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DETERMINANT FORMULAS RELATING TO

TABLEAUX OF BOUNDED HEIGHT

GUOCE XIN

Abstract. Chen et al. recently established bijections for (d+1)-noncrossing/
nonnesting matchings, oscillating tableaux of bounded height d, and oscillat-
ing lattice walks in the d-dimensional Weyl chamber. Stanley asked what is
the total number of such tableaux of length n and of any shape. We find a
determinant formula for the exponential generating function. The same idea
applies to prove Gessel’s remarkable determinant formula for permutations
with bounded length of increasing subsequences. We also give short algebraic
derivations for some results of the reflection principle.

Mathematics Subject Classification. Primary 05A15, secondary 05A18, 05E10.
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1. Introduction

For a partition λ = (λ1, . . . , λd)≥ of length (or height) at most d, we associate it
with a λ̄ := λ+(d, d−1, . . . , 1). Then λ̄ belongs to the d-dimensional Weyl chamber
defined by W d = { (x1, . . . , xd) : x1 > · · · > xd > 0, xi ∈ Z }. In particular, we
denote by 0̄ = (d, d−1, . . . , 1) the associate of the empty partition ∅. For λ̄, µ̄ ∈ W d,
let bn(λ̄; µ̄) be the number of Weyl oscillating lattice walks of length n, from λ̄ to
µ̄, staying within W d, with steps positive or negative unit coordinate vectors.

Theorem 1 (Grabiner-Magyar [8], Equation 26). For fixed λ̄, µ̄ ∈ W d, we have a
determinant formula for the exponential generating function:

gλ̄µ̄(t) =
∑

n≥0

bn(λ̄; µ̄)
tn

n!
= det

(

Iµ̄i−λ̄j
(2t) − Iµ̄i+λ̄j

(2t)
)

1≤i,j≤d
, (1)

where

Is(2t) = [zs] exp(t(z + z−1)) =
∑

n≥0

1

n!(n + s)!
t2n+s (2)

is the hyperbolic Bessel function of the first kind of order s.

Chen et al. [3] recently established bijections showing that (d + 1)-noncrossing
(nonnesting) matchings and oscillating tableaux are in bijection with certain Weyl
oscillating lattice walks. Then Stanley asked (by private communication) the fol-
lowing question: How many Weyl oscillating lattice walks of length n are there if
we start at 0̄ but may end anywhere? Our main result answers this question:

Theorem 2. The exponential generating function for the number of oscillating
lattice walks in W d starting at 0̄ = (d, d − 1, . . . , 1), and with no restriction on the
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2 GUOCE XIN

end points is

G(t) :=
∑

n≥0

∑

µ∈W d

bn(0̄; µ)
tn

n!
= det(Ji−j(2t))1≤i,j≤d, (3)

where Js(2t) = [zs] (1 + z) exp((z + z−1)t) = Is(2t) + Is−1(2t).

Terminologies not presented here will be given in section 2, where we will explore
the connection of oscillating tableaux with the Brauer algebra and symplectic group,
just as that of standard Young tableaux (SYTs for short) with the symmetric group
and general linear group. We will see that Theorem 2 actually gives a determinant
formula for oscillating tableaux of bounded height, which is an analogy of Gessel’s
formula for SYTs of bounded height.

Section 3 is for completeness of section 4, but is of some independent interest.
We describe a simple algebraic derivation of the hook-length formula (Theorem 6)
and Theorem 1, as well as some notations. The method is easily seen to apply to
many other results of the reflection principle. One can see from the proof a reason
why using exponential generating function is preferable in this context.

Section 4 includes the derivation of Theorem 2. Starting from the Grabiner-
Magyar formula, one can obtain a constant term expression that can be used to
do algebraic calculation. The theorem is then derived in three key steps: we first
apply the Stanton-Stembridge trick (a kind of symmetrization), then a classical
formula for symmetric functions, and finally reversely apply the Stanton-Stembridge
trick. The same idea applies to prove a generalized form (Theorem 11) of Gessel’s
remarkable determinant formula [5]:

Theorem 3 (Gessel). Let ud(n) be the number of permutations on {1, 2, . . . , n}
with longest increasing subsequences of length at most d. Then

∑

n≥0

ud(n)
t2

n!2
= det(Ii−j(2t))1≤i,j≤d. (4)

Our starting point is the well-known hook-length formula.

2. Notations, connections, and applications

In this section, we will introduce many objects and try to explain their connec-
tions with the classical objects for the symmetric group, in the view of enumeration.
Some of the connections are in [12, Section 9], whose notations we shall closely fol-
low. Finally, we will give some applications of Theorem 2.

2.1. Notations. We assume basic knowledge of the symmetric group Sn and its
representation. See, e.g., [11, Chapter 7]. Now we introduce some objects.

The Brauer algebra Bn (depending on a parameter x which is irrelevant here)
is a certain semisimple algebra with the underlying space the linear span (say over
C) of (complete) matchings on [2n] = {1, 2, . . . , 2n}. The dimension of Bn is

dimBn = (2n − 1)!! = (2n − 1)(2n− 3) · · · 3 · 1.

Its irreducible representations are indexed by partitions of n−2r, for 0 ≤ r ≤ ⌊n/2⌋.

The dimension of the irreducible representation B
µ is equal to f̃µ

n , that we are going
to introduce.

An oscillating tableau (or up-down tableau) of shape µ and length n is a sequence
(∅ = µ0, µ1, . . . , µn = µ) of partitions such that for all 1 ≤ i ≤ n − 1, the diagram
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of µi is obtained from µi−1 by either adding or removing one square. Denote by
f̃µ

n the number of such tableaux. It is known that if µ is a partition of n − 2r for
some nonnegative integer r, then

f̃µ
n =

(

n

2r

)

(2r − 1)!!fµ, µ ⊢ (n − 2r),

where fµ is the number of standard Young tableaux of shape µ. See, e.g., [2,
Appendix B6] for further information.

Denote by Mn the set of matchings on [2n]. A matching M ∈ Mn is a partition
of [2n] into n two-blocks, written in the form {{i1, j1}, . . . , {in, jn}}. We also write
(ik, jk) for {ik, jk} if ik < jk. We represent M by a diagram obtained by identifying
i with (i, 0) in the plane for i = 1, . . . , 2n, and drawing arcs, called edges, from ik
to jk above the horizontal x-axis for all k. For d ≥ 2, a d-crossing of a matching
M is a set of d arcs (ir1

, jr1
), (ir2

, jr2
), . . . , (ird

, jrd
) of M such that ir1

< ir2
<

· · · < ird
< jr1

< jr2
< · · · < jrd

. A matching without any d-crossing is called a
d-noncrossing matching. We omit here the similar definition of d-nesting. Figure 1
shows the diagram corresponding to the matching

M = {{1, 4}, {2, 8}, {3, 10}, {5, 7}, {6, 9}}.

101 2 3 4 5 6 7 8 9

Figure 1. A matching on [10], in which the edges
{1, 4}, {2, 8}, {3, 10} form a 3-crossing.

Now we introduce apparently new objects. For an oscillating tableau O of shape
∅ (hence of even length), reading O backwardly still gives an oscillating tableau
of shape ∅, denoted by Orev . We say that O is palindromic if O = Orev. For a
matching M of [2n], let M refl denote the matching obtained from M by reflecting
in the vertical line x = n + 1/2. Figure 2 shows the diagram corresponding to
M refl. Then M is said to be bilaterally symmetric if M = M refl. Equivalently,
(i, j) is an edge of M if and only if so is (2n + 1 − j, 2n + 1 − i).

102 4 5 6 7 8 931

Figure 2. The reflection of the matching in Figure 1.
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Proposition 4. The exponential generating function of the number bsmn of bilat-
erally symmetric matchings on [2n] is

∑

n≥0

bsmn

tn

n!
= exp(t + t2).

Proof. For a bilaterally symmetric matching M on [2n], identify it with the graph
M ′ obtained from M by adding the (dashed) edges (i, 2n+1− i) for i = 1, 2, . . . , n.
Then every vertex of M ′ has degree 2, so that M ′ can be uniquely decomposed into
connected components, each being a cycle. The cycles can be of only three types,
as drawn in Figure 3. Therefore, the lemma follows by the well-known exponential

Figure 3. The types of connected components of bilaterally sym-
metric matchings.

formula for generating functions. See, e.g., [11, Corollary 5.1.6]. �

2.2. Connections. We first give a list of the classical objects and their analogies:

Classical Objects Their analogies
the symmetric group Sn the Brauer algebra Bn

the general linear group GL(d) the symplectic group Sp(2d)
standard Young tableaux oscillating tableaux
permutations on [n] matchings on [2n]
involutions bilaterally symmetric matchings

Next we give connections in the view of enumeration. By a well-known result in
representation theory, we have

∑

µ⊢(n−2r)

(f̃µ
n )2 = (2n − 1)!!,

∑

µ⊢n

(fµ)2 = n!, (5)

where the first sum ranges over all nonnegative integers r with 0 ≤ r ≤ ⌊n/2⌋
and partitions µ of n − 2r. The former equation of (5) is for Bn and the latter

one is for Sn; f̃µ
n and fµ are the dimension of the corresponding irreducible rep-

resentations. We shall always list the analogous formula before the classical one.
Equation (5) suggests a RSK-correspondence for matchings just as that for permu-
tations. Observe that a pair of oscillating tableaux of the same shape of length n
can be naturally combined as one oscillating tableau of shape ∅ of length 2n. To
be precise, the decomposition γ(O) = (P, Q) is given by

γ : (∅ = µ0, µ1, . . . , µ2n = ∅) 7−→ ((∅ = µ0, µ1, . . . , µn), (∅ = µ2n, µ2n−1, . . . , µn)).

Thus it is sufficient to construct a bijection from the set Mn of matchings to
the set On of oscillating tableaux of the empty shape and length 2n. Such a
bijection was first given by Stanley (unpublished), and was extended by Sundaram
[13] to arbitrary shapes to give a combinatorial proof of the Cauchy identity for
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the symplectic group Sp(2d), and was recently extended by Chen et al. [3] for
partitions.

Let Φ be the bijection from Mn to On defined in [12, Section 9]. Then it was
shown in [3] that Φ has many properties. We will use the fact that the maxi-
mum number of crossings of a matching M is equal to the maximum height of the
oscillating tableau Φ(M).

We will use the following result of [15]: For any M ∈ Mn, we have Φ(M refl) =
Φ(M)rev.

Since the number of palindromic oscillating tableaux is equal to the number of
bilaterally symmetric matchings bsmn, we have, by Proposition 4,

∑

µ⊢(n−2r)

f̃µ
n =

[

tn

n!

]

exp(t + t2),
∑

µ⊢n

fµ =

[

tn

n!

]

exp(t + t2/2), (6)

where the first sum ranges over all nonnegative integers r with 0 ≤ r ≤ ⌊n/2⌋ and
partitions µ of n− 2r. The right equation of (6) counts the number of involutions.

There are analogous results if we put restrictions on the height of the tableaux.
A d-oscillating tableau, also called d-symplectic up-down tableau, is an oscillating
tableau of a bounded height d, by which we mean that the height of every µi is no
larger than d. Denote by f̃µ

n (d) the number of d-oscillating tableaux of shape µ and
length n. See [13] for more information.

There is a natural bijection showing that f̃µ
n (d) = bn(0̄, µ̄), which has a determi-

nant formula as in (1). The bijection simply takes (µ0, µ1, . . . , µn) to the sequence of
lattice points (µ̄0, µ̄1, . . . , µ̄n). Therefore results on oscillating lattice walks can be
translated into those on oscillating tableaux. Applying γ to d-oscillating tableaux
of shape ∅ and length 2n, and applying Theorem 1, we obtain

∑

µ⊢(n−2r)

(f̃µ
n (d))2 = b2n(0̄, 0̄) =

[

t2n

(2n)!

]

det (Ii−j(2t) − Ii+j(2t))1≤i,j≤d
, (7)

an analogy of Theorem 3. This is also the number of (d+1)-noncrossing/nonnesting
matchings. See [3, Equation (9)] (by setting k = d + 1) and references therein.

Theorem 2 actually gives

∑

µ⊢(n−2r)

f̃µ
n (d) =

[

tn

n!

]

det(Ii−j(2t) + Ii−j−1(2t))1≤i,j≤d.

This is an analogy of Gessel’s determinant formula for involutions. See [5]. See also
[12, Sections 4&5].

Let is(w) be the length of the longest increasing subsequences of w ∈ Sn, and let
cr(M) be the maximum crossing number of M ∈ Mn. Then we have the following
table.

Classical Objects Their analogy
the general linear group GL(d) the symplectic group Sp(2d)
SYT of bounded height d oscillating tableaux of bounded height d
{w ∈ Sn : is(w) ≤ d} {M ∈ Mn : cr(M) ≤ d}
· · · & is an involution · · · & is bilaterally symmetric

Stanley [12] gave a nice survey for the study of increasing and decreasing subse-
quences of permutations and their variants. One major problem in this area is to
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understand the behavior of is(w). For instance, what is the limiting distribution
of is(w) for permutations? Gessel’s determinant formula reduces such problem to
analysis, which was solved by Baik, Deift, and Johansson [1] using their techniques.
In our table, the limiting distribution formulas of is(w) for permutations and for
involutions, and that of cr(M) for matchings are known. The distribution for bi-
laterally symmetric matchings should be obtained in a similar way, but this needs
to be checked.

2.3. Applications. We first summarize several consequences of Theorem 2.

Corollary 5. The following quantities are equal to
[

tn

n!

]

det(Ii−j(2t) + Ii−j−1(2t))1≤i,j≤d.

(1) The number of palindromic Weyl oscillating lattice walks of length 2n and
starting at 0̄.

(2) The number of palindromic oscillating tableaux of length 2n.
(3) The number bsmn(d) of bilaterally symmetric (d+1)-noncrossing/nonnesting

matchings on [2n].
(4) The number of oscillating tableaux of any shape and length n.

We can compute bsmn(d) for small d. For the case d = 1, we have

bsm2n(1) =

(

2n

n

)

, and bsm2n+1(1) =
1

2

(

2n + 2

n + 1

)

. (8)

This is a direct consequence of Theorem 2, but we give an alternative proof.

Proof of (8). By Corollary 5 part (3), we need to compute noncrossing bilater-
ally symmetric matchings on [2n]. Let P (t) be the generating function P (t) =
∑

n≥0 bsmn(1)tn. Consider the possibility of the edge (1, m) in the bilaterally sym-
metric matching M . One sees that if m > n, then m must equal 2n to avoid a
crossing. Thus we have the decomposition of M as in Figure 4, where we use semi-
circles to indicate noncrossing matchings, and use trapezoid to indicate noncrossing
bilaterally symmetric matchings. Therefore, we obtain the functional equation:

2n + 1 − m 2n1 2n 1 m

or

Figure 4. Decomposition of noncrossing bilaterally symmetric matchings.

P (t) = 1 + tP (t) + t2C(t2)P (t),

where C(t) = 1−
√

1−4t
2t

is the Catalan generating function, which is known to be
the ordinary generating function for noncrossing matchings. Direct algebraic cal-
culation shows (8). �
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For the case d = 2, we have

bsm2n(2) =
1

2

(

2n + 2

n + 1

)

Cn =
(2n + 1)!(2n)!

(n!(n + 1)!)2
, (9)

bsm2n+1(2) =
1

2

(

2n + 2

n + 1

)

Cn+1 =
(2n + 1)!(2n + 2)!

n!(n + 1)!2(n + 2)!
. (10)

For the case d = 3, we obtain

bsm2n(3) =

n
∑

s=0

2(2s + 1)!

s!2(s + 1)!(s + 2)!
·

(2n)!

(n − s)!(n − s + 1)!
, (11)

bsm2n+1(3) =

n
∑

s=0

2(2s + 2)!

s!(s + 1)!(s + 2)!2
·

(2n + 1)!

(n − s)!(n − s + 1)!
. (12)

By a general theory, these sequences are P-recursive, or their generating functions
(for any d) are D-finite. See, e.g., [11, Chapter 6]. We use the creative telescoping
of [9] to find that bsm2n(3) satisfies a second order P-recursion [11, Chapter 6]:

(n + 5) (n + 4) (n + 3)bsm2n+4(3)

= 4
(

5n2 + 30n + 43
)

(2n + 3) bsm2n+2(3)−36 (2n + 3) (2n + 1) (n + 1)bsm2n(3),
(13)

subject to bsm0(3) = 1, bsm2(3) = 3; and that bsm2n+1(3) satisfies a P -recursion
of order 3, which is too lengthy to be given here.

Formulas (9,10) are straightforward by, e.g., the creative telescoping. Formulas
(11,12) need some work. We will write Ii for Ii(2t) for short, and use the following
facts: Ii = I−i, I2i contains only even powers in t, and I2i+1 contains only odd
powers in t.

Proof of (11,12). By Theorem 2, the exponential generating function is

det





I1 + I0 I2 + I1 I2 + I3

I1 + I0 I1 + I0 I2 + I1

I2 + I1 I1 + I0 I1 + I0





= (I0 − I2)((I0
2 − I1

2 − I2
2 + I1I3) + (I0I1 + I0I3 − 2I1I2)),

where I0 − I2 contains only even powers in t, and in the right factor, we have
separated the sum according to the parity of the powers in t.

Now it is straightforward, by the creative telescoping, to show that

I0 − I2 =
∑

n≥0

t2n

n!(n + 1)!
,

I0
2 − I1

2 − I2
2 + I1I3 =

∑

n≥0

2(2n + 1)!t2n

n!2(n + 1)!(n + 2)!
,

I0I1 + I0I3 − 2I1I2 =
∑

n≥0

2(2n + 2)!t2n+1

n!(n + 1)!(n + 2)!2
.

Equations (11,12) then follow. �

We remark that {bsm2n(2)}n≥0 gives the sequence A000891 in the Online En-
cyclopedia of Integer Sequences [10]. One of its interpretation can be stated in
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our term: it counts the number of noncrossing partitions of [2n + 1] into n + 1
blocks. We also remark that {bsm2n(3)}n≥0 gives the sequence A064037 in [10].
The only known interpretation is: it counts the number of 3-dimensional oscillating
lattice walks of length 2n, starting and ending at the origin, and staying within the
nonnegative octant. Bijections for these objects are desirable.

3. Algebraic Description of the Reflection Principle

A classical application of the reflection principle is to the ballot problem, which,
in random walks version, asks how many ways there are to walk from the origin to
a point (λ1, . . . , λd)≥, with each step a positive unit coordinate vector and confined
in the region x1 ≥ x2 ≥ · · · ≥ xd ≥ 0. The reflection principle of [6, 16] gives a
determinant formula, from which the hook-length formula for SYTs can be deduced.
Our objective in this section is to give short algebraic derivations of this formula
and the formula of Grabiner and Magyar.

In the context of lattice walks, it is convenient to shift the coordinates a little
and denote by W d = { (x1, . . . , xd) : x1 > · · · > xd > 0, xi ∈ Z } the d-dimensional
Weyl chamber. From now on, λ, µ will not denote partitions as in previous sections.
Let δ̄ = (d, d−1, . . . , 1). Then any µ ∈ W d corresponds to a unique partition µ− δ̄.

3.1. Hook-Length Formula.

Theorem 6 (Hook-Length Formula). The number of standard Young tableaux of
shape λ is

fλ = (λ1 + · · · + λd)! det

(

1

(λi − i + j)!

)

1≤i,j≤d

. (14)

Fixing a starting point λ ∈ W d, we let f(λ; µ) be the number of W d-walks from
λ to µ, with only positive unit coordinate vector steps. Clearly, the length of such

walks, if exist, is |µ| − |λ|, where |µ| = µ1 + · · · + µd. Then the number fµ−δ̄ of
SYTs of shape µ − δ̄ equals f(δ̄, µ).

Let F (x) = F (x1, . . . , xd) be the generating function

F (x1, . . . , xd) =
∑

µ∈W d

f(λ; µ)xµ,

where xµ = xµ1

1 xµ2

2 · · ·xµd

d records the end points. From known results, F (x) is
D-finite and does not have a simple expression. But F (x) has a simple rational
function extension:

F̄ (x) =
aλ(x)

1 − (x1 + x2 + · · · + xd)
, (15)

where aλ(x) is the alternant det
(

x
λj

i

)

1≤i,j≤d
.

Proposition 7. Let F̄ (x) be as above. If we expand

F̄ (x) =
aλ(x)

1 − (x1 + x2 + · · · + xd)
=

∑

η∈Nd

f̄(λ; η)xη ,

then f̄(λ; µ) = f(λ; µ) for all µ in the closure of W d.

Proof. Let ei be the ith unit coordinate vector. Let χ(S) = 1 if the statement S
is true and 0 otherwise. Then for µ in the closure of W d, f(λ; µ) can be uniquely
characterized by the following recursion:
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(i) If |µ| ≤ |λ|, then f(λ; µ) = χ(µ = λ).
(ii) If µi = µi+1 for 1 ≤ i ≤ d − 1, then f(λ; µ) = 0.

(iii) If |µ| − |λ| > 0, then f(λ; µ) =
∑d

i=1 f(λ; µ − ei).

Therefore, it suffices to show that f̄(λ; µ) also satisfies the above three conditions.
Condition (iii) is trivial according to (15); Condition (ii) follows easily from

F̄ (x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xd) = −F̄ (x1, . . . , xd);

To show condition (i), we notice that the numerator of F̄ (x) is homogeneous of
degree |λ|, and the least degree term in the series expansion of (1−x1−· · ·−xd)

−1

is 1. This implies that if |η| ≤ |λ|, then f̄(λ; η) equals (−1)π if η = π(λ) for some
π ∈ Sd and zero otherwise, where (−1)π is the sign of π and π(λ) = (λπ1

, . . . , λπd
).

Condition (i) follows since π(λ) ∈ W d only if π is the identity.
This completes the proof. �

By setting λ = δ̄, one can derive the hook-length formula, Theorem 6. This
completes our first objective of this section.

3.2. Grabiner-Magyar Determinant Formula. The same argument applies to
more general situations, such as with a different set of allowing steps. We give one
more example to illustrate the idea. Note that the underlying idea is the reflection
principle.

Fix a starting point λ ∈ W d (the most interesting case is λ = δ̄). Let bn(λ; µ)
be the number of Weyl oscillating lattice walks of length n from λ to µ. Note that
we changed the notation here. The λ̄ is abbreviated by λ, and similar for µ̄.

Proposition 8. For fixed λ ∈ W d, let

Bλ(x; t) =
det(x

λj

i − x
−λj

i )1≤i,j≤d

1 − t(x1 + x−1
1 + x2 + x−1

2 + · · · + xd + x−1
d )

. (16)

Then [xµtn] Bλ(x; t) = bn(λ; µ) for any µ in the closure of W d and n ∈ N.

Proof. Clearly bn(λ; µ) is uniquely determined by the following recursion:

(i) If n = 0 then bn(λ; µ) = χ(µ = λ).
(ii) If µi = µi+1 for 1 ≤ i ≤ d − 1, or if µd = 0, then bn(λ; µ) = 0.

(iii) If n ≥ 1, then bn(λ; µ) =
∑d

i=1 bn−1(λ; µ − ei) + bn−1(λ; µ + ei).

Denote by b̄n(λ; η) = [xηtn] Bλ(x; t). It suffices to show that b̄n(λ; µ) satisfies
the same recursion as for bn(λ; µ) when µ belongs to the closure of W d. Con-
dition (i) is straightforward; Condition (ii) follows from the identities Bλ(x; t) =
− Bλ(x; t)|xi=xi+1,xi+1=xi

for 1 ≤ i ≤ d − 1, and Bλ(x; t) = − Bλ(x; t)|xd=−xd
;

Condition (iii) follows by writing

Bλ(x; t)(1 − t(x1 + x−1
1 + x2 + x−1

2 + · · · + xd + x−1
d )) = det(x

λj

i − x
−λj

i )1≤i,j≤d

and then equating coefficients. �

Now we are ready to complete our second task of this section.

Proof of Theorem 1. By Proposition 8, it remains to extract the coefficient of xµ

in Bλ(x; t).
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Since the numerator of Bλ(x; t) is independent of t, it is easy to obtain the
exponential generating function

∑

n≥0

∑

η∈Zd

b̄n(λ; η)xη tn

n!
= det(x

λj

i − x
−λj

i )1≤i,j≤d exp(t(x1 + x−1
1 + · · · + xd + x−1

d ))

= det
(

(x
λj

i − x
−λj

i ) exp(t(xi + x−1
i ))

)

1≤i,j≤d
.

Now taking the coefficients of xµ1

1 · · ·xµd

d yields

∑

n≥0

bn(λ; µ)
tn

n!
= det

(

[x
µi−λj

i ] exp(t(xi + x−1
i )) − [x

µi+λj

i ] exp(t(xi + x−1
i ))

)

1≤i,j≤d
,

which is equivalent to (1). �

Note that we use exponential generating functions because exp(t(x1+x−1
1 + · · ·+

xd + x−1
d )) factors nicely enough to be put inside the determinant.

4. Two Formulas Relating to Tableaux of Bounded Height

In this section, we will prove Theorems 2 and 3, where the former is a new result
and the latter is Gessel’s remarkable determinant formula. We will first express
our objects as certain constant terms. Then we will play two tricks, the Stanton-
Stembridge trick and the reverse of the Stanton-Stembridge trick, in evaluating
such constant terms.

4.1. Stanton-Stembridge Trick. Fix a working ring K that includes the ring
C((x1, . . . , xd)) of formal Laurent series as a subring. For example, in our applica-
tions, the working ring is K = C((x1, . . . , xd))[[t]]. A permutation π ∈ Sd acts on
elements of K by permuting the x’s, or more precisely

π ·
∑

i1,...,id∈Z

ai1,...,id
xi1

1 · · ·xid

d =
∑

i1,...,id∈Z

ai1,...,id
xi1

π1
· · ·xid

πd
.

We say that K is Sd-invariant if π · K = K for any π ∈ Sd. For example, the
ring K = C((x1, . . . , xd))[[t]] is Sd-invariant, but the field of iterated Laurent series
C((x1))((x2)) is not S2-invariant (see [14]).

In what follows, we always assume that K is Sd-invariant. One can easily check
that this condition holds in our application.

Lemma 9 (Stanton-Stembridge trick). For any H(x1, . . . , xd) ∈ K, we have

CT
x1,...,xd

H(x1, . . . , xd) =
1

d!
CT

x1,...,xd

∑

π∈Sd

π · H(x1, . . . , xd),

where CTx1,...,xd
means to take the constant term in the x’s.

The lemma obviously holds. The following direct consequence is useful.

Corollary 10. Suppose that H, U, V ∈ K and that U(x) = U(x1, . . . , xd) and
V (x) = V (x1, . . . , xd) are symmetric and antisymmetric in the x’s, respectively.
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Then

CT
x1,...,xd

H(x1, . . . , xd)U(x) =
1

d!
CT

x1,...,xd

U(x)
∑

π∈Sd

π · H(x1, . . . , xd),

CT
x1,...,xd

H(x1, . . . , xd)V (x) =
1

d!
CT

x1,...,xd

V (x)
∑

π∈Sd

(−1)ππ · H(x1, . . . , xd).

We call both the lemma and the corollary the Stanton-Stembridge trick (SS-trick
for short). See, e.g., [17, p. 9].

4.2. Proof of Theorem 2. First let us write gδ̄µ(t) as a constant term using
Theorem 1 and the fact that Is(2t) = I−s(2t).

gδ̄µ(t) = det

(

CT
xi

[

x
µi−δ̄j

i exp((xi + x−1
i )t) − x

µi+δ̄j

i exp((xi + x−1
i )t)

]

)

1≤i,j≤d

By factoring out xµi

i exp((xi + x−1
i )t) from the ith row, we obtain

gδ̄µ(t) = CT
x

det
(

x
−δ̄j

i − x
δ̄j

i

)

1≤i,j≤d

d
∏

i=1

xµi

i exp((xi + x−1
i )t).

Therefore, G(t) can be expressed as a constant term in the x’s:

G(t) =
∑

µ∈W d

gδ̄µ(t) = CT
x

exp
(

d
∑

i=1

(xi + x−1
i )t

)

det
(

x
−δ̄j

i − x
δ̄j

i

)

·
∑

µ∈W d

xµ.

Now we can apply the SS-trick to obtain

G(t) =
1

d!
CT

x
exp

(

d
∑

i=1

(

xi + x−1
i

)

t
)

det
(

x
−δ̄j

i − x
δ̄j

i

)

∑

µ∈W d

∑

π∈Sd

(−1)ππ · xµ,

(17)

where we used the fact that the first factor is symmetric and the second factor is
antisymmetric in the x’s.

The determinant is well-known to be equal to

det
(

x
−δ̄j

i − x
δ̄j

i

)

1≤i,j≤d
=

d
∏

i=1

(1 − x2
i )

∏

1≤i<j≤d

(1 − xixj)aδ̄(x
−1), (18)

where x−1 = (x−1
1 , . . . , x−1

d ), and the alternants are related to the Schur functions
as follows:

aµ(x) :=
∑

π∈Sd

(−1)ππ · xµ1

1 · · ·xµd

d = aδ̄(x)sµ−δ̄(x).

By the above formula, and the classical identity [11, Equation 7.52] for symmetric
functions (by setting xk = 0 for k > d), we obtain

∑

µ∈W d

∑

π∈Sd

(−1)ππ · xµ1

1 · · ·xµd

d = aδ̄(x)
1

∏d
i=1(1 − xi)

∏

1≤i<j≤d(1 − xixj)
. (19)
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Now substitute (18) and (19) into (17). After a lot of cancelations, we obtain:

G(t) =
1

d!
CT

x
exp

(

d
∑

i=1

(

xi + x−1
i

)

t
)

d
∏

i=1

(1 + xi)aδ̄(x
−1)

∑

π∈Sd

(−1)ππ · xδ̄. (20)

Now aδ̄(x
−1) is antisymmetric. Reversely applying the SS-trick to (20) gives

G(t) = CT
x

xd
1 · · ·x

1
daδ̄(x

−1)

d
∏

i=1

exp((xi + x−1
i )t)

d
∏

i=1

(1 + xi)

= CT
x

det
(

xj−i
i

)

1≤i,j≤d

d
∏

i=1

exp((xi + x−1
i )t)

d
∏

i=1

(1 + xi)

= det

(

CT
xi

xj−i
i (1 + xi) exp((xi + x−1

i )t)

)

1≤i,j≤d

,

which is easily seen to be equivalent to (3).

4.3. Gessel’s Determinant Formula. The tricks for proving Theorem 3 are sim-
ilar as in the previous subsection. We remark that previous proofs of this result
rely on the powerful tools of symmetric functions. See, e.g., [5, 7].

It follows from the RSK-correspondence that

ud(n) =
∑

|α|=n

fαfα =
∑

|µ|=n+|δ̄|,µ∈W d

f(δ̄; µ)2,

where α ranges over partitions of n of height at most d. We will find a generating
function of

ud(λ; n) :=
∑

|µ|=n+|λ|,µ∈W d

f(λ; µ)2.

More precisely, we have the following generalized form.

Theorem 11. Let λ ∈ W d and let Is(2t) be as in Theorem 1. We have

Ud(λ; t) =
∑

n≥0

ud(λ; n)
t2n

n!2
= det(Iλi−λj

)1≤i,j≤d. (21)

Note that f(λ; µ) is the number of standard skew Young tableaux of shape
(µ − δ̄)/(λ − δ̄). See [11, Equation 7.7.1] (note that there is a change of indices).
Therefore ud(λ; n) counts the number of pairs of standard skew Young tableaux of
the same shape (µ − δ̄)/(λ − δ̄) with |µ| − |λ| = n.

Proof of Theorem 11. By Proposition 7,

f(λ; µ) = [xµ] aλ(x)
∑

k≥0

(x1 + x2 + · · · + xd)k.

Note that when taking the coefficient in xµ, only the summand with respect to
k = n has a contribution, where n = |µ| − |λ| is the length of the lattice walks. It
follows that

f(λ; µ)
tn

n!
= [xµ] aλ(x) exp ((x1 + x2 + · · · + xd)t)

= det
(

[x
µi−λj

i ] exp(txi)
)

1≤i,j≤d
.
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When written in constant term, we obtain

f(λ; µ)
tn

n!
= CT

x
det(x

λj

i )1≤i,j≤d

d
∏

i=1

x−µi

i exp(txi)

= CT
x

aλ(x−1)xµ1

1 · · ·xµd

d exp(t(x−1
1 + · · · + x−1

d )), (22)

where the last equality follows by substituting x−1
i for xi.

Now squaring both sides of (22) and summing over all µ, we obtain

Ud(λ; t) =
∑

µ∈W d

f(λ; µ)2
t2n

n!2

=
∑

µ∈W d

CT
x

aλ(x−1)xµ exp
(

t
d

∑

i=1

x−1
i

)

· CT
y

aλ(y−1)yµ exp
(

t
d

∑

i=1

y−1
i

)

= CT
x,y

aλ(x−1)aλ(y−1) exp
(

t

d
∑

i=1

x−1
i + t

d
∑

i=1

y−1
i

)

∑

µ∈W d

xµyµ. (23)

We need the following easy formula:
∑

π,σ∈Sd

(−1)π(π · xµ)(−1)σ(σ · yµ) = aµ(x)aµ(y), (24)

and the well-known Cauchy-Binnet formula (see, e.g., [11, p. 397]):

∑

µ∈W d

aµ(x)aµ(y) = x1y1 det

(

1

1 − xiyj

)

1≤i,j≤d

, (25)

where 1 is the vector of d 1’s and x1 = x1x2 · · ·xd.
Now apply the SS-trick to (23) for the x-variables and the y-variables separately,

and then apply (24). We obtain

Ud(λ; t) =
1

d!2
CT
x,y

aλ(x−1)aλ(y−1) exp
(

t

d
∑

i=1

x−1
i + t

d
∑

i=1

y−1
i

)

∑

µ∈W d

aµ(x)aµ(y).

Applying (25) gives

Ud(λ; t) =
1

d!2
CT
x,y

aλ(x−1)aλ(y−1) exp
(

t

d
∑

i=1

(

x−1
i + y−1

i

)

)

x1y1 det

(

1

1 − xiyj

)

.

Clearly, the last determinant is antisymmetric in the x-variables and also in the
y-variables. Reversely applying the SS-trick for the x’s and for the y’s, we obtain

Ud(λ; t) = CT
x,y

x−λy−λ exp
(

t

d
∑

i=1

(

x−1
i + y−1

i

)

)

x1y1 det

(

1

1 − xiyj

)

1≤i,j≤d

= CT
x,y

det

(

x1−λi

i y
1−λj

j exp(tx−1
i + ty−1

j )
1

1 − xiyj

)

1≤i,j≤d

= det

(

CT
xi,yj

x1−λi

i y
1−λj

j exp(tx−1
i + ty−1

j )
1

1 − xiyj

)

1≤i,j≤d

. (26)
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We finally need to evaluate the entries (constant terms) of the above determinant.

CT
xi,yj

exp(tx−1
i + ty−1

j )
x1−λi

i y
1−λj

j

1 − xiyj

= CT
xi,yj

∑

k,l≥0

tk+l

k! l!
x−k

i y−l
j

∑

m≥0

x1−λi+m
i y

1−λj+m

j

=
∑

m≥λi−1,λj−1

t2−λi−λj+2m

(1 − λi + m)!(1 − λj + m)!
.

By changing the indices 1 − λi + m = n, we obtain

CT
xi,yj

exp(tx−1
i + ty−1

j )
x1−λi

i y
1−λj

j

1 − xiyj

= Iλi−λj
(2t). (27)

This completes the proof. �

By going over the proof, one can see that the aλ(y) may be replaced with aν(y)
without making much difference. This gives the following proposition.

Let λ, ν ∈ W d with |λ| ≥ |ν|. Denote by

Ud(λ; ν; t) :=
∑

n≥0

ud(λ; ν; n)
t2n+|λ|−|ν|

n!(n + |λ| − |ν|)!
,

where

ud(λ; ν; n) :=
∑

|µ|=n+|λ|,µ∈W d

f(λ; µ)f(ν; µ).

Proposition 12. For λ, ν ∈ W d with |λ| ≥ |ν|, we have

Ud(λ; ν; t) = det(Iλi−νj
)1≤i,j≤d.

Gessel’s determinant formula was proved by first deriving a symmetric function
identity, and then applying a specialization operator. It is not a surprise that there
should be a corresponding symmetric function identity that specializes to Theorem
11, even to Proposition 12. Actually, such a formula was described by Gessel in the
same paper [5] in the paragraph just before Theorem 16, and was clearly stated as
[4, Theorem 3.5].

Gessel’s determinant formula counts permutations of bounded length of longest
increasing subsequences. Does Theorem 11 count natural objects?
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