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A CONJECTURE ON PRIMES AND A STEP TOWARDS
JUSTIFICATION*

VLADIMIR SHEVELEV

Abstract. We put a new conjecture on primes from the point of view
of its binary expansions and make a step towards justification.

1. Introduction and main results

Consider the partition of the set N into the following two disjoint subsets

(1) N = N
e ∪ N

o,

where N
e(No) is the set of positive integers which have even (odd) number

of 1‘s in their binary expansions. These numbers are called the evil and the

odious numbers respectively [9]. There are some results for these numbers

and some applications of them in [1],[2],[3],[4], [5],[6].

Consider the same partition of the set P of prime numbers [10]:

(2) P = P
e ∪ P

o.

For example, all the Fermat primes are evil while all the Mersenne primes

> 3 are odious.

Using direct calculations up to 109 we noticed that among the primes

not exceeding n the evil primes are never in majority except for the cases

n = 5 and n = 6. Moreover, in the considered limits the excess of the

odious primes is not monotone but increases on the whole with records on

primes 2, 13, 41, 67, 79, 109, 131, 137, . . .

Let πe(x)(πo(x)) denote the number of the evil (odious) primes not ex-

ceeding x. Put

mn = min
x∈(2n−1,2n)

(πo(x) − πe(x)).

The following table shows that mn increases monotonically.

1991 Mathematics Subject Classification. Primary 11N05, Secondary 11B75, 05A19.
Key words and phrases. Evil and odious numbers, primes, counter functions for

evil and odious primes, combinatorial identities. Concerned the sequences: A000069,
A001969, A027697, A027699.

http://arxiv.org/abs/0706.0786v1


A CONJECTURE ON PRIMES AND A STEP TOWARDS JUSTIFICATION* 2

Table 1.
n mn n mn

5 0 19 1353
6 2 20 1855
7 4 21 3659
8 7 22 5221
9 13 23 10484
10 19 24 14933
11 39 25 27491
12 54 26 35474
13 104 27 68816
14 139 28 97342
15 251 29 186405
16 334 30 265255
17 590
18 716

Therefore, the following conjecture seems plausible.

Conjecture 1. For all n ∈ N, n 6= 5, 6

(3) πe(n) ≤ πo(n);

moreover,

(4) lim
n→∞

(πo(n) − πe(n)) = +∞.

For a positive integer a, denote µe
a(n)(µo

a(n)) the number of odd evil (odi-

ous) nonnegative integers divisible by a and less than n.

Remark 1. We include in this definition 0 (which is an evil integer) and

use ”less than” instead of ”not exceeding” for the sake of more simplicity of

the formulas which appear below.

Put

(5) ∆odd
a (n) = µe

a(n) − µo
a(n)

Theorem 1. Let p, q, . . . denote odd primes. Then

(6) πo(n) − πe(n) = εn +
∑

p≤n

∆odd
p (n) −

∑

p<q≤n

∆odd
p,q (n) + . . . ,

where |εn| ≤ 4.

In this article we make only the first step of investigation of πo(n)−πe(n)

with help of (6). Namely, by combinatorial methods we study in detail

∆odd
3 (n).

Let
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(7) ∆odd
3 ([a, b)) = ∆odd

3 (b) − ∆odd
3 (a)

Theorem 2. 1) ∆
(odd)
3 ([0, 2n)) = 3⌊

n

2
⌋−1, n ≥ 2

2)∆
(odd)
3 ([2n, 2n+2m)) =



















0, n and m are even, 2 ≤ m ≤ n − 2,

3
m−2

2 , n is odd, m is even, 2 ≤ m ≤ n − 1,

−3
m−3

2 , n is even, m is odd, 3 ≤ m ≤ n − 1,

2 · 3m−3
2 , n and m are odd, 3 ≤ m ≤ n − 2.

3)∆
(odd)
3 ([2n+2n−2, 2n+2n−2+2m)) =



















−3
m−2

2 , n and m are even, 2 ≤ m ≤ n − 4,

0, n is odd, m is even, 2 ≤ m ≤ n − 3,

−2 · 3m−3
2 , n is even, m is odd, 3 ≤ m ≤ n − 3,

3
m−3

2 , n and m are odd, 3 ≤ m ≤ n − 4.

Consider together with ∆
(odd)
3 ([a, b)) also ∆

(even)
3 ([a, b)) which means the

difference between the numbers of evil and odious even integers divisible by

3 on [a, b). Put

(8) ∆3([a, b)) = ∆
(odd)
3 ([a, b)) + ∆

(even)
3 ([a, b))

Theorem 3. 1)∆3([0, 2
n)) =

{

2 · 3n

2
−1, n is even

3
n−1

2 , n is odd, n ≥ 1

2)∆3([2
n, 2n + 2m)) =











3⌊
m−1

2
⌋, if n is odd, 1 ≤ m ≤ n − 1,

3
m

2
−1, if n and m are even, 2 ≤ m ≤ n − 2,

0, if n is even, m is odd, 1 ≤ m ≤ n − 1,

3)∆3([2
n+2n−2, 2n+2n−2+2m)) =











−3⌊
m−1

2
⌋, if n is even, 1 ≤ m ≤ n − 3,

−3
m

2
−1, if n is odd, m is even, 2 ≤ m ≤ n − 3,

0, if n and m are odd, 1 ≤ m ≤ n − 4

At last, the following result is valid.

Theorem 4.

lim
n→∞

ln ∆
(odd)
3 ([0, n))

ln n
=

ln 3

ln 4
.

Using theorem 4 and simple heuristic arguments we put our conjecture

in the following quantitative form.

Conjecture 2.

lim
n→∞

ln(πo(n) − πe(n))

ln n
=

ln 3

ln 4
.
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Conjecture 2 is illustrated by Table 2 in Section 3.

In the following Section we prove Theorems 1-4. Section 3 is devoted to

some heuristic arguments which lead to Conjecture 2. Finally, in Section 4

we consider the increment of the excess of odiores primes on(0, 2n)(Table3).

2. Proofs of results

A. Proof of Theorem 1.

Denote νe(n)(νo(n)) the number of evil (odious) nonnegative integers on

interval [0, n).

Lemma 1. We have

(9) |νo(n) − νe(n)| ≤ 1, n ∈ N.

Proof. The Lemma follows from the identity

(10) νe(2m) = νo(2m), m ∈ N,

which is proved by induction.

Notice that (10) is satisfied for m = 1. Assuming that it is valid for 2m

we prove (10) for 2(m+1). Indeed, let m has k 1‘s in the binary expansion.

Then we have evidently

νe(2m + 1) − νo(2m + 1) = (−1)k.

On the other hand, the last number in interval [0, 2m+2), i.e. the number

2m + 1 has k + 1 1‘s and thus νe(2m + 2) − νo(2m + 2) = 0. �

Let λe(n)(λo(n)) denote the number of even evil (odious) numbers less

than n. At last, denote σe(n)(σo(n)) the number of evil (odious) odd com-

posite numbers less than n.

For n ≥ 3 we have

(11) πo(n)−πe(n)+σo(n)−σe(n)+λo(n)−λe(n)−1 = νo(n)−νe(n)+δn,

where according to the definition of πo(n)(πe(n)), δn is 1, if n is an odious

prime, -1, if n is an evil prime, 0-otherwise. Subtraction 1 in the left hand

side of (11) is connected with the fact that only 2 is an odious prime and

simultaneously is an odious even integer.

Using Lemma 1 and the evident identity

(12) λo(n) − λe(n) = νo(
n

2
) − νe(

n

2
)

we find from (11)

(13) πo(n) − πe(n) = σe(n) − σo(n) + εm,

where |ε | ≤ 4.
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At last, by inclusion-exclusion from (13) we obtain (6) �

B.Proofs of Theorems 2-3. It is easy to see that for nonnegative

integers a < b

(14) ∆
(even)
3 ([2a, 2b)) = ∆3([a, b))

and consequently

(15) ∆
(odd)
3 ([2a, 2b)) = ∆3([2a, 2b)) − ∆3([a, b)).

Therefore, it is sufficient to prove Theorem 3 and by (14)-(15) we shall

get also Theorem 2. For the proof of Theorem 3 we need a simple lemma.

Lemma 2. Let for a nonnegative integer n, ieven(n)(iodd(n)) denote the

number of even (odd) powers of 2 in the binary representation of n. Then

(16) n ≡ 0(mod3) ⇔ ieven(n) ≡ iodd(n)(mod3)

Proof. 1. Straightforward.

Proof of Theorem 3.

1a) let n be even, n = 2m. Consider all the nonnegative integers not

exceeding 22m − 1 which have 2m binary positions with numbering

0, 1, . . . , 2m − 1 beginning from the right. To find the difference between

the numbers of evil and odious integers divisible by 3 not exceeding 22m−1,

let choose j even position for 1‘s (and m − j even position for 0‘s) and

according to Lemma 2 let choose j + 3k (k ≥ 0) odd position for 1‘s (and

the rest of the odd positions for 0‘s).

After that, vice versa, we choose j odd positions for 1‘s (and n − j odd

positions for 0‘s) and j + 3k (k ≥ 1) even positions for 1‘s (and the rest of

the even positions for 0‘s). Notice that, for each j the parity of the number

of the chosen 1‘s is the same as the parity of k. Thus

(17) ∆3([0, 2
2m)) =

∑

j≥0

(

m

j

)2

+ 2
∑

k≥1

(−1)k
∑

j≥0

(

m

j

)(

m

j + 3k

)

.

Since (cf.[7],p.8)

(18)
∑

j≥0

(

m

j

)(

m

j + 3k

)

=

(

2m

m + 3k

)

, k ≥ 0,

then by (17)

(19) ∆3([0, 2
2m)) =

(

2m

m

)

+ 2
∑

k≥1

(−1)k

(

2m

m + 3k

)

.

To calculate
∑

(−1)k
(

2m
)

in (19) we need some lemmas.
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Lemma 3. ([7],p.86)

(20)

⌊m

3
⌋

∑

k=0

(

2m

m + 3k

)

=
1

3
(22m−1 + 1) +

1

2

(

2m

m

)

.

Lemma 4.

(21)

⌊m

6
⌋

∑

t=0

(

2m

m + 6t

)

=
1

2

(

22m−1 + 1

3
+ 3m−1 +

(

2m

m

))

.

Proof. Denote the left hand side of (21) by σ(m).

Let m = 6l + s, 0 ≤ s ≤ 5. Then

(22) σ(m) =

l
∑

t=0

(

12l + 2s

6l + s − 6t

)

=

l
∑

k=0

(

12l + 2s

6k + s

)

Together with σ(m) let consider the sum

σ1(m) = Σ2l
k=l+1

(

12l + 2s

6k + s

)

= (2l − k = t) =

(23) = Σl−1
t=0

(

12l + 2s

12l − 6t + s

)

= Σl−1
t=0

(

12l + 2s

6t + s

)

,

From (22),(23) we conclude that

(24) σ(m) = σ1(m) +

(

12l + 2s

6l + s

)

,

Consequently,

2σ(m) = σ(m) + σ1(m) +

(

12l + 2s

6l + s

)

=

2l
∑

k=0

(

2m

6k + s

)

+

(

2m

m

)

.

Thus,

(25)

⌊m

6
⌋

∑

t=0

(

2m

m + 6t

)

=
1

2





m−s

3
∑

k=0

(

2m

6k + s

)

+

(

2m

m

)



 ,

where 0 ≤ s ≤ 5.

Notice that, m−s
3

is the ”natural” upper limit of the sum on the right

hand side in (25).Indeed, in this sum k ≤ ⌊2m−s
6

⌋ = ⌊12l+s
6

⌋ = 2l = m−s
3

. To

calculate this sum we use the formula ([7], p.161)from which for s = m− 6t

it follows that
m−s

3
∑

k=0

(

2m

6k + s

)

=
1

6

6
∑

j=1

e
πi

3
(−jm)

(

1 + e
πi

3
j
)2m

=

=
1

6

(

e−
πm

3
i
(

1 + e
πi

3

)2m

+ e−
2πm

3
i
(

1 + e
2πi

3

)2m

+ e−
4πm

3
i
(

1 + e
4πi

3

)2m

+
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+e−
5πm

3
i
(

1 + e
5πi

3

)2m

+22m ) =
1

6
( e−

πm

3
i
(

1 + e
πi

3

)2m

+e−
2πm

3
i
(

1 + e
2πi

3

)2m

+

+e
2πm

3
i
(

1 + e−
2πi

3

)2m

+ e
πm

3
i
(

1 + e−
πi

3

)2m

+ 22m ) =
1

3

(

22m−1+

+Re

(

e−
πm

3
i
(

1 + e
πi

3

)2m
)

+ Re

(

e−
2πm

3
i
(

1 + e
2πi

3

)2m
)

) .

Noticing that, 1 + e
πi

3 = 3
2

+
√

3
2

i =
√

3e
πi

6 , 1 + e
2πi

3 = e
π

3
i we have

(26) Σ
m−s

3
k=0

(

2m

6k + s

)

=
1

3

(

22m−1 + 3m + 1
)

and by (25), (26) we obtain the lemma �

Lemma 5.

(27)
∑

k≥0

(−1)k

(

2m

m + 3k

)

= 3m−1 +
1

2

(

2m

m

)

.

Proof. We have
∑

k≥0

(−1)k

(

2m

m − 3k

)

+
∑

k≥0

(

2m

m − 3k

)

= 2
∑

j≥0

(

2m

m − 6j

)

and by Lemmas 3, 4 we obtain the lemma �

Now from (19) and Lemma 5 we find

∆3

(

[0, 22m)
)

= 2 · 2m−1.

1b) As opposed to the case 1a) here we have 2m−1 positions from which

m even and m − 1 odd. Hence, by the same combinatorial arguments we

find

∆3

(

[0, 22m−1)
)

=
∑

j≥0

(

m

j

)(

m − 1

j

)

+

(28) +
∑

k≥1

(−1)k

(

∑

j≥0

(

m

j

)(

m − 1

j + 3k

)

+
∑

j≥0

(

m − 1

j

)(

m

j + 3k

)

)

Since (cf.[7],p.8)

∑

j≥0

(

m

j

)(

m − 1

j + 3k

)

=

(

2m − 1

m + 3k

)

∑

j≥0

(

m − 1

j

)(

m

j + 3k

)

=

(

2m − 1

m + 3k − 1

)

then by (28) and Lemma 5 we have

∆3

(

[0, 22m−1)
)

=

(

2m − 1

m

)

+
∑

k≥1

(−1)k

(

2m

m + 3k

)

=
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= −1

2

(

2m

m

)

+
∑

k≥0

(−1)k

(

2m

m + 3k

)

= 3m−1
�

2a) Let m be even, m = 2l. Let, for definiteness, n be even. Choose j−1

of the last l even positions for 1‘s (and the rest l − (j − 1) positions for 0‘s)

and according to Lemma 2, choose j +3k (k ≥ 0) of the last l odd positions

for 1‘s (and l − j − 3k positions for 0‘s). After that, vice versa, we choose

j of the last l odd positions for 1‘s and also j − 1 + 3k of the last l even

positions for 1‘s and the rest of the positions for 0‘s. For each j the parity

of the number of all 1‘s (including the 1 corresponding to 2n) is the same

as the parity of k. Thus,

∆3

(

[2n, 2n + 22l)
)

=
∑

j≥1

(

l

j − 1

)(

l

j

)

+

(29) +
∑

k≥1

(−1)

(

∑

j≥1

(

l

j − 1

)(

l

j + 3k

)

+
∑

j≥0

(

l

j

)(

l

j − 1 + 3k

)

)

.

Since
∑

j≥1

(

l

j − 1

)(

l

j + 3k

)

=

(

2l

l + 3k + 1

)

,

∑

j≥0

(

l

j

)(

l

j + 3k − 1

)

=

(

2l

l + 3k − 1

)

,

then

∆3

(

[2n, 2n + 22l)
)

=

(

2l

l + 1

)

+

(30) +
∑

k≥1

(−1)k

((

2l

l + 3k − 1

)

+

(

2l

l + 3k + 1

))

It is easy to verity that

(31)

(

2l

l + 3k − 1

)

+

(

2l

l + 3k + 1

)

=

(

2l + 2

l + 3k + 1

)

− 2

(

2l

l + 3k

)

.

Thus, using Lemma 5 for m = l and m = l + 1 we have

∆3[2
n, 2n + 22l) =

(

2l

l + 1

)

+ 3l − 1

2

(

2(l + 1)

l + 1

)

− 2 · 3l−1 +

(

2l

l

)

=

(32) =

(

2l

l + 1

)

−
(

2l + 1

l + 1

)

+

(

2l

l

)

+ 3l−1 = 3l−1.

It is evident that in this case the validity of (29) does not depend on the

parity of n.
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2b) Let m be odd, m = 2l + 1, l ≥ 0. As opposed to the case 2a here

we have the last 2l + 1 positions from which l + 1 are even and l are odd.

Hence, by the same arguments we find

∆3

(

[2n, 2n + 22l−1)
)

=
∑

j≥1

(

l

j

)(

l + 1

j − 1

)

+
∑

k≥1

(−1)k

(

∑

j≥0

(

l

j + 3k + 1

)(

l + 1

j

)

+

(33) +
∑

j≥0

(

l + 1

j + 3k − 1

)(

l

j

)

)

, if n is even,

and

∆3

(

[2n, 2n + 22l−1)
)

=
∑

j≥1

(

l

j − 1

)(

l + 1

j

)

+
∑

j≥1

(−1)k

(

∑

j≥1

(

l + 1

j + 3k

)(

l

j − 1

)

+

(34) +
∑

j≥0

(

l

j + 3k − 1

)(

l + 1

j

)

)

, if n is odd.

Now by (33) for even n we have

∆3

(

[2n, 2n + 22l−1)
)

=
∑

j≥0

(

l + 1

j

)(

l

j + 1

)

+

+
∑

k≥1

(−1)k

((

2l + 1

l + 3k + 2

)

+

(

2l + 1

l + 3k − 1

))

=

=

(

2l + 1

l + 2

)

+
∑

k≥1

(−1)k

(

2l + 1

l + 3k + 2

)

+
∑

k≥1

(−1)k

(

2l + 1

l + 3k − 1

)

=

=

(

2l + 1

l + 2

)

+
∑

k≥1

(−1)

(

2l + 1

l + 3k + 2

)

−
∑

k≥0

(−1)k

(

2l + 1

l + 3k + 2

)

=

=

(

2l + 1

l + 2

)

−
(

2l + 1

l + 2

)

= 0.

and by (34) for odd n we have

∆3

(

[2n, 2n + 22l−1)
)

=
∑

j≥0

(

l

j

)(

l + 1

j + 1

)

+
∑

k≥1

(−1)k

(

∑

j≥0

(

l

j

)(

l + 1

j + 3k + 1

)

+

+
∑

j≥0

(

l + 1

j

)(

l

j + 3k − 1

)

)

=

(

2l + 1

l + 1

)

+
∑

k≥1

(−1)k

((

2l + 1

l + 3k + 1

)

+

+

(

2l + 1

l + 3k

))

=

(

2l + 1

l + 1

)

+
∑

k≥1

(−1)k

(

2l + 2

l + 3k + 1

)

=

=

(

2l + 1

l + 1

)

+
∑

k≥1

(−1)k

(

2(l + 1)

(l + 1) − 3k

)

,
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and by Lemma 5 for odd n we obtain

∆3

(

[2n, 2n + 22l−1)
)

=

(

2l + 1

l + 1

)

+ 3l − 1

2

(

2l + 2

l + 1

)

= 3l
�

3) denote by ∆3,h([a, b)), (h ∈ N), the difference between the numbers of

evil and odious integers on [a, b) having the form 3t + i, i = 1, 2, where

i ≡ h( mod 3)

Lemma 6. 1) ∆3,1([0, 2
n)) =

{

−3
n

2
−1, if n is even

0, if n is odd

2)∆3,2([0, 2
n)) = −3⌊

n−1
2

⌋

Proof. Notice that,

(35) ∆3([2
n, 2n + 2m)) = −∆3,2n([0, 2m))

Since by mod 3

2n ≡
{

1, if n is even

2, if n is odd,

then by (35)

∆3,1([0, 2
m)) = ∆3([2

n, 2n + 2m))if n is even

∆3,2([0, 2
m)) = ∆3([2

n, 2n + 2m))if n is odd

and the lemma follows from the previous point �.

Now we are able to complete the proof of Theorem 3.

a) Let n be even, n = 2t.

We have

(36) ∆3([2
2t + 22t−2, 22t + 22t−2 + 2m)) = ∆3,22t+22t−2([0, 2m)).

Since

22t + 22t−2 ≡ 5 · 22t−2 ≡ 2 ( mod 3),

then by (36) and by Lemma 6

∆3([2
2t + 22t−2, 22t + 22t−2 + 2m)) = ∆3,2([0, 2

m)) = −3⌊
m−1

2
⌋.

b) Let now n be odd, n = 2t + 1. Since

22t+1 + 22t−1 ≡ 5 · 22t−1 ≡ 1 ( mod 3)

then using Lemma 6 we have

∆3([2
2t+1+22t−1, 22t+1+22t−1+2m)) = ∆3,1([0, 2

m)) =

{

−3
m

2
−1, if m is even

0, if m is odd
.

This completes the proof of both Theorem 3 and, in view of (15), Theorem

2 �
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Notice that,the results of Theorems 2,3 one can write in terms of the

counting functions of the corresponding sequences. For example, let us

consider the first points of these theorems. Let νe
3(n)(νo

3(n)) denote the

number of the evil (odious) divisible by 3 nonnegative integers less than n.

Then from the first point of Theorem 3 for n ≥ 1 we have

νe
3(2

n) =

{

1
2

(

2n+1
3

+ 3
n−1

2

)

, if n is odd

2n−1+1
3

+ 3
n

2
−1, if n is even;

νo
3(2

n) =

{

1
2

(

2n+1
3

− 3
n−1

2

)

, if n is odd

2n−1+1
3

− 3
n

2
−1, if n is even.

Furthermore, let as above µe
3(n)(µ

(o)
3 (n)) denote the number of the evil

(odious) divisible by 3 nonnegative odd integers less than n. Then from the

first point of Theorem 2 for n ≥ 2 we have

µe
3(2

n) =
1

2

(⌊

2n−1 + 1

3

⌋

+ 3⌊n

2 ⌋−1

)

,

µo
3(2

n) =
1

2

(⌊

2n−1 + 1

3

⌋

− 3⌊n

2 ⌋−1

)

.

Notice in addition that, Theorem 2 (Theorem 3) allows to calculate for

any n the number ∆
(odd)
3 ([0, n))(∆3([0, n))).

Indeed, let

(37) ∆
(odd)
3 = ∆

(odd)
3 (2n1 + 2n2 + . . . + 2nk , 2n1 + 2n2 + . . . + 2nk + 2m).

Consider the sums

a =
∑

i:ni≡0( mod 2)

1, b =
∑

i:ni≡1( mod 2)

1.

Let

a ≡ α( mod 3), b ≡ β( mod 3),

so that 0 ≤ α, β ≤ 2. Then for any integer t > m
2

we have

(38)

∆odd
3 =



























(−1)k∆odd
3 ([0, 2m)), if α = β

(−1)k−1∆odd
3 ([22t, 22t + 2m)), if α − β = 1,

(−1)k−1∆odd
3 ([22t+1, 22t+1 + 2m)), if α − β = −1,

(−1)k∆odd
3 ([22t+2 + 22t, 22t+2 + 22t + 2m)), if α − β = 2,

(−1)k∆odd
3 ([22t+3 + 22t+1, 22t+3 + 22t+1 + 2m)), if α − β = −2.

(38) follows immediately from Lemma 2. The analogous equality is valid

for ∆ .
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Example 1. n = 105. The interval [0, 105) contains 17 odd numbers

divisible by 3. Among them there are 5 odious numbers (namely, 21, 69, 81,

87, 93) and 12 evil numbers. Thus, ∆odd
3 ([0, 105)) = 7.

Let find now this value by the algorithm. We have

[0, 105) = [0, 26) ∪ [26, 26 + 25) ∪ [26 + 25,

(39) 26 + 25 + 23) ∪ [26 + 25 + 23, 26 + 25 + 23 + 1).

The last subset does not contain any odd number. By (38) we have

∆odd
3 ([26 + 25, 26 + 25 + 23)) =

(40) = ∆odd
3 ([0, 23)) (here k = 2, α = β = 1).

Therefore, by (39),(40) and Theorem 2 we find

∆odd
3 ([0, 105)) = 32 − 3 + 1 = 7 �

C.Proof of Theorem 4.

In view of (37)-(38) it is sufficient to prove Theorem 4 for the numbers

of the form

a)2n, b)2n + 2m, m ≤ n − 1, c)2n + 2n−2 + 2m, m ≤ n − 3.

a) According to the point 1 of Theorem 2 we have

lim
n→∞

ln ∆odd
3 ([0, 2n))

ln 2n
= lim

n→∞

(⌊n
2
⌋ − 1) ln 3

n ln 2
=

ln 3

ln 4
.

b) According to the points 1 and 2 of Theorem 2 and taking into account

that m ∈ [2, n − 1] we have

∆odd
3 ([0, 2n + 2m)) = ∆odd

3 ([0, 2n)) + ∆odd
3 ([2n, 2n + 2m)) ≤

≤ 3⌊
n

2
⌋−1 + 2 · 3m−3

2 ≤ 3
n−2

2 + 2 · 3n−4
2 ≤ c1 · 3

n

2 .

Therefore,

lim sup
n→∞

ln ∆odd
3 ([0, 2n + 2m))

ln(2n + 2m)
≤ lim

n→∞

ln c1 + n
2

ln 3

n ln 2
=

ln 3

ln 4
.

On the other hand,

∆odd
3 ([0, 2n + 2m)) ≥ 3

n−1
2

−1 − 3
m−3

2 ≥ 3
n−3

2 − 3
n

2
−2 ≥ 0.08 · 3n

2 .

Thus,

lim inf
n→∞

ln ∆odd
3 ([0, 2n + 2m))

ln(2n + 2m)
≥ lim

n→∞

ln 0.08 + n
2

ln 3

ln 2 + n ln 2
=

ln 3

ln 4
.

c) Analogously, according to the points 1, 2 and 3 of Theorem 2 and

taking into account that m ∈ [2, n − 3] we have
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∆odd
3 ([0, 2n + 2n−2 + 2m)) ≤ (c1 + 1) · 3n

2 + 3
n−6

2 = c23
n

2 ,

∆odd
3 ([0, 2n + 2n−2 + 2m)) ≥ 0.08 · 3n

2 − 2 · 3n−6
2 ≥ 0.005 · 3n

2

and we are done . �

3. On Conjecture 2

Show that Conjecture 2 is a corollary of the following heuristic argument:

the behavior of primes with the point of view the excess of the odious primes

is proportionally similar to behavior of numbers not divisible by 2 and 3.

Indeed, the number of the latter numbers less than n is n − 1 − ⌊n−1
2
⌋ −

⌊n−1
3
⌋+⌊n−1

6
⌋ ∼ n

3
. Thus, the excess δ(n) of the odious numbers not divisible

by 2 and 3 and less than n equals

δ(n) = (νo(n) − νe(n)) − (λo(n) − λe(n)) + ∆3(n) − ∆even
3 (n)

and by (12) and Lemma 1

(41) δ(n) = ∆odd
3 (n) + ε,

where |ε| ≤ 2.

Thus, by Theorem 4 we have

(42) lim
n→∞

ln δ(n)

ln n
=

ln 3

ln 4
.

By the heuristic argument of the proportionality, we have

(43) πo(n) − πe(n) ≈ 3π(n)

n
δ(n).

Now (42)-(43) is equivalent to Conjecture 2. �

Table 2 compares on the powers of 4 the values of x(n) = ln(πo(n)−πe(n))
lnn

and x∗(n) =
ln( 3π(n)

n
(µe

3(n)−µo

3(n))

lnn
.

Table 2.

m x(4m) x∗(4m) m x(4m) x∗(4m)

2 0.2500 0.3962 9 0.5983 0.5974
3 0.3333 0.4679 10 0.6153 0.6087
4 0.5574 0.5109 11 0.6237 0.6186
5 0.5322 0.5322 12 0.6318 0.6275
6 0.5736 0.5537 13 0.6364 0.6354
7 0.5792 0.5702 14 0.6439 0.6426
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4. On the increment of the excess of the odious primes

In conclusion let us consider the absolute value of the increment of the

excess of the numbers between the odious primes and the evil primes on

intervals (0, 2n):

(44) ∆(n) =
∣

∣(πo(2n) − πe(2n)) − (πo(2n−1) − πe(2n−1))
∣

∣ .

By (41),(43), (44) and Theorem 1 we find

(45) ∆(n) ≈
{

3
n−1

2 |π(2n−1)
2n−1 − π(2n)

2n |, if n is odd

3
n

2
−1
(

3π(2n)
2n − π(2n−1)

2n−1

)

, if n is even.

Notice that, by the Landau conjecture, π(2n) ≤ 2π(n), n ≥ 3 and there-

fore π(22n−1)
2n−1 ≥ π(2n)

2n , n ≥ 2. Unfortunately, this very plausible conjecture

was proved until now only for sufficiently large n [8].

The following Table 4 illustrates the irregularity of the distribution of

∆(n) (44) in fact and by (45) for n ≥ 15.

Table 3.
n ∆(n) by(45)

15 58 19
16 492 421
17 111 42
18 1031 1114
19 110 98
20 3207 2990
21 158 238
22 8296 8118
23 1416 586
24 21790 22229
25 1246 1458
26 60294 61342
27 1570 3707
28 170024 170372

Notice that, although the phenomenon to a certain degree was explained

it remains very impressive that in spite of the ratio of the numbers of primes

in intervals (22t, 22t+1), (22t−1, 22t)is less than 2 but the value of ∆ (44) for

t ≥ 8 more that 8, 9, 29, . . . , 48, 108, . . . times as large!

Conclusive remarks. 1)On the one hand, it is interesting, using Theorem

1, to make the following steps towards justification of Conjecture 1. On the

other hand, Conjecture 2 means that the influence of the rest of the other

steps in totality is small. Nevertheless, the full proof most likely requires

more strong methods.

2)It is interesting to investigate the behavior of primes from the consid-

ered point of view on the arithmetical progressions. For example, on the

progression 3t +2 we expect on the whole an excess of the evil primes since
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as one can show the excess of the odd evil integers of the form 3t + 2 in

interval [5, 22n−1) is equal to 3n−2, while on interval [5, 22n) it is equal to 0.

It is a topic for a separate article.

References

[1] 1. J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Com-

puter Sci.,,98 (1992),85-89.
[2] 2. J.-P. Allouche and J.Shallit, The ring of k-regular sequences II, Theoretical Com-

puter Sci.,307 (2003),3-29.
[3] 3. R. K. Guy, Impartial games, Proc.Sympos. Appl.Math.43 (1991), 35-55.
[4] 4. R. K. Guy, The unity of combinatorics, Math.Appl.329 ,(1995),129-159.
[5] 5. J. Lambek and L. Moser, On some two way classifications of integers, Canad,

Math. Bull.2 (1959), 85-89.
[6] 6. M. D. McIlrog, The number of 1‘s in binary integers: bounds and extremal

properties, SIAM J. Comput.,3 (1974), 255-261.
[7] 7. J. Riordan, Combinatorial Identities,Welley. 1968.
[8] 8. J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of

prime numbers. Illinois J.Math.6 , 1962, 64-94.
[9] 9. N. J. A. Sloane, Sequences A000069, A001969 in ”The On-Line Encyclopedia of

Integer Sequences”,http://www.research.att.com/∼njas /sequences/
[10] 10. N. J. A. Sloane, Sequences A027697, A027699 in ”The On-Line Encyclopedia of

Integer Sequences”,http://www.research.att.com/∼njas /sequences/
* The paper is partly supported by Israeli Ministry of Absorption

Departments of Mathematics, Ben-Gurion University of the Negev, Beer-

Sheva 84105, Israel. e-mail:shevelev@bgu.ac.il

http://www.research.att.com/~njas
http://www.research.att.com/~njas

	1. Introduction and main results
	2. Proofs of results
	3. On Conjecture 2
	4. On the increment of the excess of the odious primes
	References

