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ABSTRACT FACTORIAL FUNCTIONS AND THEIR

APPLICATIONS

ANGELO B. MINGARELLI

Abstract. We define the notion of an abstract factorial function on the set
of natural numbers and show that, given any subset of Z, we can associate to
it another set with which, if non-trivial, we can define one or more (generally
independent) abstract factorial functions. These associated sets are studied
and arithmetic relations are revealed. In particular, we show that one of the
associated sets of the set of primes is a subset of a class of numbers that also
contains the highly composite numbers of Ramanujan. Furthermore, we show
that for any given abstract factorial function the series of reciprocals of its
factorials always converges to an irrational number.

1. Introduction

We consider the problem of defining an abstract factorial function !a : N → Q and
show how these can be constructed using arbitrary sets X of integers in Q. Among
the various questions considered here we find partial answers to these: What do
these abstract factorials look like? How does one construct possibly infinite families
of such generalized factorials simply? Finally, are there irrationality-type results
for numbers defined by series of the reciprocals of such abstract factorials?

The definition of an abstract factorial requires an implicit definition of an ab-
stract/generalized binomial coefficient as well. Our definition appears to differ from
all preceding definitions of this concept in that all that is required is the divisibility
of n!

a
(as odd as it may be) by the quantities k!

a
(n−k)!

a
for every 0 ≤ k ≤ n. The

form of the factorial function itself need not be of a “falling” chain type as has been
usually assumed. In [6] Knuth and Wilf define a generalized binomial coefficient
by first beginning with a positive integer sequence C = {Cn} and then defining the
binomial coefficient

(

n+m
m

)

C
= Cm+nCm+n−1 . . . Cm+1/CnCn−1 . . . C1 that is remi-

niscent of the form of the usual expression for the binomial coefficient after we have
canceled out the m! from both numerator and denominator. There is an advantage
to leaving things as they are in this respect as we see below (i.e., no cancelations)
as this allows for much greater generality especially when it concerns the notion of
an associated set and irrationality questions. In addition, the Cj above ought to
satisfy certain recurrence relations [6] in order for said binomial coefficients to be
integers, a condition that we do not require per se.
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Besides clever guesswork, the construction of abstract factorial functions is most
easily accomplished by starting from a given integer sequence (or set of integers, X ,
always assumed non-empty and one in which multiplicities are counted along with
its elements). Regardless of the form of X we create a new (generally not unique) set
called an “associated set” of X with which one can produce many abstract factorial
functions (generally infinitely many linearly independent ones if X is infinite). One
can think of an associated set as exhibiting a generalized binomial sequence {bn}
that is an integer sequence with the property that for every n ∈ N, bk bn−k|bn for
every k = 0, 1, 2, . . . , n. Such associated sets arise naturally from a construction
based on the original set X , a construction which leads to a class of numbers that
can be characterized (Theorem 4.1).

For instance, in Example 4.2 we show that one of the associated sets of the sequence
{1, q, q, q, . . .} where q ∈ Z+, q ≥ 2, is given by the set {Bn} where

Bn = qd(1)+d(2)+···+d(n)

where d(n) is the usual divisor function. In the same spirit we show in Example 4.5
that for q ∈ Z+, q ≥ 2, the set {qn : n ∈ N} has an associated set {Bn} where

Bn = qσ(1)+σ(2)+···+σ(n)

where now σ(n) is the sum of the divisors of n, a result that can be extended

to the case of integer sequences of the form {qnk} for given k ≥ 1. Standard
arithmetic functions abound in this context as can be gathered by considering the
arithmetic progression aZ+ of a fixed multiple of the positive integers. Here, one
of the associated sets is given by numbers of the form

Bn = ad(1)+d(2)+···+d(n)
n
∏

i=1

i⌊n/i⌋,

where d(n) is the divisor function and the product on the right is the arithmetic
function that defines the cumulative product of all the divisors of the integers
1, 2, . . . , n (see Remark 9).

Such associated sets can have many fascinating arithmetic properties. Recall that in
1915 Ramanujan [8] introduced the highly composite numbers (hcn), that is numbers
whose number of divisors exceeds the number of divisors of all previous numbers,
or equivalently, numbers n such that d(m) < d(n) for all m < n, where d(n) is the
divisor function. In a later paper [9] Ramanujan goes on to study the asymptotic
distribution of the function Q(x) that counts the totality of numbers less than or
equal to x of the form

q ≡ pa1
1 pa2

2 pa3
3 · · · pan

n (1)

where pi is the ith-prime, and a1 ≥ a2 ≥ . . . ≥ an are positive integers. His
motivation was that this class q in fact contains all the highly composite numbers
and that he hoped to obtain similar results for H(x), the number of hcn less than
or equal to x, but considered this a problem of “extreme difficulty” [[9],p.119]. We
show that one of the associated sets of the set of ordinary prime numbers is a
subset of the class q of numbers of the form (1) considered by Ramanujan in [9].
This special associated set is yet another one of the few naturally occuring sets of
integers that is a subset of the class of numbers defined by q.
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After defining the notion of an abstract factorial function in the first part (Defi-
nition 2.1), we study the ratios of such consecutive generalized factorials showing
that strings of three or more consecutive equal factorials cannot occur (Lemma 2.1).
We then present (Lemma 2.3) sharp upper bounds on the growth of the quantity
k!

a
/(k + 1)!

a
≡ 1/bk by exhibiting a dichotomy: For any abstract factorial function,

either equations (3) or (4) below hold with cases of equality exhibited by specific
examples (Example 2.1 in the former case, and use of the Bhargava factorials for the
set of primes [2] in the latter case). The recent work of Bhargava [1],[2],[3] dealing
with the factorials of an arbitrary set should be consulted in this connection and
we will review the basic definitions herewith, as these factorials are particular cases
of the abstract factorial functions defined here (Proposition 2.2).

We present a global irrationality result for numbers defined by series of reciprocals of
abstract factorials akin to the representation of e using ordinary factorials. Indeed,
we show that given any abstract factorial function whatsoever, the sum of the
reciprocals of its generalized factorials is always irrational (Theorem 3.2). As an
illustration we obtain, for instance, that the series of reciprocals of the kth-powers
(k ≥ 1) of the cumulative products of all the divisors of the integers from 1 to n,
i.e.,

∞
∑

n=1

1/

n
∏

i=1

ik ⌊n/i⌋,

is irrational (Example 4.4 and Remark 9).

After proceeding to the calculation of the natural associated set of the set of primes,
we note that the first six numbers of this set are actually highly composite numbers
and, in fact, we prove that these are the only ones (Proposition 5.1). In addition,
we show that there exists an infinite set of hcn, {hn}, such that the series

∞
∑

n=0

1/h
⌊n/1⌋
1 h

⌊n/2⌋
2 h

⌊n/3⌋
3 · · ·h⌊n/n⌋

n

has an irrational sum (Proposition 5.4). Furthermore, we show that any associated
set of the set of primes contains only finitely many hcn (Proposition 5.2).

An application of the theory developed here allows us to derive that the series of
reciprocals of all the members of this associated set is an irrational number; that is
the sum of the series

∞
∑

n=0

1/p
⌊n/1⌋
1 p

⌊n/2⌋
2 p

⌊n/3⌋
3 · · · p⌊n/n⌋

n

where pi is the ith-prime is irrational.

2. Preliminaries

In the sequel the symbols X, I will always stand for non-empty subsets of Z; either
may be finite or infinite, as the case may be, and their elements are not necessarily
distinct (e.g., thus the set X = {1, q, q, q, . . .} is considered an infinite set). In the
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event that these sets have repeating elements it helps to think of them as integer
sequences, as arbitrary as desired.

Definition 2.1. An abstract (or generalized) factorial function is a function !
a

:
N → Z+ that satisfies the following conditions:

(1) 0!
a

= 1,
(2) For every non-negative integers n, k, 0 ≤ k ≤ n the generalized binomial

coefficients
(

n

k

)

a

:=
n!

a

k!
a
(n − k)!

a

∈ Z+,

(3) For every positive integer n, n! divides n!
a
.

Remark 1. Since, by hypothesis (2) above,
(

n+1
n

)

a
∈ Z+ for every n ∈ N the

sequence of factorials n!
a

is non-decreasing.

Thus, the ordinary factorial function n! := 1 · 2 · 3 · · · · n is an abstract factorial
function as is the function defined by setting n!

a
:= 2n(n+1)/2n!. The latter is

found by considering the set X = {n 2n : n ∈ Z+}, and multiplying its first n-terms
together. Bhargava’s factorial function [1], [2] defined on arbitrary sets X is also
an abstract factorial function (see Proposition 2.2).

One of the curiosities of abstract factorial functions is the possible existence of equal
consecutive factorials. Thus, in order to proceed we need to understand their role
and their connection to the rest of the theory.

Definition 2.2. Let !
a

be an abstract factorial function. By a pair of equal con-
secutive factorials we mean a pair of consecutive abstract factorials such that, for
some k ≥ 2, k!

a
= (k + 1)!

a
.

Remark 2. Of course, for a given abstract factorial function, Definition 2.1 does
not generally preclude the existence of such equal consecutive factorials as we do
not tacitly assume that the factorials form a strictly monotone sequence (cf., Ex-
ample 2.1 below).

In order to begin our study of such equal abstract factorials we consider the prop-
erties of ratios of nearby factorials. We adopt the following notation for ease of
exposition: For a given integer k and for a given abstract factorial function !

a
, we

write

bk =
(k + 1)!

a

k!
a

. (2)

Since generalized binomial coefficients are integers by Definition 2.1, bk is an integer
for every k = 0, 1, 2, . . .. The next result shows that strings of three or more equal
consecutive abstract factorials cannot occur.

Lemma 2.1. There is no abstract factorial function !
a

with three equal consecutive
factorials.

Now that we know that equal consecutive factorials must be isolated and occur in
pairs if they exist at all, we explore the relation of the factorials just preceding the
pair to the pair itself.
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Lemma 2.2. Let !
a

be given and let 2!
a
6= 2. If bk = 1 for some k ≥ 2, then

bk−1 ≥ 3.

The next result gives a limit to the asymptotics of sequences of ratios of abstract
factorials defined by the reciprocals of the bk. These ratios do not necessarily tend
to zero as one may expect (as in the case of the ordinary factorial), but may have
subsequences approaching non-zero limits!

Lemma 2.3. For any given abstract factorial function !
a
, either

lim sup
k→∞

1

bk
= 1, (3)

or

lim sup
k→∞

1

bk
≤ 1/2, (4)

the upper bound in (4) being sharp.

Definition 2.3. An abstract factorial function !
a

whose factorials satisfy (3) will
be called exceptional.

Note: Using the generalized binomial coefficients
(

n+1
n

)

a
it is easy to see that a

necessary condition for the existence of such exceptional factorial functions is that
1!

a
= 1. The question of their existence comes next.

Proposition 2.1. There is an abstract factorial function satisfying (3).

To see this define a function !
a

: N → Z+ by initially setting 0!
a

= 1, 1!
a

= 1. The
exceptional abstract factorial is now defined inductively.

n!
a

=

{

(n + 1)!
a

= n! (n + 1)!
∏n−1

j=1 (n − j)!
a

2
, if n = 2, 5, 8, 11, . . .,

n!
∏n−1

j=1 (n − j)!
a

2
, if n = 4, 7, 10, 13, . . . .

To see that this is an abstract factorial function we must show that the generalized
binomial coefficients

(

n
k

)

a
are positive integers for 0 ≤ k ≤ n as the other two

conditions in Definition 2.1 are clear by construction. Putting aside the trivial
cases where k = 0, k = n we may assume that 1 ≤ k ≤ n − 1.

To see that
(

n
k

)

a
∈ Z+ for k = 1, 2, . . . , n − 1 we note that, by construction, the

expression for n!
a

necessarily contains two copies of each of the terms k!
a

and
(n − k)!

a
for each such k whenever 2k 6= n. It follows that the stated binomial

coefficients are integers whenever 2k 6= n. On the other hand, if 2k = n the two
copies of k!

a
in the denominator are canceled by two of the respective four copies in

the numerator (since now (n−k)!
a

= k!
a
). Observe that (3) holds by construction.

Remark 3. The construction in Proposition 2.1 may be generalized simply by
varying the exponent outside the finite product from 2 to any arbitrary integer
greater than two. There then results an infinite family of such exceptional facto-

rials. The quantity defined by
∏n−1

j=1 (n − j)!
a
, may be thought of as an abstract

generalization of the super factorial (see [[11], A000178]).
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Example 2.1. The first few terms of the exceptional factorial defined in Propo-
sition 2.1 are given by 1!

a
= 1, 2!

a
= 3!

a
= 12, 4!

a
= 497664, 5!

a
= 6!

a
=

443722221348087398400, etc.

Since the preceding results are valid for abstract factorial functions they include,
in particular, the recent factorial function considered by Bhargava [1], [2] and we
summarize its construction for completeness. Let X ⊆ Z be a finite or infinite set
of integers. Following Bhargava [1],[2],[3] we define the notion of a p-ordering of
X (it is defined more generally for subsets of Dedekind rings) and use it to define
the generalized factorials of the set X inductively. By definition 0!X = 1. For p a
prime, we fix an element a0 ∈ X and, for k ≥ 1, we select ak such that the highest

power of p dividing
∏k−1

i=0 (ak − ai) is minimized. The resulting sequence of ai is
called a p-ordering of X . As one can gather from the definition, such p-orderings
are not unique, as one can vary a0. Associated with such a p-ordering of X we
define an associated p-sequence {νk(X, p)}∞k=1 by

νk(X, p) = wp(

k−1
∏

i=0

(ak − ai)),

where wp(a) is, by definition, the highest power of p dividing a (e.g., w3(162) = 81).
Bhargava [1], [2] shows that although the p-ordering is not unique the associated
p-sequence is independent of the p-ordering being used. Since this quantity is an
invariant, this led Bhargava to define generalized factorials of X by setting

k!X =
∏

p

νk(X, p), (5)

where the (necessarily finite) product extends over all primes p.

Proposition 2.2. Bhargava’s factorial function (5) is an abstract factorial func-
tion.

It follows from these definitions that for X = Z the notion of the generalized
factorial considered in [1] etc. is identical to the ordinary factorial and we write
n!

Z+
:= n! as usual.

As we mentioned above, the question of the possible existence of equal consecutive
(Bhargava) factorials is of interest. We show herewith that although this appears
to be a remote possibility for the ring of rational integers, such examples do exist
even in this scenario.

Example 2.2. There exist sets X with consecutive Bhargava factorials, !
X

. Per-
haps the easiest example of such an occurrence lies in the set of generalized factorials
of the set of cubes of the integers, X = {n3 : n ∈ N}, where one can show directly
that 3!X = 4!X(= 504). Actually, the first occurrence of this is for the finite subset
{0, 1, 8, 27, 64, 125, 216, 343}.

Another such set of equal Bhargava factorials is given by the finite set of Fibonacci
numbers X = {F2, F3, . . . , F18}, where one can show directly that 7!

a
= 8!

a
(=

443520). We point out that the calculation of Bhargava factorials for finite sets is
greatly simplified through the use of Crabbe’s algorithm [4].
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In what follows we will use the phrases “abstract factorials” and “generalized fac-
torials” interchangeably. Inspired by the factorial representation of the base of the
natural logarithms, one of the basic objects of study here is the series defined by
the sum of the reciprocals of the abstract factorials in question.

Definition 2.4. Let !
a

be a given abstract factorial function. The constant e
a

is
defined by the series of reciprocals of its generalized factorials, i.e.,

e
a
≡

∞
∑

r=0

1

r!
a

. (6)

Note that the series appearing in (6) converges on account of Definition 2.1(3) and
1 < e

a
≤ e. Thus, the usual factorial function gives that e

a
= e, Euler’s number

(≈ 2.718 . . .). The generalized factorial function defined by n!
a

:= 2n(n+1)/2n! has
an e

a
≈ 1.56514.

3. An irrationality result

We now state a few lemmas leading to an irrationality result for sums of reciprocals
of such abstract factorials.

Lemma 3.1. Let !
a

be an abstract factorial function whose factorials satisfy (4).
Then e

a
is an irrational number.

Remark 4. Although condition (3) in Definition 2.1 (i.e., n!|n!
a
) of an abstract

factorial function appears to be very stringent, one cannot do without something
like it; that is Lemma 3.1 above is false for “factorials functions” without this or
some other similar property. For example, for q > 1 an integer, define the “factorial”
n!

a
= qn. It satisfies properties (1) and (2) of Definition 2.1 but not (3). In this

case it is easy to see that even though our “factorial” satisfies equation (4), e
a

so
defined is rational.

Corollary 3.1. Let X be the set of prime numbers and !
a

the Bhargava factorial
function of this set given by [[2],p.793]

n!
a

=
∏

p

p
P

∞

m=0 [ n−1
pm(p−1)

],

where the (finite) product extends over all primes. Then e
a
≈ 2.562760934, is irra-

tional.

The previous result holds because the Bhargava factorials of the set of primes satisfy
(4) with equality (as is not difficult to show). The next lemma covers the logical
alternative exhibited by equation (3) in Lemma 2.3.

Lemma 3.2. Let !
a

be an abstract factorial function whose generalized factorials
satisfy (3). Then e

a
is irrational.

We summarize the previous two lemmas in the following theorem.
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Theorem 3.2. For any abstract factorial function !
a

the number e
a

is irrational.

Remark 5. This, therefore, is one possible setting for an extension of Lambert’s
classic theorem on the irrationality of e, showing that its irrationality appears to be
due more to the structure of the factorial function in question than the underlying
theory about the base of the natural logarithms. As a direct application, we note
that since the Bhargava factorials of an arithmetic progression X = {an+b : n ∈ N},
a > 0 are given by n!

a
= an n! [[2], Example 17], we can immediately deduce the

classic irrationality of the number e1/a, for any integer a > 0. Nontrivial examples
appear below.

Example 3.3. Define a factorial function by n!
a

:= (2n + 1)!/2n, n = 0, 1, 2 . . . .
Then this is an abstract factorial function. An immediate application of Theo-
rem 3.2 gives that

∞
∑

n=0

2n

(2n + 1)!
=

sinh
√

2√
2

/∈ Q.

More generally, for b ∈ Z+ we get

∞
∑

n=0

bn

(bn + 1)!
/∈ Q.

Using b = 4 for example we can derive the irrationality of
√

2(sinh
√

2 + sin
√

2).

Example 3.4. Let Fn denote the classical Fibonacci numbers defined by the re-
currence relation Fn = Fn−1 +Fn−2, F0 = F1 = 1. The “Fibonacci factorials” [[11],
id:A003266], denoted by FF (n) are defined by

FF (n) =

n
∏

k=1

Fk.

Define an abstract factorial function by setting FF (0) := 1 and

n!
a

:= n!FF (n), n = 1, 2, . . .

In this case, the generalized binomial coefficients involve the Fibonomial coefficients
(= FF (n)/FF (k)FF (n − k)) so that

(

n

k

)

a

=

(

n

k

)(

n

k

)

F

where the Fibonomial coefficients [[11], id:A010048], [6] on the right are integers
for k = 0, 1, , . . . , n. Once again, an application of Theorem 3.2 yields

∞
∑

n=0

1

n!FF (n)
≈ 1.5905614 /∈ Q.

Actually, by redefining the abstract factorial appropriately we see that a stronger
result holds namely,

∞
∑

n=0

1

n!(FF (n))k
/∈ Q

for every k ∈ Z+.
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Example 3.5. The (exceptional) abstract factorial of Example 2.1 gives the series
of reciprocals of generalized factorials:

e
a

= 1 + 1 +
1

12
+

1

12
+

1

497664
+

1

443722221348087398400
+

1

443722221348087398400
+ · · ·

≈ 2.166668676 /∈ Q.

4. Associated sets and their properties

Besides creating factorial functions using clever constructions, the easiest way to
generate them is by considering integer sequences. As we referred to earlier it
is shown in [1] that on every subset X ⊆ Z one can define an abstract factorial
function. For example, if k = 2, a ∈ Z+, then the integer sequence {a nk}∞n=1 is a
p-sequence for all primes p simultaneously. Its Bhargava factorials are then a simple
matter [[2], Lemma 16 and Example 19], however, this is not the case if k = 3, and
this for any a > 0.

Now, there are cases where the product of the first n-terms b1 b2 · · · bn of the given
set X can be used to define an abstract factorial function as well, one which may
(resp. may not) agree with the Bhargava factorial function of X (e.g., X = Z+,
resp. X = {n 2n : n ∈ Z+}).

However, if our set X fails to have any special property of the type just discussed
we show that there is still another method to define an abstract factorial function
using a set “associated” to X in such a way that if X is infinite (recall that we count
multiplicities here), one can define infinitely many generally linearly independent
abstract factorial functions suggested by this associated set. The construction of
this special set is next.

4.1. The construction of an associated set. Given I = {b1, b2, . . .}, I ⊂ Z, with
or without repetitions, we can affiliate to it another set XI = {B0, B1, . . . , Bn, . . .}
of non-negative integers, termed an associated set of I. In this case I is called a
primitive set. The elements of this set XI ≡ X are defined as follows: B0 = 1
by definition, B1 is (the absolute value of) an arbitrary but fixed element of I,
say, B1 = |b1| (so that the resulting associated set X generally depends on the
choice of b1). Next, B2 is the smallest (positive) number of the form b1

α1 b2
α2

(where the αi > 0) such that B1
2|B2. Hence B2 = |b1

2 b2|. Next, B3 is defined
as the smallest (positive) number of the form b1

α1 b2
α2b3

α3 such that B1B2|B3.

Thus, B3 = |b1
3 b2 b3|. Now, B4 is defined as that smallest (positive) number of

the form
∏4

k=1 bk
αk such that B1B3|B4 and B2

2|B4. This calculation gives us

B4 = |b1
4 b2

2 b3b4|. In general, we build up the elements Bi, i = 2, 3, . . . , n − 1,
inductively as per the preceding construction and define the element Bn as that
smallest (positive) number of the form |∏n

k=1 bk
αk | such that BiBj |Bn for every

i, j, 0 ≤ i ≤ j ≤ n, and i + j = n.
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Of course, such an associated set may be finite (if X is finite) or infinite, and
trivial (e.g., if b1 = 0 or some other bk = 0) or non-trivial, see below. So, for
instance, if none of the bi vanish this construction guarantees that if we define
n!

a
= n! B1B2 · · ·Bn then all the generalized binomial coefficients

(

n
k

)

a
are inte-

gers for k ≤ n, (see Definition 2.1(2)) so that the function just defined is indeed
an abstract factorial function. Observe that n!

a
= n! Bn, n!

a
= n! BnBn+1/B1,

n!
a

= n! BnBn+1Bn+2/B1B2 etc. all define abstract factorial functions, and all are
suggested by considering the structure of our associated set XI . From now on, we
will always assume that any/all associated sets are non-trivial.

The basic properties of any one of the associated sets of a set of integers, all of
which follow from the construction, can be summarized as follows.

Remark 6. Let I = {bi} ⊂ Z be any infinite subset of the integers. For any fixed
bm ∈ I, the associated set Xbm

= {B1, B2, . . . , Bn, . . .} exists and for every n > 1
and for every i, j, 0 ≤ i ≤ j ≤ n and i + j ≤ n, we have BiBj |Bn. In addition, if
the elements of I are all positive, then the Bi are monotone.

The above construction of an associated set leads to very specific sets of integers,
sets whose elements we characterize next (as we show below, it is helpful to think
of these Bn as generalized factorials)

Theorem 4.1. Given I = {bi} ⊂ Z, the terms

Bn = b1
⌊n⌋b2

⌊n/2⌋b3
⌊n/3⌋ · · · bn

⌊n/n⌋ (7)

characterize its associated set Xb1 (where we leave out the absolute values around
the b’s in (7) by convention. As usual ⌊x⌋ is the greatest integer not exceeding x).

Before proceeding with some applications we require a few basic lemmas.

Lemma 4.1. For k ≥ 0 an integer, let σk(n) denote the sum of the k-th powers
of the divisors of n, (where, σ0(n) = d(n) and d(n) is the number of divisors of n,
including 1 and n). Then

n
∑

i=1

σk(i) =

n
∑

i=1

ik ⌊n/i⌋. (8)

Note: The left-side of (8) is often called “the average order of the (arithmetical)
function...” (although it should be divided by n also), see Hardy and Wright [[5],
Section 18.2] where this notion is used in connection with the determination of the
asymptotics of various arithmetical functions.

Lemma 4.2. Let α(n) denote the cumulative product of all the divisors of the
numbers 1, 2, . . . , n (including the numbers 1 and n). Then

α(n) =
n
∏

i=1

i⌊n/i⌋. (9)

Remark 7. It is also known that

α(n) =

n
∏

k=1

⌊n

k
⌋!
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(see [11], id.A092143, Formula).

We now move on to examples where we describe explicitly some of the associated
sets of various basic integer sequences.

Example 4.2. We find the associated set XI of the set I of essentially constant in-
tegers: I = {1, q, q, q, q, . . .} as per the construction where q ≥ 2 is given. Choosing
B1 = q in the construction gives the associated set

XI = {1, q, q3, q5, q8, q10, q14, q16, q20, q23, q27, q29, q35, . . .} (10)

a set whose n−th term Bn = qa(n), where a(n) =
∑n

k=1 d(k) (by Theorem 4.1
and Lemma 4.1) and d(k) is, as before, the number of divisors of k. Note that by
the very nature of the set itself n! does not, in general, divide Bn for every n. In
other words, n!

a
= Bn does not necessarily define an abstract factorial function.

On the other hand, the function defined by n!
a

= n! Bn does define an abstract
factorial function. Here we see that equal consecutive factorials cannot occur by
construction so in particular, by Lemma 3.1, the number e

a
defined by the sum of

the reciprocals of these generalized factorials is irrational.

Remark 8. Note that the Bhargava factorials of I are mostly zero here while
those few that one can calculate by hand for the associated set XI indicate that
the factorials are not of the form of the Bn above. Thus it appears that, generally
speaking, the factorials defined here are distinct from Bhargava’s.

Definition 4.1. Let I be an infinite subset of Z with corresponding associated
set XI = {Bn}. If n!|Bn for every n, we say that this associated set XI is a
self-factorial set.

The motivation for this terminology is that the function defined by setting n!
a

= Bn

is an abstract factorial function. In other words, a self-factorial set may be thought
of as an infinite integer sequence of consecutive generalized factorials (identical
to the set itself). The next result is very useful when one wishes to iterate the
construction of an associated set ad infinitum (i.e., when finding the associated set
of an associated set, etc.).

Lemma 4.3. If I = {bn} is a set with n!|bn for every n, then its associated set
Xb1 is a self-factorial set. The same idea may be used to prove that

Corollary 4.3. The associated set XB1 of the self-factorial set X = {Bn} is a
self-factorial set.

Next, we show that set I of positive integers also has an associated set with inter-
esting properties.

Example 4.4. We find the associated set of the set of positive integers I = Z+ as
per the preceding construction. Choosing B1 = 1 we get the following set,

XZ+ = {1, 2, 6, 48, 240, 8640, 60480, 3870720, 104509440, 10450944000, . . .} (11)

a set which coincides (by Lemma 4.2 and Theorem 4.1) with the set of cumulative
products of all the divisors of the numbers 1, 2, . . . , n (see Sloane [11], id.A092143).
Note that by construction n!|Bn for every n. Hence, we can define an abstract
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factorial function by setting n!
a

= Bn to find that for this factorial function the set
of generalized factorials is given by the set itself, that is, this XZ+ is self-factorial. In
particular, equal consecutive factorials cannot occur by construction, and it follows
from Lemma 3.1 that the number defined by the sum of the reciprocals of these
Bn, i.e.,

e
a

= 1 +

∞
∑

n=1

1/

n
∏

i=1

i⌊n/i⌋ = 1 + 1 +
1

2
+

1

6
+

1

48
+

1

240
+ . . . ≈ 2.69179920

is irrational.

Remark 9. The previous example is a special case of a more general result which
states that the associated set of the set X = aZ+, a ∈ Z+, is given by terms of the
form

Bn = a
Pn

k=1 d(k)
n
∏

i=1

i⌊n/i⌋.

This is readily ascertained using the representation theorem, Theorem 4.1, and
Lemma 4.2.

Observe that infinitely many other integer sequences I have the property that
n!|Bn for all n and so such sequences can be used to define abstract factorial
functions. For example, if we consider the set of all k-th powers of the integers,
I = {nk : n ∈ Z+}, k ≥ 2, then another application of Lemma 4.2 shows that its
associated set XI with B1 = 1 is given by terms of the form

Bn =

n
∏

i=1

ik⌊n/i⌋.

In these cases we can always define an abstract factorial function by writing n!
a

=
Bn.

Example 4.5. Let q ∈ Z+, q ≥ 2 and consider the geometric progression X =
{qn : n ∈ N}. Then the Bhargava factorials of this set are given simply by n!

a
=

∏n
k=1 (qn − qk−1), [[2], Example 18].

Now the associated set Xq of this set X defined by setting B1 = q yields the set

Xq = {1, q, q4, q8, q15, q21, q33, q41, q56, q69, q87, q99, . . .}. (12)

whose n − th term is Bn = qa(n) by Lemma 4.2, where a(n) = σ(1) + . . . + σ(n),
is (n-times) the “average order of σ(n)”, see also [[5], Section 18.3, p.239 and p.
266]. The average order of the arithmetic function σ(n) is, in fact, the a(n) de-
fined here, its asymptotics appearing explicitly in [[5], Theorem 324]. Note that
this sequence a(n) appears in [[11], id.A024916] and that n! 6 |Bn generally, so this
set is not self-factorial. However, one may still define infinitely many other ab-
stract factorials on it as we have seen (e.g., n!

a
= n! Bn; n!

a
= n! BnBn+1/B1;

n!
a

= n! BnBn+1Bn+2/B1B2 etc.)

Example 4.6. Let q ≥ 2 be an integer and consider the integer sequence X =

{qn2

: n ∈ N}. The associated set Xq of this set X defined by setting B1 = q gives
the set

Xq = {1, q, q6, q16, q37, q63, q113, q163, q248, q339, q469, q591, . . .}. (13)



ABSTRACT FACTORIALS 13

where now the n−th term is Bn = qa2(n) by Lemma 4.2, where a2(n) =
∑n

k=1 σ2(k)
and σ2(k) represents the sum of the squares of the divisors of k [[5], p.239].

The previous result generalizes nicely.

Example 4.7. Let q ≥ 2, k ≥ 1 be integers and consider the integer sequence

X = {qnk

: n ∈ N}. In this case, the associated set Xq of this set X defined as

usual by setting B1 = q gives the set whose n−th term is Bn = qak(n) by Lemma 4.2,
where ak(n) =

∑n
i=1 σk(i) and σk(i) is the sum of the k-th powers of the divisors

of i [[5], p.239].

5. The associated set of the primes and highly composite numbers

As a final example we find an associated set for the set of primes and describe a
few of its properties.

Example 5.1. Let X = {pi : i ∈ Z+} be the set of primes. Setting B1 = 2 we
obtain the characterization of this associated set

X1 = {2, 12, 120, 5040, 110880, 43243200, 1470268800, 1173274502400, . . .}
in the form, X1 = {Bn} where

Bn = 2n 3⌊n/2⌋ 5⌊n/3⌋ · · · pi
⌊n/i⌋ · · · pn

⌊n/n⌋ =

n
∏

i=1

pi
⌊n/i⌋. (14)

First we note that for each n the total number of prime factors of Bn is always
equal to d(1) + d(2) + . . . d(n) where, as usual, d(i) is the classical divisor function
[[5],p.354]. Next, this particular associated set X1 is actually contained within a
class of numbers considered earlier by Ramanujan [8], namely the class of numbers
of the form

∏n
i=1 pi

ai where a1 ≥ a2 ≥ . . . ≥ an, a class which includes the highly
composite numbers (abbr. hcn) he had already defined in 1915.

In addition, a delicate argument (again using the representation of the ordinary
factorial function as a product over primes [[7], Theorem 27]) shows that for every
positive integer n, n!|Bn. This now allows us to define an abstract factorial function
by writing n!

a
= Bn. Since X1 is a self-factorial set and there are no consecutive

generalized factorials we conclude from Lemma 3.1 that

e
a

= 1 +
∞
∑

n=1

1/2n 3⌊n/2⌋ 5⌊n/3⌋ · · · pi
⌊n/i⌋ · · · pn

⌊n/n⌋ ≈ 1.5918741,

is an irrational number.

We observe that the first 6 elements of our class X1 are hcn but there is little hope
of finding many more due to the following result.

Proposition 5.1. The sequence defined by (14) contains only finitely many hcn.

Remark 10. It is interesting to note that the first failure of the left side of (25) is
when n = 9. Comparing all smaller hcn (i.e., those with a2 ≤ 8) with our sequence
we see that there are no others (for a table of hcn see [[10],pp.151-152]); thus the
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6 found at the beginning of the sequence are the only ones. The sequence Bn

found here grows fairly rapidly: Bn ≥ 2n+1p1p2 · · · pn although this is by no means
precise.

Actually more is true regarding Proposition 5.1. The next result shows that hcn
are really elusive . . .

Proposition 5.2. The integer sequences defined by taking any associated set of the
set of primes, even associated sets of the associated sets of the set of primes etc.
contain only finitely many hcn.

Now we show that there are hcn that are divisible by arbitrarily large (ordinary)
factorials.

Proposition 5.3. Let m ∈ Z+. Then there exists a highly composite number N
such that m!|N .

Remark 11. It is difficult to expect Proposition 5.3 to be true for all hcn larger
than N as can be seen by considering the hcn N = 48 where 4!|48 but 4! does
not divide the next hcn, namely, 60. However, the same argument shows that
Proposition 5.3 is true for all those hcn larger than N for which the chosen prime
p does appear in its prime factorization (which is not always the case: e.g., the
largest prime in the prime decomposition of 27720 is 11 but the largest such prime
for the next hcn, namely 45360, is 7).

Now we move on to the study of the associated set of a set of highly composite
numbers. Using the methods described here it can be shown that the associated set
of the set of all hcn defined by starting at b1 = 2 contains only finitely many hcn
in turn (we omit the proof). Still, the collection of all hcn contains those special
ones derived from Proposition 5.3 numbers that we now put to use.

Terminology: We will denote by H = {hn} a collection of hcn with the property
that n!|hn for each n ∈ Z+ (note that the existence of such a set is guaranteed by
Proposition 5.3).

Proposition 5.4. The associated set Hh1 of H is self-factorial. Furthermore, the
series of reciprocals of various powers of these hcn, i.e.,

∞
∑

n=1

1/h
⌊n/1⌋
1 h

⌊n/2⌋
2 h

⌊n/3⌋
3 · · ·h⌊n/n⌋

n /∈ Q.

To get irrationality results of the type presented here it merely suffices to have
at our disposal an abstract factorial function, as then this factorial function will
provide the definition of a self-factorial set. For example, the following theorem is
obtained.

Theorem 5.2. Let qn ∈ Z+ be a given integer sequence satisfying q0 = 1, n!qn is
non-decreasing for all n, and for every n ≥ 1, qi qj |qn for all i, j, 1 ≤ i ≤ j ≤ n
with i + j = n. Then the series

∞
∑

n=1

1

n!qn
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sums to an irrational number.

In this case, the abstract factorial function is given by n!
a

= n!qn where X = {n! qn}
is a self-factorial set.

6. Proofs

Proof. (Lemma 2.1) Assuming the contrary we let !
a

be such a factorial function
and let k ≥ 2 be an integer such that bk = bk+1 = 1. Since the binomial coefficient

(

k + 2

k

)

a

=
(k + 2)!

a

2!
a
k!

a

=
1

2!
a

∈ Z+,

by Definition 2.1(2), this implies that 2!
a
|1 for such k. On the other hand, 2!|2!

a

by Definition 2.1(3), so we get a contradiction. �

Proof. (Lemma 2.2) Lemma 2.1 guarantees that bk−1 6= 1. Hence bk−1 ≥ 2. As-
sume, if possible, that bk−1 = 2. Since (k + 1)!

a
= k!

a
= 2(k − 1)!

a
and the

generalized binomial coefficient
(

k + 1

k − 1

)

a

=
(k + 1)!

a

2!
a
(k − 1)!

a

=
2

2!
a

is a positive integer, 2!
a

must be equal to either 1 or 2. Hence, by hypothesis, it
must be equal to 1. But then by Definition 2.1(3) 2! must divide 2!

a
= 1, so we get

a contradiction. �

Proof. (Lemma 2.3) The sequence of generalized factorials n!
a

is non-decreasing by
Remark 1, thus, in any case lim supk→∞ 1/bk ≤ 1. Next, let kn ∈ Z+, be a given
infinite sequence. There are then two possibilities: Either there is a subsequence,
denoted again by kn, such that kn!

a
= (kn + 1)!

a
for infinitely many n, or every

subsequence kn has the property that kn!
a
6= (kn + 1)!

a
except for finitely many n.

In the first case we get (3). In the second case, since kn!
a

divides (kn + 1)!
a

(by
Definition 2.1) it follows that

(kn + 1)!
a
≥ 2kn!

a
,

except for finitely many n and this now implies (4).

The final statement is supported by an example wherein X is the set of all (rational)
primes, and the abstract factorial function is in the sense of Bhargava, [2]. In this
case, the explicit formula derived in [[2],p.793] for these factorials can be used to
show sharpness in the case where the indices in (4) are odd, since then bk = 2 for
all such k. �

Proof. (Proposition 2.2) Hypothesis 1 of Definition 2.1 is clear by definition of the
Bhargava factorial. Hypothesis 2 of Definition 2.1 follows by [[2],Theorem 8] while
hypothesis 3 of said definition follows by [[2],Lemma 13]. �
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Proof. (Lemma 3.1) The quantity 0!a = 1 by definition, so we leave it out of
the following discussion. Assume, on the contrary, that e

a
is rational, that is,

E
a
≡ e

a
− 1 is rational. Then E

a
= a/b, for some a, b ∈ Z+, (a, b) = 1. In addition,

E
a
−

k
∑

r=1

1

r!
a

=

∞
∑

r=k+1

1

r!
a

.

Let k ≥ b, k ∈ Z+ and define the number α
k

by setting

α
k

≡ k!
a

(

E
a
−

k
∑

r=1

1

r!
a

)

= k!
a

(

a

b
−

k
∑

r=1

1

r!
a

)

.

Since k ≥ b and k! divides k!
a

(by Definition 2.1(3)) it follows that b divides k!
a

(since b divides k! by our choice of k). Hence k!
a
a/b ∈ Z+. Next, for 1 ≤ r ≤ k we

have that k!
a
/r!

a
∈ Z+ (by Definition 2.1(2)). Thus, α

k
∈ Z+, for (any) k ≥ b.

Note that,

α
k

= k!
a

∞
∑

r=k+1

1

r!
a

= k!
a

(

1

(k + 1)!
a

+
1

(k + 2)!
a

+ . . .

)

. (15)

Let L < 1/2. For ε > 0 so small that L+ ε < 1/2, we choose N sufficiently large so
that for every k ≥ N we have k!

a
/(k + 1)!

a
< L + ε. Then it is easily verified that

k!
a

(k + i)!
a

< (L + ε)i,

for every i ≥ 1 and k ≥ N . Since L + ε < 1/2 we see that

α
k
≤ (L + ε)

∞
∑

i=0

(L + ε)i =
L + ε

1 − (L + ε)
< 1,

and this leads to a contradiction.

The case L = 1/2 proceeds as above except that now we note that equality in (4)
implies that for every ε > 0, there exists an N such that for all k ≥ N ,

k!
a

(k + 1)!
a

≤ 1/2 + ε.

Hence, for all k ≥ N ,

α
k
≤ (1/2 + ε)

∞
∑

i=0

(1/2 + ε)i =
1/2 + ε

1 − (1/2 + ε)
. (16)

We now fix some ε < 1/6 and a corresponding N . Then the right-side of (16) is
less than two. But for k ≥ No ≡ max{b, N}, α

k
is a positive integer. It follows

that α
k

= 1. Using this in (15) we get that for every k ≥ No,

1 = k!
a

(

1

(k + 1)!
a

+
1

(k + 2)!
a

+ . . .

)

. (17)
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Since the same argument gives that α
X,k+1

= 1, i.e.,

1 = (k + 1)!
a

(

1

(k + 2)!
a

+
1

(k + 3)!
a

+ . . .

)

, (18)

comparing (17) and (18) we arrive at the relation (k + 1)!
a

= 2k!
a
, for every

k ≥ No. Iterating this we find that, under the assumption of equality in (4) we
have (k + i)!

a
= 2i k!

a
, for each i ≥ 1, and for all sufficiently large k. However,

by Definition 2.1(3), (k + i)!
a

= n k!
a
i!

a
for some n ∈ Z+. Hence, ni i!

a
= 2i, for

every i, for some integer ni depending on i. This, however, is impossible since, by
Definition 2.1(4), i! must divide i!

a
. Thus, i! must also divide 2i for every i which

is impossible. This contradiction proves the theorem.
�

Proof. (Lemma 3.2) Since 2!
a

must be even by Definition 2.1(3) there are two cases:
either 2!

a
6= 2 or 2!

a
= 2.

Case 1: Let 2!
a
6= 2. We proceed as in the preceding Lemma 3.1 up to (15). Thus

the assumption that e
a
− 1 is rational, e

a
− 1 = a/b implies that α

k
∈ Z+ for any

k ≥ b satisfying (15). We rewrite this more compactly below for ease of reference.
Thus, using the notation in equation (2) above,

α
k

= k!
a

∞
∑

r=k+1

1

r!
a

= k!
a

(

1

(k + 1)!
a

+
1

(k + 2)!
a

+ . . .

)

,

= 1/bk + 1/bkbk+1 +

∞
∑

n=3

1/bkbk+1bk+2 · · · bk+n−1, (19)

Since the generalized factorials must have integral valued binomial coefficients by
Definition 2.1(2), we see that the product b1b2 · · · bn−1 = n!

a
/1!

a
is a positive integer

for every n. Hence,
(

n+k
k

)

a
∈ Z+ is equivalent to saying that n!

a
|bkbk+1 · · · bk+n−1,

for every k ≥ 0 and n ≥ 1. Since n!|n!
a

for all n by Definition 2.1(3), this means
that

n!|bkbk+1 · · · bk+n−1, (20)

for every integer k ≥ 0, n ≥ 1.

By hypothesis there is an infinite sequence of equal consecutive factorials. There-
fore, we can choose k sufficiently large so that k ≥ b and bk+1 = 1. Then (19) is
satisfied for our k with the α

k
there being a positive integer. With such a k at our

disposal, we now use Lemma 2.2 which forces bk ≥ 3 (since 2!
a
6= 2). Using this

information along with (20) in (19) we get

α
k

≤ 1/3 + 1/3 +
∞
∑

n=3

1/bkbk+1bk+2 · · · bk+n−1,

≤ 2/3 +

∞
∑

n=3

1/n!

≤ 2/3 + e − 2 − 1/2 ≈ 0.8849...

and this yields a contradiction.
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Case 2: Let 2!
a

= 2. We proceed as in Case 1 up to (19) and then (20) without
any changes. Once again, we choose k ≥ b and bk+1 = 1. Since 2 = 2!

a
|bkbk+1,

we see that bk must be a multiple of two. If bk = 2, then (19) gives the estimate
α

k
≤ 1/2+ 1/2+ e− 2− 1/2 ≈ 1.218.... However, since α

k
is a positive integer, we

must have α
k

= 1. Hence bk = 2 is impossible on account of (19). Thus, bk ≥ 4.
Now using this estimate once again in (19) we see that

1 = α
k

≤ 1/4 + 1/4 +

∞
∑

n=3

1/bkbk+1bk+2 · · · bk+n−1, (21)

≤ 1/2 + (e − 2 − 1/2) ≈ 0.718... (22)

and there arises another final contradiction. Hence e
a

is irrational. �

Proof. (Theorem 4.1) Note that (7) holds for the first few n by inspection so we
use an induction argument: Assume that

Bi =
i
∏

k=1

bk
⌊i/k⌋

holds for all i ≤ n − 1. Since we require BiBj |Bn for every i, j, 0 ≤ i ≤ j ≤ n
and i + j = n, we note that BiBn−i|Bn for i = 0, 1, . . . , ⌊n/2⌋. On the other
hand if this last relation holds for all such i then by the symmetry of the product
involved we get BiBj |Bn for every i, j, 0 ≤ i ≤ j ≤ n and i + j = n. Now, writing
Bn = b1

α1 b2
α2 · · · bn

αn where the αi > 0 by construction, we compare this with
the expression for BiBn−i, that is

BiBn−i =

i
∏

j=1

bj
⌊i/j⌋

n−i
∏

j=1

bj
⌊(n−i)/j⌋,

=
∏

j≥1

bj
⌊i/j⌋+⌊(n−i)/j⌋ ,

the product extending up to the maximum of the indices i, n−i. Comparison of the
first and last terms of this product with the expression for Bn reveals that α1 = n
and αn = 1. For the other terms we observe that since for every i, 1 ≤ i ≤ ⌊n/2⌋,
1 ≤ j ≤ n,

⌊i/j⌋+ ⌊(n − i)/j⌋ =







⌊n/j⌋, if j| i ,

≤ ⌊n/j⌋, if j 6 | i,

it follows that ⌊n/j⌋ is an attained upper bound for the left hand side, for all j,
1 ≤ j ≤ n and 1 ≤ i ≤ ⌊n/2⌋. However, the divisibility criterion in the construction
along with the minimal nature of the exponents concerned now forces αj = ⌊n/j⌋
for all j under consideration, and this gives the form of Bn. �

Proof. (Lemma 4.1) The case k = 0 can be found in [[5], Theorem 320], while the
case k = 1 is referred to in [[11], A024916]. Basically all we need to do is to keep
track of the number of divisors of a given kind. For example, displaying a list of
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all the divisors from 1 to n before us, we see that the number 1 will appear ⌊n/1⌋
times, the number 2 will appear ⌊n/2⌋ times, and generally, the number j will
appear ⌊n/j⌋ times, for each j, 1 ≤ j ≤ n. Thus the cumulative sum of all these
divisors must be equal to

∑n
i=1 i ⌊n/i⌋. However, this cumulative sum is also equal

to σ(1)+σ(2)+ . . .+σ(n) by definition, so the result follows for k = 1. The general
case is completely similar since the list now contains the k-th powers of each of the
divisors but their number is otherwise the same. A similar argument thus leads to
(8). �

Proof. (Lemma 4.2) Write down the list of all the divisors from 1 to n inclusively
(as per Lemma 4.1). Of course, each integer i between 1 and n appears in this list a
number of times. Actually, for such a given i there are ⌊n/i⌋ multiples of the number
i less than or equal to n. Hence i⌊n/i⌋ divides our cumulative product by definition
of the latter. Taking the product over all integers i shows that

∏n
i=1 i⌊n/i⌋|α(n).

But all the divisors of α(n) must also be in the list and so each must be a divisor
of
∏n

i=1 i⌊n/i⌋. The result follows. �

Proof. (Lemma 4.3) For let Xb1 = {Bn} be one of its associated sets. By Theo-
rem 4.1 its terms are necessarily of the form

Bn = b1
⌊n⌋b2

⌊n/2⌋b3
⌊n/3⌋ · · · bn

⌊n/n⌋.

Since n!|bn by hypothesis it follows that n!|Bn as well, for all n, and so this set
is self-factorial. If b1 is replaced by any other element of I, then it is easy to see
that n!|Bn once again as all the exponents in the decomposition of Bn are at least
one. �

Proof. (Proposition 5.1) This uses a deep result by Ramanujan [8] on the structure
of hcn. Once it is shown that every hcn is of the form

q ≡ 2a23a35a5 · · · pap (23)

where a2 ≥ a3 ≥ a5 ≥ · · · ≥ ap ≥ 1 [[8], III.6-8], he goes on to show that

⌊ log p

log λ
⌋ ≤ aλ ≤ 2 ⌊ logP

logλ
⌋, (24)

for every prime index λ, [[8], III.6-10, eq.(54)], where P is the first prime after p.
Now set λ = 2 in (24) and use the fact that for the nth-term, Bn, the index of the
prime 2 is n, i.e., a2 = n. Since p = pn by the structure theorem for Bn, we have
P = pn+1. Since pn = O(n log n) for n > 1, [[7], Theorem 113], the right side of
(24) now shows that

n ≤ 2 ⌊ log pn+1

log 2
⌋ = O(log(n)) + O(log log(n)), (25)

which is impossible for infinitely many n. The result follows. �

Proof. (Proposition 5.2) Let X = {pn} be the set of primes. Recall that an asso-
ciated set is defined uniquely once we fix a value for b1, some element of X . The
choice b1 = 2,. . . ,bn = pn leads to the associated already discussed in Proposi-
tion 5.1. On the other hand, if b1 6= 2 then Bn can never be highly composite for
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any n by the structure theorem for hcn. We now consider the associated set X2 of
X1 (itself the (main) associated set of X defined by setting b1 = p1 = 2 and whose
elements are given by (14)). The elements of X2 are necessarily of the form

Bn,2 = B1
nB2

⌊n/2⌋B3
⌊n/3⌋ · · ·Bn

⌊n/n⌋,

= p1
n(p1

2p2)
⌊n/2⌋(p1

3p2p3)
⌊n/3⌋ · · · (p1

np2
⌊n/2⌋p3

⌊n/3⌋ · · · p⌊n/n⌋
n )⌊n/n⌋,

= p1

Pn
i=1⌊i/1⌋ ⌊n/i⌋p2

Pn
i=1⌊i/2⌋ ⌊n/i⌋ · · · pn

Pn
i=1⌊i/n⌋ ⌊n/i⌋,

= p1

Pn
i=1 σ(i) · · · pn,

where σ(i) is the sum of the divisors of i (see Lemma 4.1). The assumption that
for some n, Bn,2 is a hcn leads to the estimate (see (24))

⌊log pn/ log 2⌋ ≤
n
∑

i=1

σ(i) ≤ 2⌊log pn+1/ log 2⌋. (26)

However, by Theorem 324 in [5],
∑n

i=1 σ(i) = n2 π2/12 + O(n log n). On the other
hand, the right side of (26) is O(log n)+O(log log n). It follows that the right hand
inequality in (26) cannot hold for infinitely many n, hence there can only be finitely
many hcn in X2.

Observe that the more iterations we make on the associated sets X1, X2, . . . , Xk,
the higher the order of the index of the prime 2 in the decomposition of the respec-
tive terms Bn,k, and this estimate cannot be compensated by the right side of an
equation of the form (26). �

Proof. (Proposition 5.3) Since all the primes must appear in the sequence of hcn
(when written as an increasing sequence) there exists a hcn of the form

N = 2a23a35a5 · · · pap

with p > em (e = 2.718...). Using the representation of the factorials as a product
over primes we observe that

m!|N ⇐⇒ aλ ≥
∑

j≥1

⌊m/λj⌋,

for every λ, where λ = 2, 3, 5, . . . , p. In order to prove this, we note that (24) shows
that it is sufficient to demonstrate that

⌊ log p

log λ
⌋ ≥

∑

j≥1

⌊m/λj⌋,

or since p > em by hypothesis, that it is sufficient to show that

⌊ m

log λ
⌋ ≥

∑

j≥1

⌊m/λj⌋,

for every prime λ = 2, 3 . . . , p. The latter, however is true on account of the
estimates

⌊ m

log λ
⌋ ≥ m

λ − 1
=
∑

j≥1

m/λj ≥
∑

j≥1

⌊m/λj⌋,

valid for all primes λ = 2, 3, . . . , p. This completes the proof. �
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Proof. (Proposition 5.4) Fix an associated set H1 = {hn}. Then H1 contains terms

of the form Bn =
∏n

j=1 hj
⌊n/j⌋ by construction where the hi are hcn in H . Since

n!|hn Lemma 4.3 implies that the associated set H1 is self-factorial. The conclusion
about the irrationality now follows by Theorem 3.2 since n!

a
= Bn defines an

abstract factorial function by construction of the respective associated sets. �
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