from collecting the

pieces whose prime sum converges for any bour@dmd replacing$(2 log p/ log R) with 5(0)
at a cost o0 (log™2 R)), while the remaining pieces come from using Lenima 3.1 tduewa the

prime sum which converges due to the compact suppast of O
Lemma 5.13. We haves 1(F) = 27 $(0)/log R + O(log® R), where

79~ 3369, (5.32)
Proof. As the series converges, this follows by direct evaluation. O

We have shown

Theorem 5.14.The Sy(F) and S, (F) terms contribute>(0) /2 to the main term. The lower order
correction terms are

26(0) - (1% + 9 + 27 + 9 + 92 + ] — pwr) ]
— + 3 ; (5.33)
log R log” R
using the calculated and computed values of these congjavas
26(0) 1
—2.703 - +0 . 5.34
log R (log3 R) ( )

Our result should be contrasted to the family of cuspidalfoems, where the correction term

was of size R
$(0) 2¢(0)
~ —1.33258 - .
log R log R

[\

YPNT ° (5.35)
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Remark 5.15. It is not surprising that our family of elliptic curves has dferent lower order

correction than the family of cuspidal newforms. This is dadarge part, to the fact that we do not
have immediate convergence to the Sato-Tate distributiothe coefficients. This is exasperated
by the fact that most of the contribution to the lower ordarections comes from the small primes.

APPENDIX A. EVALUATION OF S4(F) FOR THE FAMILY OF CUSPIDAL NEWFORMS

Lemma A.1l. Notation as in BB, we have

~A o'/
SA(]:) = —M—FO(;) + O(IOgR> +0(w>_

log R RMlog’ R N3 N
(A.36)
In particular, for test functions supported {r-4/3,4/3) we have
2Yg7,5 9(0)
- - A.37
Sa(F) g TOEY), (A.37)
whereyy,. 7 &~ 4160714430 (see Lemma 2.2).
Proof. Recall
Sa(F) = —26(0 ZZ ArrD)p(p — 1) logp (A.38)
4 (p —|— 1) "+1 logR '

p r=3

Using |4, #(p)| < 2", we may easily bound the contribution fromarge, sayr > 1 + 2log R.
These terms contribute

— 2p"*(p—1)logp
< Z Z (p + 1)r+1 log R

p r=142logR

1 - 2.0\’
< logRZIng Z (ﬁ)

r=1+2log R
2\/7 2log R
< mr2er (53)
2log R
1 2v/2 log p 1
2007 - | X2 : A.39
< log R 007 ( 3) +p>z2:008p(210g1%)/3 < R7log R’ ( )

note it is essential th&/2/3 < 1. Thus it suffices to study < 2log R.
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2log R /2

/200
_ Argg(p)p™*(p — 1) logp 1
Sa(F) = —2¢(0 ij 2; ];bw 2 e O\ TR

" log R ¢

2¢4(0) p—1)logp 1

logR; P+ 1 Z TO\ g R

0 r/2
Zng:}% z/: o Anra(p (p)p"*(p — 1) logp (A.40)

k;ér/2

In Lemma 2.2 we handled the firstand /-sum when we summed over dll> 2; however, the
contribution from¢ > log R is bounded by8/9)°¢** < R~!!. Thus

_ 27957133 (0) 1
SalF) = g 7 TO\ Bilog
2log R (r—2)/2
b

logR Z ;

To finish the analysis we must study tb;g,_%A,n,;;k(p) terms. Trivial estimation suffices for all
r whenp > 13; in fact, bounding these terms for small primes is what n&taed our restricting
tor < 2log R. From [3.6) (the Petersson formula with harmonic weights¥iwd

pr=2)/4 1og (p(r—2k)/4N) < rpr/4log(pN)

A ru(p)p?(p — 1) logp
(p_|_1>7"+1

(A.41)

r,r—2k

Arri(p) < N N (A.42)
As |22 o] <27, we have
27g1,4 9(0) 1 2L rorp/A log(p)
T T TR =R . (A.43
) st (R'” logR) Z z; prigr | A4

As our Schwartz test functions restricto be at mosi?, the second error term is bounded by

210gR 3/4 T
1 log(pV) 2p%/
< NlogRZOg(p D Pl

r=3
2log R 2log R r
log R [ 3/4) 2p5/4
<« 2HY Y ()2 X
N Lp<2007 7=3 p+l p>2008 =3 p+1
log R 9. 3374\ 218 ft 2p3/4
2007 log R
< TN ( 1 o H Tt >Z p+1
L p>2008
N21og® R log R <~ L log? R N%/*log R
<< + Z p_ /4 << 73 Y (A'44)
N p=2011 N N

which is negligible provided that < 4/3. O
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APPENDIX B. EVALUATION OF Arf FOR FAMILIES OF ELLIPTIC CURVES

The following standard result allows us to evaluate the ségnoment of many one-parameter
families of elliptic curves oveg).

Lemma B.1(Quadratic Legendre Sumshssume: andb are not both zero mogandp > 2. Then

(B.1)

- a

— (;) otherwise.

r 1<at2+bt—|—0) {(p—l)(Z) if p b — dac

t

B.1. The family y* = 2 + B(6T + 1) over Q(T).

In the arguments below, we constantly use the fact thatAf¢) thena,(p) = 0. This allows us
to ignore thep A(¢) conditions. We assumB € {1,2,3,6} andx € {1, 2}.

Lemma B.2. We have

p—1 ifp>5
— B.2
Ao.#(p) {0 otherwise. (B-2)

Proof. We haveA, »(p) = 0if p = 2 or 3 because, in these cases, there aresuch thapy| A(t).
If p > 5thenpy A(t) is equivalent t | B(6t + 1) mod p. As 6 is invertible modp, ast ranges
overZ/pZ there is exactly one value such th2¢6¢ + 1) = 0 mod p, and the claim follows. [

Lemma B.3. We haveA,; r(p) = 0.

Proof. The claim is immediate fop = 2,3 or p = 2 mod 3; it is also clear whem = 1. Thus we
assume below that= 1 mod 3 andx = 2:

—Aigp) = ) alp)

t mod p

_ Z Z <x +BGt+1) Z Z <x +Bt2>. (B.3)

t mod p x mod p t mod p x mod p

Thex = 0term gives(f) (p—1), and the remaining—1 values ofr each give- (f) by LemmaB.1.
ThereforeA,; »(p) = 0. O

Lemma B.4. We haveA, »(p) = 2p* — 2p if p =1 mod 3, and 0 otherwise.
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Proof. The claim is immediate fgp = 2, 3 or p = 2 mod 3. We do the proof for the harder case of
k = 2; the result is the same when= 1 and follows similarly. Fop = 1 mod 3:

Arp) = Y a2 = Y Y % <x + B( 6t+1))(y3+B(6t+1)2)

t mod p t mod p x mod p y mod p p

CEEE

t mod p x mod p y mod p p

CSr

t=1 z(p) y mod p

CEE T OEE

t=1 z mod p y mod p p

C ST () () e

x mod py mod pt mod p p

We use inclusion / exclusion to reduceitg # 0. If z = 0, thet andy-sums givep(f) (f)
If y = 0, thet and z-sums givep(f) (f) We subtract the doubly counted contribution from
z =y = 0, which givesp(£) (7). Thus

p—1 p—1
te3 + B\ [(ty® + B
Ay 7 (p < )(y )+2p p—p (B.5)

=1 y=1 ¢t mod p

By LemmaB.1, the-sum is(p — 1)(%’3) if p|B%(z® — y?)? and—(l’;y") otherwise; asB|6>
we havep { B. Asp = 6m + 1, let g be a generator of the multiplicative grodp'pZ. Solving
g% = ¢g* yieldsb = a, a + 2m, ora + 4m, soz® = y? three times (for:, y # 0 mod p). In each
instancey equalsr times a squarel( g>™, g*™). Thus

As7(p) = p—

= 2% — 2. (B.6)
0

B.2. The family y? = 23— (36T +6)(36T+5)x over Q(T). Inthe arguments below, we constantly
use the fact that ib| A(¢) thena,(p) = 0. This allows us to ignore the| A(t) conditions.

Lemma B.5. We have4, »(p) = p — 2 if p > 3 and 0 otherwise.

Proof. We haveA, (p) = 0if p = 2 because there are nguch thap{ A(¢). If p > 3thenp{ A(¢)
is equivalent tap . (36t + 6)(36t + 5) mod p. As 36 is invertible modp, ast ranges ovefZ /pZ
there are exactly two values such thaa¢ + 6)(36 + 5) = 0 mod p, and the claim follows. [

Lemma B.6. We haveA, »(p) = —2pif p = 1 mod 4 and 0 otherwise.
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Proof. The claim is immediate ip = 2 or p = 3 mod 4. If p = 1 mod 4 then we may replace
36t 4+ 6 with ¢ in the complete sums, and we find that

w0 5T () () 5 () e

t mod p x mod p x mod p t mod p

Asp =1 mod 4, —1 is a square, say1 = a? mod p. Thus(‘Tj”) = (i) above. Further by Lemma
B thet-sum isp — 1 if p divides the discriminant + 422, and is—1 otherwise. There are always
exactly two distinct solutions td + 422 = 0 mod p for p = 1 mod 4, and both roots are squares
modulop.

To see this, lettingo denote the inverse af modulop we find the two solutions ar&2a. As

(%) = (%) and(=}) = 1, we have(*?) = (22). Letp = 4n+1. Then(?) = (—1)®*~D/% = (—1)",
and by Euler’s criterion we have

(g) = P12 = (aQ)(p_l)/4 = (—1)" mod p. (B.8)
P
Thus(%) = 1, and the two roots td + 422 = 0 mod p are both squares. Therefore
xz
Ar(p) = =20+ ) (_) = —2p. (B.9)
z mod p p
O]

Remark B.7. By the results of Rosen and Silverman [RoSi], our family reaskd overQ(7); this
is not surprising as we have forced the pdB&7" + 6,367 + 6) to lie on the curve ove®(7).

Lemma B.8. Let £ denote the elliptic curvg? = 23 — x, with ax(p) the corresponding Fourier
coefficient. We have

2p(p —3) —ap(p)® if p=1mod4
= B.10
Az#(p) {O otherwise. ( )
Proof. The proof follows by similar calculations as above. O

B.3. The family y? = 23 — 3z + 12T over Q(T'). For the familyy? = 23 — 3z + 12T, we have

c(T) = 2432
c(T) = 27.3'T
A(T) = 2°0.3%6T —1)(6T +1); (B.11)

further direct calculation shows that(2) = a,(3) = 0 for all t. Thus our equation is a global
minimal Weierstrass equation, and we need only worry abdotgsp > 5. Note thatc,(t) and
A(t) are never divisible by a prime > 5; thus this family can only have multiplicative reduction
for primes exceeding.

If p|6t—1, replacingr with z+1 (to move the singular point @, 0)) givesy? —3z% = 23 mod p.
The reduction is split if/3 € F, and non-split otherwise. Thusjf6t — 1 thena,(p) = (5). A
similar argument (sendingto = — 1) shows that ifp|6¢ + 1 thena,(p) = (‘73) A straightforward
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calculation shows
3\ 1 ifp=1,11 mod 12 =3\ 1 ifp=1, 7Tmod 12 (B.12)
p) |—1 ifp=5, 7mod 12, p) |-1 ifp=5,11mod12. '
Lemma B.9. We haveA, »(p) = p — 2 if p > 3 and 0 otherwise.

Proof. We haveA, »(p) = 0if p = 2 or 3 by direct computation. A$2 is invertible modp, ast
ranges over./pZ there are exactly two values such th@t— 1)(6¢ + 1) = 0 mod p, and the claim
follows. O

Lemma B.10. A; #(2) = A; #(3) = 0, and forp > 5 we have
5 _3 2 ifp=1mod12
A x(p) = <_) + <—) = 0 ifp=711mod 12 (B.13)
P P —2 if p=5mod 12.
Proof. The claim is immediate fop < 3. We have

Arp) = = > wl)

t mod p
A(t)20 mod p

:_Z<w>+ S (M)

t mod p t mod p p
A(t)=0 mod p

_ 04 (3) " (‘—3); (B.14)
p p
the last line follows from our formulas far, (p) for p|A(¢). O
Lemma B.11. Ay £(2) = A, #(3) = 0, and forp > 5 we haved, »(p) = p* — 3p — 4 — 2(=)).
Proof. The claim is immediate fop < 3. Forp > 5 we havea;(p)? = 1if p|A(t). Thus

Arrp) = ) w)’

t mod p
A(t)20 mod p

_ Z Z Z (9: —3x+12t>(y3—3y+12t>_2_ (B.15)

t mod px mod py mod p p

Sendingt — 127!t mod p, we have a quadratic ihwith discriminant

2
((z° =32) = (v° = 3y))” = (@ —9)* (¥ +ay+2°=3)° = §(z,y). (B.16)
We use Lemma BI1 to evaluate thsum; it isp — 1 if p|d(z,y), and—1 otherwise. Letting
n(z,y) = 1if p|d(x,y) and0 otherwise, we have

As 7(p) = Z Z n(z,y)p —p* — 2. (B.17)

z mod p y mod p

For a fixedz, p|d(x,y) if y = x orif y? + xy + 22 — 3 = 0 mod p (we must be careful about
double counting). There are two distinct solutions to thadyatic (iny) if its discriminant12 — 322
is a non-zero square i#/pZ, one solution (namely-2~'x, which is not equivalent ta) if it is
congruent to zero (which happens only where +2 mod p), and no solutions otherwise. If the
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discriminantl2 — 322 is a square, the two solutions are distinct froqrovided thatr # 41 mod p
(if x = £1 mod p then one of the solutions isand the other is distinct). Thus, for a fixedthe
number ofy such thap|é(z,y) is 2 + (2-22°) if # # +1, 42 and2 if = = +1, +2. Therefore

p

A r(p) = > [2+<H_Tf’xz)]-p+ S 2ppro2

z mod p r=+1,+£2 mod p
zZ+1,+£2 mod p

12 — 322
= 2(p—4)p+p Z (729 )+4-2p—p2—2

z mod p

rZ+1,4+2 mod p

12 — 322 -
= p2—2+pZ( 3x)—2p:p2—2p—2—p<?3), (B.18)

t mod p p

where we used Lemnia B.1 to evaluate theum (ag > 5, p does not divide its discriminant).(]
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