The Compositions of the Differential Operations and Gateaux Directional Derivative

Branko J. Malešević¹⁾ and Ivana V. Jovović²⁾ University of Belgrade, Faculty of Electrical Engineering Bulevar kralja Aleksandra 73, Belgrade, Serbia

malesh@EUnet.yu
ivana121@EUnet.yu

Abstract

In this paper we determine the number of the meaningful compositions of higher order of the differential operations and Gateaux directional derivative.

1 The compositions of the differential operations of the space \mathbb{R}^3

In the real three-dimensional space \mathbb{R}^3 we consider the following sets:

$$A_0 = \{ f : \mathbb{R}^3 \longrightarrow \mathbb{R} \mid f \in C^{\infty}(\mathbb{R}^3) \} \text{ and } A_1 = \{ \vec{f} : \mathbb{R}^3 \longrightarrow \mathbb{R}^3 \mid \vec{f} \in \vec{C}^{\infty}(\mathbb{R}^3) \}.$$
(1)

Then, over the sets A_0 and A_1 in the vector analysis, there are m = 3 differential operations of the first-order:

$$\operatorname{grad} f = \nabla_1 f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3}\right) : A_0 \longrightarrow A_1 ,$$

$$\operatorname{curl} \vec{f} = \nabla_2 \vec{f} = \left(\frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3}, \frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1}, \frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2}\right) : A_1 \longrightarrow A_1 , \qquad (2)$$

$$\operatorname{div} \vec{f} = \nabla_3 \vec{f} = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + \frac{\partial f_3}{\partial x_3} : A_1 \longrightarrow A_0 .$$

¹⁾ This work was supported in part by the project MNTRS, Grant No. ON144020.

²⁾ PhD student, Faculty of Mathematics, University of Belgrade, Serbia

Let us present the number of the meaningful compositions of higher order over the set $\mathcal{A}_3 = \{\nabla_1, \nabla_2, \nabla_3\}$. As a well-known fact, there are m = 5 compositions of the second-order:

$$\Delta f = \operatorname{div} \operatorname{grad} f = \nabla_3 \circ \nabla_1 f,$$

$$\operatorname{curl} \operatorname{curl} \vec{f} = \nabla_2 \circ \nabla_2 \vec{f},$$

$$\operatorname{grad} \operatorname{div} \vec{f} = \nabla_1 \circ \nabla_3 \vec{f},$$

$$\operatorname{curl} \operatorname{grad} f = \nabla_2 \circ \nabla_1 f = \vec{0},$$

$$\operatorname{div} \operatorname{curl} \vec{f} = \nabla_3 \circ \nabla_2 \vec{f} = 0.$$

(3)

Malešević [2] proved that there are m = 8 compositions of the third-order:

grad div grad
$$f = \nabla_1 \circ \nabla_3 \circ \nabla_1 f$$
,
curl curl curl $\vec{f} = \nabla_2 \circ \nabla_2 \circ \nabla_2 \vec{f}$,
div grad div $\vec{f} = \nabla_3 \circ \nabla_1 \circ \nabla_3 \vec{f}$,
curl curl grad $f = \nabla_2 \circ \nabla_2 \circ \nabla_1 f = \vec{0}$,
div curl grad $f = \nabla_3 \circ \nabla_2 \circ \nabla_1 f = 0$,
div curl curl $\vec{f} = \nabla_3 \circ \nabla_2 \circ \nabla_2 \vec{f} = 0$,
grad div curl $\vec{f} = \nabla_1 \circ \nabla_3 \circ \nabla_2 \vec{f} = \vec{0}$,
curl grad div $\vec{f} = \nabla_2 \circ \nabla_1 \circ \nabla_3 \vec{f} = \vec{0}$.
(4)

If we denote by $\mathbf{f}(k)$ the number of compositions of the k^{th} -order, then Malešević [3] proved:

$$\mathbf{f}(k) = F_{k+3},\tag{5}$$

where F_k is k^{th} Fibonacci number.

2 The compositions of the differential operations and Gateaux directional derivative on the space \mathbb{R}^3

Let $f \in A_0$ be a scalar function and $\vec{e} = (e_1, e_2, e_3) \in \mathbb{R}^3$ be a unit vector. Thus, the *Gateaux directional derivative* in direction \vec{e} is defined by [1, p. 71]:

$$\operatorname{dir}_{\vec{e}} f = \nabla_0 f = \nabla_1 f \cdot \vec{e} = \frac{\partial f}{\partial x_1} e_1 + \frac{\partial f}{\partial x_2} e_2 + \frac{\partial f}{\partial x_3} e_3 : \mathcal{A}_0 \longrightarrow \mathcal{A}_0.$$
(6)

Let us determine the number of the meaningful compositions of higher order over the set $\mathcal{B}_3 = \{\nabla_0, \nabla_1, \nabla_2, \nabla_3\}$. There exist m = 8 compositions of the second-order:

$$\begin{aligned} \operatorname{dir}_{\vec{e}} \operatorname{dir}_{\vec{e}} f &= \nabla_0 \circ \nabla_0 f = \nabla_1 (\nabla_1 f \cdot \vec{e}) \cdot \vec{e}, \\ \operatorname{grad} \operatorname{dir}_{\vec{e}} f &= \nabla_1 \circ \nabla_0 f = \nabla_1 (\nabla_1 f \cdot \vec{e}), \\ \Delta f &= \operatorname{div} \operatorname{grad} f = \nabla_3 \circ \nabla_1 f, \\ \operatorname{curl} \operatorname{curl} \vec{f} &= \nabla_2 \circ \nabla_2 \vec{f}, \\ \operatorname{dir}_{\vec{e}} \operatorname{div} \vec{f} &= \nabla_0 \circ \nabla_3 \vec{f} = (\nabla_1 \circ \nabla_3 \vec{f}) \cdot \vec{e}, \\ \operatorname{grad} \operatorname{div} \vec{f} &= \nabla_1 \circ \nabla_3 \vec{f}, \\ \operatorname{curl} \operatorname{grad} f &= \nabla_2 \circ \nabla_1 f = \vec{0}, \\ \operatorname{div} \operatorname{curl} \vec{f} &= \nabla_3 \circ \nabla_2 \vec{f} = 0; \\ \end{aligned} \\ \text{that is, there exist } m &= 16 \text{ compositions of the third-order:} \\ \operatorname{dir}_{\vec{e}} \operatorname{dir}_{\vec{e}} f &= \nabla_1 \circ \nabla_0 \circ \nabla_0 \circ \nabla_0 f, \\ \operatorname{div} \operatorname{grad} \operatorname{dir}_{\vec{e}} f = \nabla_1 \circ \nabla_0 \circ \nabla_0 f, \\ \operatorname{div} \operatorname{grad} \operatorname{dir}_{\vec{e}} f = \nabla_1 \circ \nabla_3 \circ \nabla_1 f, \\ \operatorname{div} \operatorname{grad} \operatorname{dir}_{\vec{e}} f = \nabla_1 \circ \nabla_3 \circ \nabla_1 f, \\ \operatorname{grad} \operatorname{dir}_{\vec{e}} \operatorname{dir}_{\vec{e}} f &= \nabla_1 \circ \nabla_0 \circ \nabla_3 \vec{f}, \\ \operatorname{grad} \operatorname{dir}_{\vec{e}} \operatorname{dir}_{\vec{e}} f &= \nabla_1 \circ \nabla_0 \circ \nabla_3 \vec{f}, \\ \operatorname{grad} \operatorname{dir}_{\vec{e}} \operatorname{dir}_{\vec{e}} \operatorname{dir}_{\vec{e}} \vec{f} &= \nabla_1 \circ \nabla_1 \circ \nabla_3 \vec{f}, \\ \operatorname{grad} \operatorname{dir}_{\vec{e}} \operatorname{div}_{\vec{f}} &= \nabla_1 \circ \nabla_0 \circ \nabla_3 \vec{f}, \\ \operatorname{grad} \operatorname{dir}_{\vec{e}} \operatorname{div}_{\vec{f}} &= \nabla_1 \circ \nabla_0 \circ \nabla_3 \vec{f}, \\ \operatorname{grad} \operatorname{dir}_{\vec{e}} \operatorname{div}_{\vec{f}} f &= \nabla_2 \circ \nabla_1 \circ \nabla_3 \vec{f}, \\ \operatorname{grad} \operatorname{dir}_{\vec{e}} \operatorname{div}_{\vec{f}} f &= \nabla_2 \circ \nabla_2 \circ \nabla_1 f = \vec{0}, \\ \operatorname{div} \operatorname{grad} \operatorname{div}_{\vec{f}} f &= \nabla_3 \circ \nabla_2 \circ \nabla_1 f = \vec{0}, \\ \operatorname{div} \operatorname{grad} \operatorname{div}_{\vec{f}} f &= \nabla_3 \circ \nabla_2 \circ \nabla_1 f = 0, \\ \operatorname{div} \operatorname{curl} \operatorname{grad} f &= \nabla_3 \circ \nabla_2 \circ \nabla_2 \vec{f} = 0, \\ \operatorname{div} \operatorname{curl} \operatorname{curl} f \vec{f} &= \nabla_0 \circ \nabla_3 \circ \nabla_2 \vec{f} = 0, \\ \operatorname{div} \operatorname{curl} \operatorname{curl} f \vec{f} &= \nabla_0 \circ \nabla_3 \circ \nabla_2 \vec{f} = \vec{0}, \\ \operatorname{grad} \operatorname{div} \operatorname{curl} f \vec{f} &= \nabla_0 \circ \nabla_3 \circ \nabla_2 \vec{f} = \vec{0}, \\ \operatorname{curl} \operatorname{grad} \operatorname{div}_{\vec{f}} f &= \nabla_2 \circ \nabla_1 \circ \nabla_3 \vec{f} = \vec{0}. \\ \operatorname{curl} \operatorname{grad} \operatorname{div}_{\vec{f}} f &= \nabla_2 \circ \nabla_1 \circ \nabla_3 \vec{f} = \vec{0}. \\ \operatorname{grad} \operatorname{div} \operatorname{curl} f \vec{f} &= \nabla_2 \circ \nabla_1 \circ \nabla_3 \vec{f} = \vec{0}. \\ \operatorname{grad} \operatorname{div} \operatorname{curl} f \vec{f} &= \nabla_2 \circ \nabla_1 \circ \nabla_3 \vec{f} = \vec{0}. \\ \operatorname{grad} \operatorname{div} \operatorname{curl} f \vec{f} &= \nabla_2 \circ \nabla_1 \circ \nabla_3 \vec{f} = \vec{0}. \\ \operatorname{grad} \operatorname{div} \operatorname{curl} f \vec{f} &= \nabla_2 \circ \nabla_1 \circ \nabla_3 \vec{f} = \vec{0}. \\ \operatorname{grad} \operatorname{div} \operatorname{grad} \vec{f} &= \nabla_2 \circ \nabla_1 \circ \nabla_3 \vec{f} = \vec{0}. \\ \operatorname{grad} \operatorname{grad} \vec{f} = \nabla_2 \circ \nabla_1$$

Using the method from the paper [3] let us define a binary relation σ "to be in composition": $\nabla_i \sigma \nabla_j = \top$ iff the composition $\nabla_j \circ \nabla_i$ is meaningful. Thus, Cayley table of the relation σ is determined with

Let us form the graph according to the following rule: if $\nabla_i \sigma \nabla_j = \top$ let vertex ∇_j be under vertex ∇_i and let there exist an edge from the vertex ∇_i to the vertex ∇_j . Further on, let us denote by ∇_{-1} nowhere-defined function ϑ , where domain and range are the empty sets [2]. We shall define $\nabla_{-1} \sigma \nabla_i = \top$ (i = 0, 1, 2, 3, 4). For the set $\mathcal{B}_3 \cup \{\nabla_{-1}\}$ the graph of the walks, determined previously, is a tree with the root in the vertex ∇_{-1} .

Fig. 1

Let $\mathbf{g}(k)$ be the number of the meaningful compositions of the k^{th} -order of the functions from \mathcal{B}_3 . Let $\mathbf{g}_i(k)$ be the number of the meaningful compositions of the k^{th} -order beginning from the left by ∇_i . Then $\mathbf{g}(k) = \mathbf{g}_0(k) + \mathbf{g}_1(k) + \mathbf{g}_2(k) + \mathbf{g}_3(k)$. Based on the partial self similarity of the tree (Fig. 1) we get equalities

$$g_{0}(k) = g_{0}(k-1) + g_{1}(k-1),$$

$$g_{1}(k) = g_{2}(k-1) + g_{3}(k-1),$$

$$g_{2}(k) = g_{2}(k-1) + g_{3}(k-1),$$

$$g_{3}(k) = g_{0}(k-1) + g_{1}(k-1).$$
(10)

Hence, a recurrence for $\mathbf{g}(k)$ can be derived as follows:

$$\mathbf{g}(k) = 2\,\mathbf{g}(k-1).\tag{11}$$

Based on the initial value $\mathbf{g}(1) = 4$, we can conclude:

$$\mathbf{g}(k) = 2^{k+1}.$$
 (12)

3 The compositions of the differential operations of the space \mathbb{R}^n

Let us present the number of the meaningful compositions of differential operations in the vector analysis of the space \mathbb{R}^n , where differential operations ∇_r $(r=1,\ldots,n)$ are defined over non-empty corresponding sets A_s $(s=1,\ldots,m \text{ and } m=\lfloor n/2 \rfloor, n \geq 3)$ according to the papers [3], [4]:

Let us define higher order differential operations as the meaningful compositions of higher order of differential operations from the set $\mathcal{A}_n = \{\nabla_1, \ldots, \nabla_n\}$. The number of the higher order differential operations is given according to the paper [3]. Let us define a binary relation ρ "to be in composition": $\nabla_i \rho \nabla_j = \top$ iff the composition $\nabla_j \circ \nabla_i$ is meaningful. Thus, Cayley table of the relation ρ is determined with

$$\nabla_i \rho \nabla_j = \begin{cases} \top &, \quad (j = i+1) \lor (i+j = n+1); \\ \bot &, \quad \text{otherwise.} \end{cases}$$
(14)

Let us form the adjacency matrix $\mathbf{A} = [a_{ij}] \in \{0,1\}^{n \times n}$ associated with the graph, which is determined by the relation ρ . Thus, according to the paper [4], the following statement is true.

Theorem 3.1. Let $P_n(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = \alpha_0 \lambda^n + \alpha_1 \lambda^{n-1} + \cdots + \alpha_n$ be the characteristic polynomial of the matrix \mathbf{A} and $v_n = [1 \dots 1]_{1 \times n}$. If we denote by $\mathbf{f}(k)$ the number of the k^{th} -order differential operations, then the following formulas are true:

$$\mathbf{f}(k) = v_n \cdot \mathbf{A}^{k-1} \cdot v_n^T \tag{15}$$

and

$$\alpha_0 \mathbf{f}(k) + \alpha_1 \mathbf{f}(k-1) + \dots + \alpha_n \mathbf{f}(k-n) = 0 \quad (k > n).$$
(16)

Lemma 3.2. Let $P_n(\lambda)$ be the characteristic polynomial of the matrix **A**. Then the following recurrence is true:

$$P_n(\lambda) = \lambda^2 \left(P_{n-2}(\lambda) - P_{n-4}(\lambda) \right). \tag{17}$$

Lemma 3.3. Let $P_n(\lambda)$ be the characteristic polynomial of the matrix **A**. Then it has the following explicit representation:

$$P_{n}(\lambda) = \begin{cases} \sum_{k=1}^{\lfloor \frac{n+2}{4} \rfloor + 1} (-1)^{k-1} {\binom{\frac{n}{2} - k + 2}{k-1}} \lambda^{n-2k+2} , & n = 2m; \\ \sum_{k=1}^{\lfloor \frac{n+2}{4} \rfloor + 2} (-1)^{k-1} {\binom{\frac{n+3}{2} - k}{k-1}} + {\binom{\frac{n+3}{2} - k}{k-2}} \lambda \lambda^{n-2k+2} , & n = 2m+1. \end{cases}$$
(18)

The number of the higher order differential operations is determined by corresponding recurrence, which for dimension n = 3, 4, 5, ..., 10, we refer according to [3]:

Dimension:	Recurrence for the number of the k^{th} -order differential operations:
n = 3	$\mathbf{f}(k) = \mathbf{f}(k-1) + \mathbf{f}(k-2)$
n = 4	f(k) = 2f(k-2)
n = 5	$\mathbf{f}(k) = \mathbf{f}(k-1) + 2\mathbf{f}(k-2) - \mathbf{f}(k-3)$
n = 6	$\mathbf{f}(k) = 3\mathbf{f}(k-2) - \mathbf{f}(k-4)$
n = 7	$\mathbf{f}(k) = \mathbf{f}(k-1) + 3\mathbf{f}(k-2) - 2\mathbf{f}(k-3) - \mathbf{f}(k-4)$
n = 8	$\mathbf{f}(k) = 4\mathbf{f}(k-2) - 3\mathbf{f}(k-4)$
n = 9	f(k) = f(k-1) + 4f(k-2) - 3f(k-3) - 3f(k-4) + f(k-5)
n = 10	f(k) = 5f(k-2) - 6f(k-4) + f(k-6)

For considered dimensions $n = 3, 4, 5, \ldots, 10$, the values of the function $\mathbf{f}(k)$, for small values of the argument k, are given in the database of integer sequences [6] as sequences <u>A020701</u> (n = 3), <u>A090989</u> (n = 4), <u>A090990</u> (n = 5), <u>A090991</u> (n = 6), <u>A090992</u> (n = 7), <u>A090993</u> (n = 8), <u>A090994</u> (n = 9), <u>A090995</u> (n = 10), respectively.

4 The compositions of the differential operations and Gateaux directional derivative of the space \mathbb{R}^n

Let $f \in A_0$ be a scalar function and $\vec{e} = (e_1, \ldots, e_n) \in \mathbb{R}^n$ be a unit vector. Thus, the *Gateaux directional derivative* in direction \vec{e} is defined by [1, p. 71]:

$$\operatorname{dir}_{\vec{e}} f = \nabla_0 f = \sum_{k=1}^n \frac{\partial f}{\partial x_k} e_k : A_0 \longrightarrow A_0.$$
(19)

Let us extend the set of differential operations $\mathcal{A}_n = \{\nabla_1, \ldots, \nabla_n\}$ with Gateaux directional derivational to the set $\mathcal{B}_n = \mathcal{A}_n \cup \{\nabla_0\} = \{\nabla_0, \nabla_1, \ldots, \nabla_n\}$:

Let us define higher order differential operations with Gateaux derivative as the meaningful compositions of higher order of the functions from the set $\mathcal{B}_n = \{\nabla_0, \nabla_1, \dots, \nabla_n\}$. We determine the number of the higher order differential operations with Gateaux derivative by defining a binary relation σ "to be in composition":

$$\nabla_i \sigma \nabla_j = \begin{cases} \top, & (i=0 \land j=0) \lor (i=n \land j=0) \lor (j=i+1) \lor (i+j=n+1); \\ \bot, & \text{otherwise.} \end{cases}$$
(21)

Let us form the adjacency matrix $\mathbf{B} = [b_{ij}] \in \{0,1\}^{(n+1) \times n}$ associated with the graph, which is determined by relation σ . Thus, analogously to the paper [4], the following statement is true.

Theorem 4.1. Let $Q_n(\lambda) = |\mathbf{B} - \lambda \mathbf{I}| = \beta_0 \lambda^{n+1} + \beta_1 \lambda^n + \cdots + \beta_{n+1}$ be the characteristic polynomial of the matrix \mathbf{B} and $v_{n+1} = [1 \dots 1]_{1 \times (n+1)}$. If we denote by $\mathbf{g}(k)$ the number of the k^{th} -order differential operations with Gateaux derivative, then the following formulas are true:

$$\mathbf{g}(k) = v_{n+1} \cdot \mathbf{B}^{k-1} \cdot v_{n+1}^T \tag{22}$$

and

$$\beta_0 \mathbf{g}(k) + \beta_1 \mathbf{g}(k-1) + \dots + \beta_{n+1} \mathbf{g}(k-(n+1)) = 0 \quad (k > n+1).$$
(23)

Lemma 4.2. Let $Q_n(\lambda)$ and $P_n(\lambda)$ be the characteristic polynomials of the matrices B and A respectively. Then the following equality is true:

$$Q_n(\lambda) = \lambda^2 P_{n-2}(\lambda) - \lambda P_n(\lambda).$$
(24)

Proof. Let us determine the characteristic polynomial $Q_n(\lambda) = |\mathbf{B} - \lambda \mathbf{I}|$ by

$$Q_n(\lambda) = \begin{vmatrix} 1-\lambda & 1 & 0 & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & -\lambda & 1 & 0 & \dots & 0 & 0 & 0 & 1 \\ 0 & 0 & -\lambda & 1 & \dots & 0 & 0 & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & \dots & 0 & -\lambda & 1 & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 & 0 & -\lambda & 1 \\ 1 & 1 & 0 & 0 & \dots & 0 & 0 & 0 & -\lambda \end{vmatrix} .$$
(25)

Expanding the determinant $Q_n(\lambda)$ by the first column we have

$$Q_n(\lambda) = (1-\lambda)P_n(\lambda) + (-1)^{n+2}D_n(\lambda), \qquad (26)$$

where is

$$D_n(\lambda) = \begin{vmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 & 0 & 0 \\ -\lambda & 1 & 0 & 0 & \dots & 0 & 0 & 0 & 1 \\ 0 & -\lambda & 1 & 0 & \dots & 0 & 0 & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & \dots & -\lambda & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 & -\lambda & 1 & 0 \\ 0 & 1 & 0 & 0 & \dots & 0 & 0 & -\lambda & 1 \end{vmatrix} .$$

$$(27)$$

Let us expand the determinant $D_n(\lambda)$ by the first row and then, in the next step, let us multiply the first row by -1 and add it to the last row. Then, we obtain the determinant of order n-1:

$$D_n(\lambda) = \begin{vmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 & 0 & 1 \\ -\lambda & 1 & 0 & 0 & \dots & 0 & 0 & 1 & 0 \\ 0 & -\lambda & 1 & 0 & \dots & 0 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 1 & 0 & \dots & -\lambda & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & \dots & 0 & -\lambda & 1 & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & -\lambda & 0 \end{vmatrix}$$
(28)

Expanding the previous determinant by the last column we have

$$D_n(\lambda) = (-1)^n \begin{vmatrix} -\lambda & 1 & 0 & 0 & \dots & 0 & 0 & 0 & 1 \\ 0 & -\lambda & 1 & 0 & \dots & 0 & 0 & 1 & 0 \\ 0 & 0 & -\lambda & 1 & \dots & 0 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 1 & 0 & \dots & 0 & -\lambda & 1 & 0 \\ 0 & 1 & 0 & 0 & \dots & 0 & 0 & -\lambda & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & 0 & -\lambda \end{vmatrix} .$$
(29)

If we expand the previous determinant by the last row, and if we expand the obtained determinant by the first column, we have the determinant of order n - 4:

$$D_n(\lambda) = (-1)^n \lambda^2 \begin{vmatrix} -\lambda & 1 & 0 & 0 & \dots & 0 & 0 & 0 & 1 \\ 0 & -\lambda & 1 & 0 & \dots & 0 & 0 & 1 & 0 \\ 0 & 0 & -\lambda & 1 & \dots & 0 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 1 & 0 & \dots & 0 & -\lambda & 1 & 0 \\ 0 & 1 & 0 & 0 & \dots & 0 & 0 & -\lambda & 1 \\ 1 & 0 & 0 & 0 & \dots & 0 & 0 & 0 & -\lambda \end{vmatrix}$$
(30)

In other words

$$D_n(\lambda) = (-1)^n \lambda^2 P_{n-4}(\lambda).$$
(31)

¿From equalities (31) and (26) there follows:

$$Q_n(\lambda) = (1 - \lambda)P_n(\lambda) + \lambda^2 P_{n-4}(\lambda).$$
(32)

On the basis of Lemma 3.2. the following equality is true:

$$Q_n(\lambda) = \lambda^2 P_{n-2}(\lambda) - \lambda P_n(\lambda). \quad \blacksquare$$
(33)

Lemma 4.3. Let $Q_n(\lambda)$ be the characteristic polynomial of the matrix B. Then the following recurrence is true:

$$Q_n(\lambda) = \lambda^2 \big(Q_{n-2}(\lambda) - Q_{n-4}(\lambda) \big).$$
(34)

Proof. On the basis of Lemma 3.2. and Lemma 4.2. there follows the statement. ■

Lemma 4.4. Let $Q_n(\lambda)$ be the characteristic polynomial of the matrix B. Then it has the following explicit representation:

$$Q_{n}(\lambda) = \begin{cases} (\lambda - 2) \sum_{k=1}^{\lfloor \frac{n}{4} \rfloor + 1} (-1)^{k-1} \left(\frac{n+1}{2} - k \right) \lambda^{n-2k+2} &, n = 2m+1; \\ \sum_{k=1}^{\lfloor \frac{n+3}{4} \rfloor + 2} (-1)^{k-1} \left(\left(\frac{n}{2} - k + 2 \atop k-1 \right) + \left(\frac{n}{2} - k + 2 \atop k-2 \right) \lambda \right) \lambda^{n-2k+3} &, n = 2m. \end{cases}$$
(35)

Proof. On the basis of Lemma 3.3 and Lemma 4.2. there follows the statement. ■

The number of the higher order differential operations with Gateaux derivative is determined by corresponding recurrences, which for dimension n = 3, 4, 5, ..., 10, we can get by the means of [5]:

Dimension:	Recurrence for the num. of the k^{th} -order diff. operations with Gateaux derivative:
n = 3	g(k) = 2g(k-1)
n = 4	g(k) = g(k-1) + 2g(k-2) - g(k-3)
n = 5	g(k) = 2g(k-1) + g(k-2) - 2g(k-3)
n = 6	g(k) = g(k-1) + 3g(k-2) - 2g(k-3) - g(k-4)
n = 7	g(k) = 2g(k-1) + 2g(k-2) - 4g(k-3)
n = 8	g(k) = g(k-1) + 4g(k-2) - 3g(k-3) - 3g(k-4) + g(k-5)
n = 9	g(k) = 2g(k-1) + 3g(k-2) - 6g(k-3) - g(k-4) + 2g(k-5)
n = 10	g(k) = g(k-1) + 5g(k-2) - 4g(k-3) - 6g(k-4) + 3g(k-5) + g(k-6)

For considered dimensions n = 3, 4, 5, ..., 10, the values of the function $\mathbf{g}(k)$, for small values of the argument k, are given in the database of integer sequences [6] as sequences <u>A000079</u> (n = 3), <u>A090990</u> (n = 4), <u>A007283</u> (n = 5), <u>A090992</u> (n = 6), <u>A000079</u> (n = 7), <u>A090994</u> (n = 8), <u>A020714</u> (n = 9), <u>A129638</u> (n = 10), respectively.

References

- [1] S. Basov, *Multidimensional Screening*, Springer 2005. http://books.google.com/
- B. J. Malešević, A note on higher-order differential operations, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 7 (1996), 105–109. http://pefmath2.etf.bg.ac.yu/files/116/846.pdf
- [3] B. J. Malešević, Some combinatorial aspects of differential operation composition on the space Rⁿ, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33. http://pefmath2.etf.bg.ac.yu/files/118/869.pdf
- [4] B.J.Malešević, Some combinatorial aspects of the composition of a set of function, Novi Sad J. Math., 36 (1), 2006, 3–9. http://www.im.ns.ac.yu/NSJOM/Papers/36_1/NSJOM_36_1_003_009.pdf
- [5] B.J. Malešević and I.V. Jovović, A procedure for finding the kth power of a matrix. http://www.maplesoft.com/Applications
- [6] N. J. A. Sloane, *The On-Line Encyclopedia of Integer Sequences*. http://www.research.att.com/~njas/sequences/

2000 Mathematics Subject Classification: 05C30, 26B12, 58C20.

Keywords: the compositions of the differential operations, enumeration of graphs and maps, Gateaux directional derivative

(Concerned with sequence <u>A000079</u>, <u>A007283</u>, <u>A020701</u>, <u>A020714</u>, <u>A090989</u>, <u>A090990</u>, <u>A090991</u>, <u>A090992</u>, <u>A090993</u>, <u>A090994</u>, <u>A090995</u>, <u>A129638</u>)

Received June 5, 2007.