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Abstract

There is a strikingly simple classical formula for the number of lattice paths avoiding
the line x = ky when k is a positive integer. We show that the natural generalization
of this simple formula continues to hold when the line x = ky is replaced by cer-
tain periodic staircase boundaries—but only under special conditions. The simple
formula fails in general, and it remains an open question to what extent our results
can be further generalized.
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1 Background and main results

Throughout this paper, a lattice path will mean a lattice path in the plane
whose only allowable steps are north (0, 1) and east (1, 0).

It is a classical theorem [1][2] that if k is a positive integer, then the number
of lattice paths from (0, 0) to (a + 1, b) (where a ≥ kb) that avoid touching or
crossing the line x = ky except at (0, 0) is given by the formula

(

a + b

b

)

− k

(

a + b

b − 1

)

. (1)

In fact, more is true: There are

(

a

c − 1

)(

b

c − 1

)

− k

(

a − 1

c − 2

)(

b + 1

c

)

(2)
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such paths with c−1 northwest corners. (There is a similar-looking formula for
paths with a given number of southeast corners.) This stronger result appears
explicitly in [4] and implicitly even earlier, but our favorite proofs of all these
facts are the bijective proofs of Goulden and Serrano [3].

It is natural to ask if there are similar simple formulas for lattice paths from
(0, 0) to (a, b) that avoid the line x = ky, if k is allowed to be an arbitrary
positive rational number. While one can write down a determinantal formula
(indeed, a determinantal formula exists for an arbitrarily shaped boundary),
nothing as simple as (1) is known, and empirical investigation does not suggest
any obvious conjecture.

Our first main result is that for certain periodic staircase boundaries (instead
of straight-line boundaries), there are simple enumerative formulas that gen-
eralize (1) and (2), at least for certain special starting and ending points.

Definition 1 Given positive integers s and t, let As,t be the infinite staircase
path that starts at (0, t), then takes s steps east, t steps north, s steps east, t
steps north, and so on.

Definition 2 Given a set S of (finite) lattice paths, take each path π ∈ S,
and augment it by prepending a north step to the beginning of π and appending
a north step to the end of π. Let S+ denote the resulting set of lattice paths.

Theorem 3 Let s, t, n, and c be positive integers.

(1) Let S1 be the set of lattice paths from (0, 0) to (sn+1, tn) that avoid As,t.
There are

t

(

sn

c − 1

)(

tn

c − 1

)

− s

(

sn − 1

c − 2

)(

tn + 1

c

)

(3)

paths in S+
1 with c northwest corners (equivalently, c southeast corners).

(2) Let S2 be the set of lattice paths from (1, 0) to (sn, tn−1) that avoid As,t.
There are

t

(

sn − 1

c − 1

)(

tn − 1

c − 1

)

− s

(

sn − 2

c − 2

)(

tn

c

)

(4)

paths in S+
2 with c northwest corners (equivalently, c southeast corners).

The equivalence between counting northwest and southeast corners follows
because in a lattice path that starts with a north step and ends with a north
step, the first corner must be a northwest corner and the last corner must be
a southeast corner, and northwest and southeast corners must alternate. Also,
since |S| = |S+| for any S, summing over all c and applying Vandermonde
convolution immediately yields the following corollary.
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Corollary 4 Let s, t, and n be positive integers. Then

|S1| = t

(

sn + tn

tn

)

− s

(

sn + tn

tn − 1

)

(5)

and

|S2| = t

(

sn + tn − 2

tn − 1

)

− s

(

sn + tn − 2

tn − 2

)

. (6)

Note that avoiding Ak,1 is the same as avoiding x = ky except at (0, 0), so our
results generalize (1) and (2) in one direction, by allowing arbitrary s and t,
but are simultaneously more special in another direction, since only certain
special endpoints are allowed. More precisely, note that if we set a = kn and
b = n in (1) and (2), then we get the same answers as if we set s = k and
t = 1 in (5) and (3). (When t = 1, the map S 7→ S+ simply adds a northwest
corner to every path.)

Our proof of Theorem 3 is similar to Goulden and Serrano’s in several ways
but differs in one crucial way. Like Goulden and Serrano, we interpret (3)
and (4) as counting all paths of a certain type, minus the bad paths. Another
similarity is the idea of breaking the bad path into two halves ρ and σ at the
first “bad point” so as to manipulate ρ and σ into something that is easier to
count. The crucial difference is that Goulden and Serrano rotate ρ, whereas we
interchange ρ and σ. Therefore our bijection does not specialize to Goulden
and Serrano’s rotation principle nor to André’s reflection principle.

We also give a second proof of Corollary 4, which is based on a well-known
argument of Raney [6] regarding cyclic shifts of integer sequences.

It is frustrating that Theorem 3 applies only to special endpoints. Can any-
thing be said about other endpoints? We do not have a satisfactory answer
to this question, but our second main result is a tantalizing hint that more
general theorems lie waiting to be found. It is best stated in the language of
binary strings; we draw the connection to lattice paths afterwards.

Theorem 5 For n ≥ 1, s ≥ 0, and 0 ≤ r ≤ 2n, let a(n, s, r) be the number of
binary sequences of length (s + 2)n + 1 such that for all j, the jth occurrence
of 10 (if it exists) appears in positions (s + 2)j + 1 and (s + 2)j + 2 or later,
and such that the total number of occurrences of 10 and 01 is at most r. Then

a(n, s, r) = 2

(

(s + 2)n − 1

r

)

− (s − 2)
r−1
∑

i=0

(

(s + 2)n − 1

i

)

. (7)

Our proof of Theorem 5 is again an application of Raney’s argument, combined
with a straightforward induction on n.
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To convert Theorem 5 into lattice-path language, let β = (b1, b2, . . . , b(s+2)n+1)
be a binary sequence, let b0 = 0, and define ∆β by (∆β)i = |bi − bi−1|, for
i ≥ 1. If we convert ∆β into a lattice path by turning 0’s into east steps and
1’s into north steps, then it is easily checked that the binary sequences in
Theorem 5 turn into lattice paths avoiding Bs, as defined below.

Definition 6 For s ≥ 0, define Bs to be the staircase path that starts at (0, 2),
then takes s + 1 steps east, 2 steps north, s steps east, 2 steps north, s steps
east, and so on, always alternating between 2 steps north and s steps east
except for the first segment of s + 1 steps east.

For example, B4 is the dashed line in the lower picture in either Figure 2 or
Figure 3 below. Curiously, we have not been able to generalize Theorem 5 to
more general staircase boundaries, or to refine the count according to north-
west or southeast corners. But for the special case when s = 2k is even, we
have a second, purely bijective proof of the following corollary of Theorem 5.

Corollary 7 For all n ≥ 1 and k ≥ 0, the number of lattice paths of length
2(k+1)n+1 that start at (0, 0) and that avoid touching or crossing B2k equals
the number of lattice paths of length 2(k + 1)n + 1 that start at (0, 0) and that
avoid touching or crossing the line x = ky except at (0, 0). This number has
the explicit formula

(

2(k + 1)n

2n

)

− (k − 1)
2n−1
∑

i=0

(

2(k + 1)n

i

)

. (8)

Formula (8) is of course just obtained by summing over the appropriate in-
stances of (1). These numbers also appear as A107027 in Sloane’s Online
Encyclopedia of Integer Sequences. This cries out for a combinatorial inter-
pretation of each summand as counting lattice paths avoiding B2k but with
varying endpoints. Unfortunately, we do not know how to make this idea work.

Note that the case s = 2 of Theorem 5 is particularly simple:

Corollary 8 For n ≥ 1, there are
(

4n

2n

)

binary sequences of length 4n+1 with
the property that for all j, the jth occurrence of 10 appears in positions 4j +1
and 4j + 2 or later (if it exists at all).

We suspect that we have not yet found the “proof from the Book” of Corol-
lary 8, and encourage the reader to find it.

The outstanding open question is whether our results generalize further. We
should mention two papers [5] and [7] that consider staircase boundaries sim-
ilar to As,t and that prove results related to Corollary 4. Although our results
do not seem to imply or be implied by their results, perhaps it would be fruitful
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to investigate the precise relationships among them.

We thank Mihai Ciucu, Don Coppersmith, Ira Gessel, Christian Krattenthaler,
Fred Kochman, Lee Neuwirth, and Doron Zeilberger for useful discussions.

2 Proofs of Theorem 3 and Corollary 4

PROOF. (of Theorem 3)

We prove part (1) first. It will be convenient to first prove formula (5) bijec-
tively, and then track corner counts through the bijection.

As we hinted above, we interpret (5) as counting the set T of all paths of a
certain type, minus the set of bad paths. For 0 ≤ i ≤ t − 1, let Ti be the set
of all lattice paths from (1, i) to (sn + 1, tn + i), and let T =

⋃

i Ti. Then

|Ti| =

(

sn + tn

tn

)

and |T | = t

(

sn + tn

tn

)

. (9)

We regard S1 as a subset of T as follows. Given any π ∈ S1, find the smallest i
such that (1, i) ∈ π; such an i must exist. Then there exists a unique π′ ∈ Ti

that agrees exactly with the remainder of π, provided that we append i north
steps to the end of π. Identifying π with π′ embeds S1 in T . It remains to show
that the number of bad paths—i.e., the paths in T\S1—is s

(

sn+tn

tn−1

)

.

We partition the set T\S1 into s disjoint sets U1, . . . , Us as follows. By defini-
tion, every path in T\S1 must hit a bad point, i.e., a point on the boundary
As,t. For 1 ≤ j ≤ s, we let Uj be the set of all paths in T\S1 whose first
bad point has an x-coordinate that is congruent to j modulo s. To prove
formula (5), it suffices to show that |Uj | =

(

sn+tn

tn−1

)

, independent of j.

Fix any j. Given π ∈ Uj , observe that the step that terminates in the first
bad point of π must be a north step. Let ρ be the portion of π prior to this
fatal north step, and let σ be the portion of π after the bad point. Thus π =
(ρ, north, σ). Now comes the crucial part of the proof, where we interchange
ρ and σ. More precisely, let π′ be the lattice path that starts at (j − 1, t) and
takes steps (σ, east, ρ). See Figure 1 for an example.

We claim that π 7→ π′ bijects Uj onto the set U ′

j of all paths from (j − 1, t) to
(sn+ j, tn+ t− 1). First note that since π and π′ have the same total number
of north steps and the same total number of east steps except that one north
step of π has been changed into an east step of π′, it follows that π′ does in
fact terminate at (sn + j, tn + t − 1). Now, given any path π′ ∈ U ′

j , let σ be
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ρ

σ

A5,3

A5,3

σ ρ

Fig. 1. Example of π 7→ π′ with s = 5, t = 3, n = 2, and π ∈ T1 ∩ U2

the initial segment of π′ up to the last point of π′ that lies on the boundary
As,t. The next step after that must be an east step; let ρ be the remainder
of π′ after that. It is straightforward to check that this allows us to construct
a unique preimage π of π′. This proves formula (5).

Now we prove the stronger formula (3), for northwest corners. The initial north
step of each lattice path in S+

1 forces there to be a northwest corner with x-
coordinate zero, whereas the final north step does not affect the northwest
corner count. Therefore if we embed S1 in T as above, we really want to count
lattice paths with c − 1 northwest corners (rather than c northwest corners).

There are t
(

sn

c−1

)(

tn

c−1

)

paths in T with c − 1 northwest corners, because we
can pick the x-coordinates and y-coordinates of the corners independently. It
therefore suffices to show that for all j, there are

(

sn−1
c−2

)(

tn+1
c

)

paths in Uj with
c − 1 northwest corners.

If α is a binary string, let |α| denote its length, and let w(α) denote its weight,
i.e., the number of 1’s in α. Let U ′′

j be the set of ordered pairs (α, β) of
binary strings such that |α| = sn − 1, |β| = tn + 1, and w(β) = w(α) + 2.
It suffices to describe a bijection from U ′

j to U ′′

j such that the composite map
π 7→ π′ 7→ (α, β) sends paths with c− 1 northwest corners to pairs (α, β) with
w(β) = c.

Before describing this bijection, we make two observations. Let π, ρ, σ, and π′

be as above. The first observation is that, because of the position of the end-
point of π relative to the boundary As,t, σ always has at least one east step.
The second observation is that we lose a northwest corner when passing from
π to π′ iff σ starts with an east step, and we gain a northwest corner as we
pass from π to π′ iff σ ends with a north step. (Note that we can both gain
a corner and lose a corner, leaving the total corner count unchanged.) So to
track corners properly, we must watch the first and last steps of σ.

Now for the bijection. Given π′ ∈ U ′

j , construct α by first writing down a
binary string of length sn whose ith digit (1 ≤ i ≤ sn) is 1 iff j + i − 1
is the x-coordinate of a northwest corner of π′, and then deleting the digit
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corresponding to the point where π′ intersects As,t for the last time. This digit
must exist, because σ has at least one east step. For example, in Figure 1,
we first write down 1000100001, and then delete the 4th digit to obtain α =
100100001.

The first tn − 1 digits of β are obtained by writing down the binary string of
length tn − 1 whose ith digit (1 ≤ i ≤ tn − 1) is 1 iff t + i is the y-coordinate
of a northwest corner of π′. The next digit of β is 1 iff σ does not start with a
north step, and the last digit of β is the complement of the deleted digit of α.
For example, in Figure 1, β = 1110011.

To see that w(β) = w(α) + 2, first pair off the 1’s in α and β arising from
northwest corners that they both “see,” and then note that β will have two
extra 1’s corresponding to the columns in which the first and last vertices of σ
appear: Either β sees a northwest corner in that column (and α of course does
not see it), or there is no such corner, in which case the appropriate trailing
bit of β will be set. Either way, w(β) = w(α) + 2.

Similarly, as we pass from π to π′ to β, a corner that is lost from π to π′ is
“caught” by the penultimate bit of β, and β will gain an extra 1 either by
catching a gained corner or, if no corner is gained, by setting its last bit. Thus
w(β) is one more than the number of northwest corners of π. Equivalently,
w(α) is one less than the number of northwest corners of π.

It remains to show that π′ 7→ (α, β) is a bijection. Since |U ′

j | = |U ′′

j |, it suffices
to show that π′ can be reconstructed from its image (α, β). To reconstruct π′ it
suffices to reconstruct the northwest corners. The penultimate digit of β is 0 iff
π′ has a northwest corner with x-coordinate j−1, so we need only reconstruct
the deleted digit of α. The value of the deleted digit is the complement of
the last digit of β, so we need only reconstruct its position. To do this, take
(α, β) and begin constructing π′ from the end backwards without regard to
the deleted digit. At some point, the partially reconstructed path will touch
or cross the boundary As,t. It is easy to check that the first such contact point
with As,t yields the position of the deleted digit of α.

This completes the proof of part (1). The proof of part (2) is very similar, so
we focus only on the details that differ. For 0 ≤ i ≤ t − 1, let Ti be the set of
all lattice paths from (1, i) to (sn, tn + i − 1), and let T =

⋃

i Ti. Then T is
our set of all paths. Note that S2 is already naturally a subset of T—in fact,
S2 ⊂ T0—so we do not have to embed S2 in T . The definition of the sets Uj is
exactly analogous. However, π′ now starts at (j, t+1) rather than at (j−1, t),
and ends at (sn + j, tn + t− 1). The proof of (6) now goes through as before.

To do the corner count, we need to define the map π′ 7→ (α, β) in the case that
σ is empty or vertical, i.e., has no east steps. In this case, we always delete
the first digit of α. The definition of β is the same as before. The arguments
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that w(β) = w(α) + 2 and that π′ 7→ (α, β) is a bijection still work.

However, w(α) is no longer always one less than the number of northwest
corners of π. Let V denote the set of paths in

⋃

j Uj for which σ is vertical or
empty and ρ starts with a horizontal step. Then it is straightforward to check
that for π ∈ V , w(α) is equal to the number of northwest corners of π. So if
we let Xc denote the members of X with c northwest corners, then pulling
back U ′′

j to Uj shows that formula (4) is the cardinality of the set

(

T c−1\
s
⋃

j=1

U c−1
j

)

∪ (V c−1\V c−2) = Sc−1
2 ∪ (V c−1\V c−2). (10)

On the other hand, if we let N2 denote the subset of S2 consisting of paths
that start with a north step, and observe that prepending a north step to
π ∈ S2 adds a northwest corner to π iff π starts with an east step, then we see
that (S+

2 )c is equinumerous with

Sc−1
2 ∪ (N c

2\N
c−1
2 ). (11)

Thus to show that (10) and (11) are equinumerous, it suffices to show that
N c

2 = V c−1 for any c. But this bijection is easily described: Given a path in N2,
simply move all the initial north steps to the end; this creates a path in V
with one fewer northwest corner. This completes the proof.

PROOF. (of Corollary 4)

Of course this follows from Theorem 3, but we have another proof. The formula
in equation (5) can be rewritten as 1

n

(

sn+tn

sn+1

)

. Consider the set S ′

1 of all paths
starting at the origin that end with a north step and that have a total of sn+1
east steps and a total of tn north steps. Clearly |S ′

1| =
(

sn+tn

sn+1

)

and S1 ⊂ S ′

1.

We need to show that S1 comprises precisely 1/n of the paths in S ′

1.

Decompose any path π ∈ S ′

1 into n consecutive subpaths π1, π2, . . . , πn, where
each πj contains exactly t north steps and ends in a north step. Our desired
result follows immediately from the following key claim: For any π ∈ S ′

1, there
is exactly one “cyclic shift” of π that lies in S1, where by a cyclic shift we
mean one of the n paths of the form

πj , πj+1, . . . , πn, π1, π2, . . . , πj−1

obtained from π by concatenating the subpaths in a cyclically permuted order.

To see the key claim, one first readily verifies that π ∈ S1 iff for all i > 0,
the total length of the first i subpaths π1, . . . , πi is at least (s + t)i + 1. Now
we apply an argument patterned after a classic proof of Raney [6]. For all
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j ≥ 1, let ℓj be the length of π(j mod n). Consider the graph in the xy plane
with straight-line segments between vertices Pj and Pj+1, where

Pj =

(

j,
j
∑

i=1

ℓi

)

.

The “average” slope of this graph is (sn+tn+1)/n = s+t+ 1
n
. The line of the

form y = (s+ t+ 1
n
)x+C that is “tangent” to this graph from below intersects

the graph exactly once every n points, because the graph has period n and
the coefficient of x is an integer plus 1/n. The points of intersection have the
form Pj, Pj+n, Pj+2n, etc., and the value of j here yields the unique cyclic shift
having the desired property. This proves the claim.

The proof of equation (6) is similar. Define S ′

2 to be the set of all paths from
the origin that have a total of sn − 1 east steps and a total of tn − 1 north
steps. Decompose any π ∈ S ′

2 as follows:

π = π1, north, π2, north, . . . , north, πn

where each πj has t− 1 north steps. Then π ∈ S2 iff for all 0 ≤ i < n we have

|π1| + |π2| + · · ·+ |πi| ≥ i(s + t − 1).

Exactly one “cyclic shift” of π has the equivalent property that for all i,

|π1| + |π2| + · · · + |πi| ≥ (i/n)(sn + tn − n − 1).

Thus there are 1
n

(

sn+tn−2
tn−1

)

paths in S2, which is equivalent to equation (6).

3 Proofs of Theorem 5 and Corollary 7

PROOF. (of Theorem 5)

It is easily verified that a(1, s, 0) = 2 and a(1, s, 1) = a(1, s, 2) = s + 4. If
n ≥ 2 and r ≤ 2n − 2, then we claim that the following recursion holds:

a(n, s, r) =
s+2
∑

d=0

(

s + 2

d

)

a(n − 1, s, r − d). (12)

The reason is that an admissible binary string of order n−1 can be extended by
any sequence of s + 2 bits without danger of causing inadmissibility, provided
that the resulting string changes from 1 to 0 or vice versa at most 2n − 2
times. The parameter d counts the number of changes introduced by the last
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s + 2 bits, and the binomial coefficient counts the number of ways to position
the d changes.

By Vandermonde convolution, the recurrence (12) almost gives us a proof by
induction on n, except that we need to handle the cases r = 2n−1 and r = 2n.
Note that no string of order n can have more than 2n − 1 changes, and that
equation (7) takes the same value for r = 2n − 1 and r = 2n. So to complete
the proof of Theorem 5, it is enough to show that

a(n, s, 2n − 1) − a(n, s, 2n − 2) = 2

(

(s + 2)n − 1

2n − 1

)

− s

(

(s + 2)n − 1

2n − 2

)

,

which can be rewritten as 1
n

(

(s+2)n
2n−1

)

. The left-hand side counts the admissible
strings with exactly 2n−1 changes, and we use the proof technique of Raney as
before. Any such string σ must start with 0; we decompose it into substrings
σ1, σ2, . . . , σn, where each σj consists of aj zeroes followed by bj ones, and
aj , bj > 0. The condition for admissibility can now be expressed as

|σ1| + |σ2| + · · ·+ |σi| ≥ i(s + 2) + 1

for all 0 ≤ i < n. Exactly one cyclic shift of σ has the equivalent property
that for all i,

|σ1| + |σ2| + · · ·+ |σi| ≥ (i/n)((s + 2)n + 1).

Thus the number of admissible strings with exactly 2n−1 changes is equal to
1/n times the number of ways to partition (s+2)n+1 into 2n positive integers,

corresponding to the numbers aj, bj . This is well known to be
(

(s+2)n
2n−1

)

, and
this completes the proof.

PROOF. (of Corollary 7)

We can deduce this easily from Theorem 5 just by showing that equation (7)
reduces to equation (8) when r = 2n and s = 2k. We have

a(n, 2k, 2n) = 2

(

2(k + 1)n − 1

2n

)

− 2(k − 1)
2n−1
∑

i=0

(

2(k + 1)n − 1

i

)

;

breaking up the sum, the right-hand side becomes

2

(

2(k + 1)n − 1

2n

)

− (k − 1)

(

2(k + 1)n − 1

2n − 1

)

− (k − 1)
2n−1
∑

i=0

[(

2(k + 1)n − 1

i

)

+

(

2(k + 1)n − 1

i − 1

)]

,

10



or
[

2
2kn

2(k + 1)n
− (k − 1)

2n

2(k + 1)n

](

2(k + 1)n

2n

)

− (k − 1)
2n−1
∑

i=0

(

2(k + 1)n

i

)

,

which then collapses to formula (8).

However, we also give a direct bijective proof. If k = 0 then formula (8)
simplifies to 4n, the boundary conditions are nearly vacuous, and the result is
easy to prove. So fix k ≥ 1 and n ≥ 1.

Our bijection is actually between two sets of lattice paths that are slightly
different from those mentioned in the corollary.

Let Fk(n) be the set of lattice paths of length 2(k + 1)n (note the shorter
length) that start at (0, 0) and avoid the line x = ky except at (0, 0).

Let Gk(n) be the set of lattice paths of length 2(k +1)n+1 that start at (0, 0)
and avoid B2k, and that touch the line x = ky + 1 at least once for y > 0.

To see that a bijection between Fk(n) and Gk(n) implies the corollary, we make
two observations. First, because 2(k + 1)n is a multiple of k + 1, every lattice
path of length 2(k +1)n that avoids x = ky can be extended by either an east
step or a north step without hitting the line x = ky; therefore |Fk(n)| is exactly
half the number of lattice paths of length 2(k + 1)n + 1 that avoid x = ky.
Second, the paths excluded by the final condition on Gk(n) are precisely those
that avoid the line x = ky + 1 after (1, 0), and therefore are in bijection with
Fk(n)—simply prepend an east step to each path in Fk(n).

The rest of the proof is devoted to describing a bijection ϕ : Fk(n) → Gk(n).

We define a procedure called trisection that we need in our construction of ϕ.
Define the potential of a point (x, y) to be x − ky. Let P be a lattice path,
not necessarily starting at (0, 0), but with the property that the potential
difference of P—i.e., the potential of the last point of P minus the potential
of the first point of P—is at least k+1. To trisect P , first look at the last k+1
steps of P . If all of these steps are east steps, then the trisection procedure
fails. Otherwise, let b be the segment of P consisting of the last north step
of P along with all the east steps after that. Let l be the length of b. Find
the last lattice point p ∈ P such that the initial segment a of P comprising
everything up to p has potential difference exactly k + 1 − l. Such a point p
must exist and occur prior to b. Let P ′ be the segment of P between a and b.
The decomposition P = (a, P ′, b) is the trisection of P . Note that the potential
difference of P ′ is the same as that of P .

We are now ready to describe ϕ. Given P ∈ Fk(n), the construction of ϕ(P )
has two phases. In Phase 1, we decompose P into segments; in Phase 2, we
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build ϕ(P ) using the segments constructed in Phase 1.

Observe that the potential difference of any P ∈ Fk(n) is at least k + 1. We
begin Phase 1 by trying to trisect P into (a1, P

′, b1). If this fails, we proceed
to Phase 2. Otherwise, if the height of a1 (i.e., the y-coordinate of the last
point of a1 minus the y-coordinate of the first point of a1) is even, then we
proceed to Phase 2. Otherwise, we try to trisect P ′ into (a2, P

′′, b2), proceeding
to Phase 2 if the trisection fails or if a2 has even height. If we still do not reach
Phase 2, then we try to trisect P ′′, and so on.

Eventually we must reach Phase 2, with a decomposition

P = (a1, a2, . . . , am−1, am, Q, bm, bm−1, . . . , b2, b1),

for some m, where Q denotes whatever remains in the middle. If we reach
Phase 2 because the height of am is even, then we set

ϕ(P ) = (east, am, bm, a1, b1, a2, b2, a3, b3, . . . , am−1, bm−1, Q),

where the “east” means that we begin ϕ(P ) with an east step. For an example
with k = 2 and n = 7, see Figure 2.

The other way to reach Phase 2 is for the last k + 1 steps of Q to all be east
steps. Decompose Q = (Q′, bm+1) where bm+1 comprises those final k + 1 east
steps. Then set

ϕ(P ) = (north, bm+1, a1, b1, a2, b2, . . . , am, bm, Q′).

For an example, again with k = 2 and n = 7, see Figure 3.

It is readily checked that ϕ(P ) ∈ Gk(n); the key is that each (ai, bi) pair takes
us from one point on the line x = ky + 1 to the next. The way ai and bi are
constructed ensures that ϕ(P ) avoids B2k.

To invert ϕ, suppose we are given P ∈ Gk(n). Whether Figure 2 or Figure 3
applies depends on whether the first step of P is north or east. Mark all the
points of P that lie on the line x = ky + 1; there must be at least one, since
P ∈ Gk(n). Each such point is a terminal point of a bi. By backing up from
such a point until we find a north step, we can reconstruct the bi, and therefore
also the ai and Q. Hence ϕ is easily reversed. We leave the straightforward
verification of the details to the reader.
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