# Some Integer Sequences Based on Derangements 

Milan Janjić<br>Department of Mathematics and Informatics<br>University of Banja Luka<br>Republic of Srpska, Bosnia and Herzegovina<br>mailto:agnus@blic.net


#### Abstract

Sequences whose terms are equal to the number of functions with specified properties are considered. Properties are based on the notion of derangements in a more general sense. Several sequences which generalize the standard notion of derangements are thus obtained. These sequences generate a number of integer sequences from the wellknown Sloane's encyclopedia.


Let $A$ be an $m \times n$ rectangular area whose elements are from a set $\Omega$, and let $c_{1}, \ldots, c_{m}$ be from $\Omega$. Following the paper [1], we call each column of $A$ which is equal to $\left[c_{1}, \ldots, c_{m}\right]^{T}$ an i-column of $A$. As usual by $[n]$ will be denoted the set $\{1,2, \ldots, n\}$, and by $|X|$ the number of elements of a finite set $X$. Mutually disjoint subsets are called blocks. A block with $k$ elements is called $k$-block. We also denote by $n^{(m)}$ the falling factorials, that is, $n^{(m)}=n(n-1) \cdots(n-m+1)$. Stirling numbers of the second kind will be denoted by $S(m, n)$.

We start with the following:
Theorem 1 Suppose that $X_{1}, X_{2}, \ldots, X_{k}$ are blocks in $[m]$ and $Y_{1}, Y_{2}, \ldots, Y_{k}$ are subsets in $[n]$. Label all functions $f:[m] \rightarrow[n]$ by $1,2, \ldots, n^{m}$ arbitrary and form a $k \times n^{m}$ matrix $A=\left(a_{i j}\right)$ such that $a_{i j}=1$ if $f_{j}\left(X_{i}\right) \subseteq Y_{i}$, and $a_{i j}=0$ otherwise. The number $D_{1}$ of $i$-columns of $A$ consisting of 0 's is equal

$$
\begin{equation*}
D=\sum_{I \subseteq[k]}(-1)^{|I|} A(I), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
A(I)=n^{\left|[m] \backslash \cup_{i \in I} X_{i}\right|} \cdot \prod_{i \in I}\left|Y_{i}\right|^{\left|X_{i}\right|}, \tag{2}
\end{equation*}
$$

and I runs over all subsets of $[m]$.

Proof. According to Theorem 1.1 in [1] the number $D$ is equal to the right side of (1) if $A(I)$ is the maximal number of columns $j$ of $A$ such that $a_{i j}=1$ for all $i \in I$. It follows that $A(I)$ is equal to the number of functions $f:[m] \rightarrow[n]$ such that $f\left(X_{i}\right) \subseteq Y_{i},(i \in I)$. This number is clearly equal to the number on the right side of (2).

In a similar way we obtain the following:
Theorem 2 Suppose that $X_{1}, X_{2}, \ldots, X_{k}$ are blocks in $[m]$ and $Y_{1}, Y_{2}, \ldots, Y_{k}$ are subsets of $[n]$. Label all functions $f:[m] \rightarrow[n]$ by $1,2, \ldots, n^{m}$ arbitrary, and form a $k \times n^{m}$ matrix $B=\left(b_{i j}\right)$ such that $b_{i j}=1$ if $f_{j}\left(X_{i}\right)=Y_{i}$, and $a_{i j}=0$ otherwise. The number $N$ of $i$-columns of $A$ consisting of 0 's is equal

$$
N=\sum_{I \subseteq[k]}(-1)^{|I|} B(I),
$$

where

$$
B(I)=n^{\left|[m] \backslash \cup_{i \in I} X_{i}\right|} \cdot \prod_{i \in I}\left|Y_{i}\right|!S\left(\left|X_{i}\right|,\left|Y_{i}\right|\right),
$$

and I runs over all subsets of $[m]$.
Depending on the number of elements of $X_{1}, \ldots, X_{k} ; Y_{1}, \ldots, Y_{k}$ it is possible to obtain a number of different sequences. Consider first the simplest case when each $X_{1}, \ldots, X_{k} ; Y_{1}, \ldots, Y_{k}$ consists of one element. Then

$$
A(I)=n^{m-|I|}
$$

so that Theorem 1.2 of [1] may be applied. We thus obtain the following consequence of Theorem [1.

Corollary 1 Given distinct $x_{1}, \ldots, x_{k}$ in $[m]$ and arbitrary $y_{1}, \ldots, y_{k}$ in $[n]$, then the number $D_{11}(m, n, k)$ of functions $f:[m] \rightarrow[n]$ such that

$$
f\left(x_{i}\right) \neq y_{i}, \quad(i=1,2, \ldots, k)
$$

is equal

$$
D_{11}(m, n, k)=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} n^{m-i}\left(=n^{m-k}(n-1)^{k}\right)
$$

A number of sequences in [2] is generated by this simple function. Some of them are stated in the following:

## Table 1.

| 1. $A 001477(n)=D_{11}(1, n, 1)$, | 2. $A 002378(n)=D_{11}(2, n, 1)$, |
| :--- | :--- |
| 3. $A 045991(n)=D_{11}(3, n, 1)$, | 4. $A 085537(n)=D_{11}(4, n, 1)$, |
| 5. $A 085538(n)=D_{11}(5, n, 1)$, | 6. $A 085539(n)=D_{11}(6, n, 1)$, |
| 7. $A 000079(n)=D_{11}(n, 2,1)$, | 8. $A 008776(n)=D_{11}(n, 3,1)$, |
| 9. $A 002001(n)=D_{11}(n, 4,1)$, | 10. $A 005054(n)=D_{11}(n, 5,1)$, |
| 11. $A 052934(n)=D_{11}(n, 6,1)$, | 12. $A 055272(n)=D_{11}(n, 7,1)$, |
| 13. $A 055274(n)=D_{11}(n, 8,1)$, | 14. $A 055275(n)=D_{11}(n, 9,1)$, |
| 15. $A 052268(n)=D_{11}(n, 10,1)$, | 16. $A 055276(n)=D_{11}(n, 11,1)$, |
| 17. $A 000290(n)=D_{11}(2, n, 2)$, | 18. $A 011379(n)=D_{11}(3, n, 2)$, |
| 19. $A 035287(n)=D_{11}(4, n, 2)$, | 20. $A 099762(n)=D_{11}(5, n, 2)$, |
| 21. $A 000079(n)=D_{11}(n, 2,2)$, | 22. $A 003946(n)=D_{11}(n, 3,2)$, |
| 23. $A 002063(n)=D_{11}(n, 4,2)$, | 24. $A 055842(n)=D_{11}(n, 5,2)$, |
| 25. $A 055846(n)=D_{11}(n, 6,2)$, | 26. $A 055270(n)=D_{11}(n, 7,2)$, |
| 27. $A 055847(n)=D_{11}(n, 8,2)$, | 28. $A 055995(n)=D_{11}(n, 9,2)$, |
| 29. $A 055996(n)=D_{11}(n, 10,2)$, | 30. $A 056002(n)=D_{11}(n, 11,2)$, |
| 31. $A 056116(n)=D_{11}(n, 12,2)$, | 32. $A 076728(n)=D_{11}(n, n, 2)$, |
| 33. $A 000578(n)=D_{11}(3, n, 3)$, | 34. $A 005051(n)=D_{11}(n, 3,3)$, |
| 35. $A 056120(n)=D_{11}(n, 4,3)$, | 36. $A 000583(n)=D_{11}(4, n, 4)$, |
| 37. $A 101362(n)=D_{11}(5, n, 4)$, | 38. $A 118265(n)=D_{11}(n, 4,4)$. |

Suppose that

$$
\left|X_{1}\right|=\left|X_{2}\right|=\ldots=\left|X_{k}\right|=1,\left|Y_{1}\right|=\left|Y_{2}\right|=\cdots=\left|Y_{k}\right|=2
$$

Then

$$
A(I)=2^{i} n^{m-|I|}
$$

We may again apply Theorem 1.2 in [2] to obtain the following:
Corollary 2 Given distinct $x_{1}, \ldots, x_{k}$ in $[m]$ and arbitrary 2-sets $Y_{1}, \ldots, Y_{k}$ in $[n]$, then the number $D_{12}(m, n, k)$ of functions $f:[m] \rightarrow[n]$ such that

$$
f\left(x_{i}\right) \notin Y_{i},(i=1,2, \ldots, k)
$$

is equal

$$
D_{12}(m, n, k)=\sum_{i=0}^{k}(-2)^{i}\binom{k}{i} n^{m-i}\left(=n^{m-k}(n-2)^{k}\right) .
$$

This function also generates a number of sequences in [2]. The following table contains some of them.

Table 2.
$\begin{array}{ll}\text { 1. } A 000027(n)=D_{12}(1, n, 1), & \text { 2. } A 005563(n)=D_{12}(2, n, 1) \\ \text { 3. } A 027620(n)=D_{12}(3, n, 1), & \text { 4. } A 000244(n)=D_{12}(n, 3,1), \\ \text { 5. } A 004171(n)=D_{12}(n, 4,1), & \text { 6. } A 005053(n)=D_{12}(n, 5,1), \\ \text { 7. } A 067411(n)=D_{12}(n, 6,1), & \text { 8. } A 000290(n)=D_{12}(2, n, 2), \\ \text { 9. } A 0002444(n)=D_{12}(n, 3,2), & \text { 10. } A 000578(n)=D_{12}(3, n, 3), \\ \text { 11. } A 081294(n)=D_{12}(n, 4,3), & \text { 12. } A 000583(n)=D_{12}(4, n, 4),\end{array}$
If, in the conditions of Theorem1, hold

$$
\left|X_{1}\right|=\cdots=\left|X_{k}\right|=2 ;\left|Y_{1}\right|=\cdots\left|Y_{k}\right|=1
$$

then

$$
A(I)=n^{m-2|I|}
$$

so that we have the following:
Corollary 3 Suppose that $X_{1}, \ldots, X_{k}$ are 2-blocks in $[m]$, and $y_{1}, \ldots, y_{k}$ arbitrary elements in $[n]$, then the number $D_{21}(m, n, k)$ of functions $f:[m] \rightarrow$ [ $n$ ] such that

$$
f\left(X_{i}\right) \neq\left\{y_{i}\right\}, \quad(i=1,2, \ldots, k)
$$

is equal

$$
D_{21}(m, n, k)=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} n^{m-2 i}\left(=n^{m-2 k}\left(n^{2}-1\right)^{k}\right) .
$$

We also state some sequences in [2] generated by this function.

## Table 3.

$$
\begin{aligned}
& \text { 1. } A 005563(n)=D_{21}(2, n, 1), \quad \text { 2. } A 007531(n)=D_{21}(3, n, 1) \\
& \text { 3. } A 047982(n)=D_{21}(4, n, 1), \quad \text { 4. } A 005051(n)=D_{21}(n, 3,1) \text {, } \\
& \text { 5. } A 005010(n)=D_{21}(n, 2,2),
\end{aligned}
$$

Take finally the case $\left.\left|X_{i}\right|=\left|Y_{i}\right|=2,(i=1,2, \ldots, k)\right)$. We have now

$$
A(I)=4^{|I|} \cdot n^{m-2|I|}
$$

We thus obtain the following consequence of Theorem 1 .

Corollary 4 Let $X_{1}, \ldots, X_{k}$ in $[m]$ be 2-blocks, and $Y_{1}, \ldots, Y_{k}$ in $[n]$ be arbitrary 2-sets. Then the number $D_{22}(m, n, k)$ of functions $f:[m] \rightarrow[n]$ such that

$$
f\left(X_{i}\right) \not \subset Y_{i}, \quad(i=1,2, \ldots, k)
$$

is equal

$$
D_{22}(m, n, k)=\sum_{i=0}^{k}(-4)^{i}\binom{k}{i} n^{m-2 i}\left(=n^{m-2 k}\left(n^{2}-4\right)^{k}\right) .
$$

A few sequences in [2], given in the next table, is defined by this function.

## Table 4.

1. $A 005030(n)=D_{22}(n, 3,1)$, 2. $A 002001(n)=D_{22}(n, 4,1)$
2. $A 002063(n)=D_{22}(n, 4,2)$,

Take now the case $\left.\left|X_{i}\right|=\left|Y_{i}\right|=2,(i=1,2, \ldots, k)\right)$ in the conditions of Theorem 2, We have

$$
B(I)=2^{|I|} \cdot n^{m-2|I|}
$$

Thus we have the next:
Corollary 5 Let $X_{1}, \ldots, X_{k}$ be 2-blocks in $[m]$ and $Y_{1}, \ldots, Y_{k}$ arbitrary 2sets in $[n]$. Then the number $S_{22}(m, n, k)$ of functions $f:[m] \rightarrow[n]$ such that

$$
f\left(X_{i}\right) \neq Y_{i}, \quad(i=1,2, \ldots, k)
$$

is equal

$$
S_{22}(m, n, k)=\sum_{i=0}^{k}(-2)^{i}\binom{k}{i} n^{m-2 i}\left(=n^{m-2 k}\left(n^{2}-2\right)^{k}\right)
$$

The sequence A005032 in [2] is generated by this function.
We shall now consider injective functions from $[m]$ to $[n],(m \leq n)$. We start with the following:

Theorem 3 Let $X_{1}, X_{2}, \ldots, X_{k}$ be blocks in $[m]$ and $Y_{1}, Y_{2}, \ldots, Y_{k}$ blocks in [ $n$ ] such that

$$
\left|X_{i}\right|=\left|Y_{i}\right|,(i=1,2, \ldots, k)
$$

If a $k \times n^{(m)}$ matrix $A$ is defined such that $a_{i j}=1$ if $f_{j}\left(X_{i}\right)=Y_{i}$ and $a_{i j}=0$ otherwise, then the number $I(m, n, k)$ of $i$-columns of $A$ consisting of 0 's is equal

$$
I_{k}(m, n)=\sum_{I \subseteq[k]}(-1)^{|I|}\left(n-\left|\cup_{i \in I} X_{i}\right|\right)^{\left(m-\left|\cup_{i \in I} X_{i}\right|\right)} \cdot \prod_{i \in I}\left|X_{i}\right|!.
$$

Proof. In this case we have

$$
A(I)=\left(n-\left|\cup_{i \in I} X_{i}\right|\right)^{\left(m-\left|\cup_{i \in I} X_{i}\right|\right)} \cdot \prod_{i \in I}\left|X_{i}\right|!,
$$

so that theorem follows from Theorem 1.1. in [1].
We shall also state some particular cases of this theorem. Suppose first that

$$
\left|X_{i}\right|=\left|Y_{i}\right|=1,(i=1, \ldots, k)
$$

The number $A(I)$ in this case is equal

$$
(n-|I|)^{(m-|I|)} .
$$

We thus obtain the following:
Corollary 6 For disjoint $x_{1}, \ldots, x_{k}$ in $[m]$ and disjoint $y_{1}, \ldots, y_{k}$ in $[m]$, the number $I_{1}(m, n, k)$ of injections $f:[m] \rightarrow[n]$ such that

$$
f\left(x_{i}\right) \neq y_{i}, \quad(i=1,2, \ldots, k)
$$

is equal

$$
I_{1}(m, n, k)=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(n-i)^{(m-i)} .
$$

Note 1 Since obviously holds $D(n)=I(n, n, n)$, where $D(n)$ is the number of derangements of $n$ elements, this function is an extension of derangements.

There are a number of sequences in [2] that are generated by this function. We state some of them in the next table.

Table 5.

1. $A 000290(n)=I(2, n, 1)$,
2. $A 045991(n)=I(3, n, 1)$
3. $A 114436(n)=I(3, n, 1)$
4. $A 047929(n)=I(4, n, 1)$,
5. $A 001563(n)=I(n, n, 1)$,
6. $A 001564(n)=I(n, n, 2)$,
7. $A 001565(n)=I(n, n, 3)$,
8. $A 002061(n)=I(2, n, 2)$,
9. $A 027444(n)=I(3, n, 2)$,
10. $A 058895(n)=I(4, n, 2)$,
11. $A 027444(n)=I(3, n, 2)$,
12. $A 074143(n)=I(n-1, n, 1)$,
13. $A 001563(n)=I(n-1, n, 1), \quad$ 14. $A 094304(n)=I(n-1, n, 1)$,
14. $A 109074(n)=I(n-1, n, 1), \quad$ 16. $A 094258(n)=I(n-1, n, 1)$,
15. $A 001564(n)=I(n-1, n, 2), \quad$ 18. $A 001565(n)=I(n-1, n, 3)$,
16. $A 001688(n)=I(n-1, n, 4) \quad$ 20. $A 001689(n)=I(n-1, n, 5)$,
17. $A 023043(n)=I(n-1, n, 6), \quad$ 22. $A 023044(n)=I(n-1, n, 7)$,
18. $A 023045(n)=I(n-1, n, 8), \quad$ 24. $A 023046(n)=I(n-1, n, 9)$,
19. $A 023407(n)=I(n-1, n, 10)$, 26. $A 001563(n)=I(n-2, n, 1)$,
20. $A 001564(n)=I(n-2, n, 2)$, 28. $A 061079(n)=I(n, 2 n, 1)$.

As a special case we also have the following generalization of derangements.

Corollary 7 If $X_{1}, X_{2}, \ldots, X_{n}$ is a partition of $[k n]$ such that

$$
\left.\left|X_{i}\right|=k,(i=1,2, \ldots, n)\right),
$$

then the number $D(n, k)$ of permutations $f$ of $[k n]$ such that $f\left(X_{i}\right) \neq X_{i},(i=$ $1,2, \ldots, n)$ is equal

$$
D(n, k)=\sum_{i=0}^{n}(-1)^{i}(k!)^{i}(n k-i k)!.
$$

For $k=1$ we obtain the standard formula for derangements.
Note 2 From the preceding formula the following sequences in [2] are derived:
A128805, A127888, A116221, A116220, A116219.

## References

[1] Milan Janjić, Counting on rectangular areas, arXiv:0704.0851v1
[2] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences

2000 Mathematics Subject Classification: Primary 05A10.
Keywords: derangements, Stirling numbers of the second kind.

Concerned with sequences:
A001477, A002378, A045991, A085537, A085538, A085539, A000079, A008776, A002001, A005054, A052934, A055272, A055274, A055275, A052268, A055276, A000290, A011379, A035287, A099762, A000079, A003946, A002063, A055842, A055846, A055270, A055847, A055995, A055996, A056002, A056116, A076728, A000578, A005051, A056120, A000583, A101362, A118265, A000027, A005563, A027620, A000244, A004171, A005053, A067411, A000290, A002444, A000578, A081294, A000583, A005563, A007531, A047982, A005051, A005010, A005032, A005030, A002001, A002063, A005032, A000290, A045991, A114436, A047929, A001563, A001564, A001565, A002061, A027444, A058895, A027444, A074143, A001563, A094304, A109074, A094258, A001564, A001565, A001688, A001689, A023043, A023044, A023045, A023046, A023407, A001563, A001564, A061079, A128805, A127888, A116221, A116220, A116219.

