
AN OPTIMAL ALGORITHM TO GENERATE POINTED
TRIVALENT DIAGRAMS AND POINTED TRIANGULAR MAPS

SAMUEL ALEXANDRE VIDAL

Abstract. A trivalent diagram is a connected graph with cyclic orientations
and degree conditions on its vertices. It is the combinatorial description of an
unembedded trivalent ribbon graph. We shall describe and analyze an algorithm
giving an exhaustive list of trivalent diagrams of a given size. The list being non-
redundant in that no two diagrams of the list are isomorphic. The algorithm will
be shown to have optimal performances in that the time necessary to generate a
diagram will be shown to be bounded in the amortized sense. What is striking
is that the bound is uniform on the size of the diagrams being generated. One
objective of the paper is to provide a reusable theoretical framework for algorithms
generating exhaustive lists of complex combinatorial structures with attention
paid to the case of unlabeled structures and to those generators having the CAT
property.

0. Introduction

Roughly speaking a trivalent diagram is a connected graph with degree conditions
on its vertices and cyclic orientations on the edges adjacent to each vertex, it is the
combinatorial description of an unembedded trivalent ribbon graph [23, 11] (cf.
definitions 1.1 and 1.2 for a precise definition). We shall see (cf. section 1.2) that
it can be described by a pair of permutations (σ•, σ◦) satisfying the conditions of
involutivity σ2

◦ = id and triangularity σ3
• = id. The notion of pointed trivalent

diagrams are also very useful, both to our study and to the target applications, so
we take a special care to study them in detail.

0.1. Motivations. In a recent paper [27] we gave a complete classification of the
subgroups of the modular group PSL2(Z) and their conjugacy classes by pointed
trivalent diagrams and trivalent diagrams. A question one may ask is how to gener-
ate a complete list of such trivalent diagrams. Such a question is unavoidable : for
a classification to be fully satisfactory one is indeed willing for a systematic way to
enumerate all the particular instances of the objects being classified. It was soon
realized that there were a connection with combinatorial maps. In this paper we
clarify that point and give an application to generate exhaustive lists of triangular
combinatorial maps.

2000 Mathematics Subject Classification. Primary 68R05, 68W05, 20E07, 05C30 ; Secondary
20E06, 05C85, 05A15.

1

ar
X

iv
:0

70
6.

09
69

v2
 [

m
at

h.
C

O
]

 6
 J

ul
 2

00
7

The other sources of motivations to generate the trivalent diagrams come mainly
from mathematical physics in connection with two-dimensionnal quantum gravity
and the Witten-Kontsevich model [11]. Algebraic topology is also a source of moti-
vation through triangular subdivisions of surfaces, knots, braids, links and tangles
theory [23, 2]. It is also connected to the deformation theory of quantized Hopf
algebras [4, 5]. The problem we solve is also relevant to the study of combinatorial
maps as explained in section 5 and to the vast galoisian program of A. Grothendieck
[8] as explained in hundreds of papers and books such as [17, 27, 19, 16]. As an
application, we give in section 4 a way to generate a complete list describing all
the sub-groups of a given finite index in the modular group PSL2(Z) and a way to
decide conjugacy relations among those subgroups. We show also in section 5, as a
second application, how to generate an exhaustive list of triangular maps satisfying
various criteria.

0.2. Problem Statement. We shall describe and analyze two algorithms, the first
giving an exhaustive list of pointed trivalent diagrams of a given size (cf. definitions
1.3 and 1.4 below) and the second giving an exhaustive list of unpointed trivalent
diagrams (definitions 1.1 and 1.2). Those lists being non-redundant in that no two
diagrams of the lists are isomorphic. The algorithm for pointed diagrams will be
shown to have optimal performances meaning that the time necessary to generate a
diagram will be shown to be bounded in the amortized sense. What is striking is that
the bound is uniform on the size of the diagrams being generated. One objective of
the paper is to provide a reusable theoretical framework for algorithms generating
exhaustive lists of complex combinatorial structures with attention paid to the case
of unlabeled structures and to those generators having the CAT property.

0.3. What is a CAT Generator. The CAT generator expression stands as an
acronym for constant amortized time generator meaning a generator of combinatorial
structures that on the large seems to spend only a constant time generating each
of the structures. The usual idea in such a generator is that one arranges so that
passing from a structure to the next only takes a few modifications to be made.
Sometimes though, it could take more modifications than usual and we don’t usually
have any upper bound in the amount of actual modifications that could be needed
to pass from a structure to the next. When needs for large amounts of modifications
tends to be significantly rare in comparison to small ones, we can sometimes prove
that an amortization effect is going on. In such a situation, one cannot tell from the
running time of the algorithm and the number of structure generated in the interval,
the actual size of the structures being generated. Technically, one can summarize
that amortization effect in saying that the total amount of time needed to generate n
distinct structures is asymptotically bounded by a constant multiple of the number n
of structures being generated, the word constant meaning that the bound is uniform
on the size of the structures being generated.

2

Figure 1. A trivalent diagram is conveniently described by a little dia-
gram like the one above, hence the name. The actual cyclic orientation
of the vertices are conveniently rendered implicit by adopting the standard
trigonometric orientation of the figure.

1. Trivalent Diagrams

Definition 1.1. A trivalent diagram Γ is given by three sets Γ•, Γ◦ and Γ− and
two maps ∂• : Γ− → Γ•, ∂◦ : Γ− → Γ◦, and two Z-actions +•,+◦ : Γ− × Z → Γ−
given by (a, n) 7→ a+• n and (a, n) 7→ a+◦ n satisfying, for all pair a, a′ of distinct
elements of Γ− the following conditions,

a+• 3 = a ∂•(a+• 1) = ∂•(a) ∂•(a) = ∂•(a
′)⇒ ∃n, a+• n = a′

a+◦ 2 = a ∂◦(a+◦ 1) = ∂◦(a) ∂◦(a) = ∂◦(a
′)⇒ ∃n, a+◦ n = a′

The two maps ∂• and ∂◦ being moreover assumed to be surjective.

The elements of Γ− are the edges of the diagram, the elements of the two sets
Γ• and Γ◦ are the black and white vertices of the diagram. Each edge is adjacent
to exactly one black vertex and one white vertex, those two vertices being given by
the two maps ∂• and ∂◦ respectively.

Definition 1.2. A morphism ϕ between two trivalent diagrams Γ and Γ′ is a triple
of applications ϕ• : Γ• → Γ′•, ϕ◦ : Γ◦ → Γ′◦ and ϕ− : Γ− → Γ′−, compatible to the
three structure applications and the two group actions in that ϕ− is both +• and
+◦ equivariant and the following two diagrams are commutative,

Γ−
ϕ−

//

∂•

��

Γ′−

∂•

��

Γ• ϕ•
// Γ′•

Γ−
ϕ−

//

∂◦

��

Γ′−

∂◦

��

Γ◦ ϕ◦
// Γ′◦

1.1. Pointed Trivalent Diagrams. The following notion play an important rôle
in that dissertation and in the applications.

Definition 1.3. A trivalent diagram is said to be pointed if one of its edges is
distinguished from the others.

A convenient way to describe the pointing of a diagram is to draw a little cross
on its distinguished edge.

3

Definition 1.4. A morphism ϕ of pointed trivalent diagrams (Γ, a) and (Γ′, a′) is a
morphism of the underlying diagrams (forgetting base points) which ϕ− component
is further assumed to send base point to base point i.e. for which we have the
following relation ϕ−(a) = a′.

Convention. From now on, without express mention of the contrary, trivalent di-
agrams are all assumed to be connected.

1.2. Permutational Representation. Trivalent diagrams have a convenient de-
scription in terms of two permutations, that proves to be useful to formulate various
algorithms. To a trivalent diagram Γ one associate the set XΓ = { aa }a∈Γ− (which is
a copy of the set Γ− of edges of Γ with canonical bijection associating to any edges
a of Γ the element aa of XΓ) and two permutations σ• and σ◦ of XΓ defined by the
following relations,

σ•(aa) = aa+•1 and σ◦(aa) = aa+◦1

The triple constituted of XΓ, σ• and σ◦ is by definition, the permutational repre-
sentation of the diagram Γ. To state the functoriality of this operation we are first
required to give a precise notion of morphism between the introduced objects.

Definition 1.5. A morphism ϕ between two pairs of permutations (σ•, σ◦) on two
respective sets X and X ′ is an application ϕ : X → X ′ which is simultaneously equi-
variant to σ• and σ◦ in the sense that the two following diagrams are commutative,

X
ϕ

//

σ•

��

X ′

σ•

��

X ϕ
// X ′

X
ϕ

//

σ◦

��

X ′

σ◦

��

X ϕ
// X ′

Any morphism ϕ between two trivalent diagrams Γ and Γ′ induce a morphism ϕ/
between their permutational representations XΓ and XΓ′ , defined for all aa in XΓ

by the following equation,

ϕ/(aa) = a′ϕ−(a)

It is now easily seen that we have a simultaneous equivariance of the induced map
ϕ/ with respect to σ• and σ◦ as required by definition 1.5 above :

ϕ/(σ•(aa)) = ϕ/(aa+•1) ϕ/(σ◦(aa)) = ϕ/(aa+◦1)

= a′ϕ(a+•1) = a′ϕ(a+◦1)

= a′ϕ(a)+•1 = a′ϕ(a)+◦1

= σ•(a
′
ϕ(a)) = σ◦(a

′
ϕ(a))

= σ•(ϕ/(aa)) = σ◦(ϕ/(aa))

The induced maps are transitive in the following sense. Let Γ, Γ′ and Γ′′ be three
trivalent diagrams and let ϕ : Γ′ → Γ and ϕ′ : Γ′′ → Γ′ be two morphisms of trivalent

4

diagrams, then we have both (IdΓ)/ = IdXΓ
and (ϕ ◦ ϕ′)/ = ϕ/ ◦ (ϕ′)/. The first

statement is immediate, the second is a mater of simple rewriting,

(ϕ/ ◦ (ϕ′)/)(a
′′
a) = ϕ/(a

′
ϕ′−(a))

= aϕ−(ϕ′−(a))

= (ϕ ◦ ϕ′)/(a′′a)
The situation just described can be concisely summed up by saying that the process
of taking the permutational representations of trivalent diagrams is functorial.

We shall now prove that this representation is faithful in that one can recover
any diagram from its permutational representation. To that purpose, we shall now
introduce a reconstruction operation and show that it is reciprocal to that of taking
the permutational representation, in the precise sense that the reconstructed dia-
gram (XΓ)diag from the permutational representation XΓ of a diagram Γ, is naturally
isomorphic to Γ the diagram it comes from (theorem 1.1 below).

That reconstruction operation takes a pair of permutations (σ•, σ◦) on a given
set X, satisfying both triangularity σ3

• = id and involutivity σ2
◦ = id properties, and

it produces a trivalent diagram denoted by Xdiag which sets of black vertices, white
vertices and edges are the following,

Xdiag
• = X/σ• Xdiag

◦ = X/σ◦ Xdiag
− = X

which two structure maps ∂• and ∂◦ from Xdiag
− to Xdiag

• and Xdiag
◦ are the natural

projections of those quotients and which two Z-actions +• and +◦ on Xdiag
− are

defined for all elements x of X and all integer n by the following relations,

x+• n = σn• (x) and x+◦ n = σn◦ (x)

Theorem 1.1. For any trivalent diagram Γ, there exists a bijection ϕ− natural
with respect to Γ and simultaneously equivariant with respect to +• and +◦ and two
natural bijections ϕ• and ϕ◦ all of which plug in the following commutative diagrams,

(XΓ)diag−
ϕ−

//

∂•

��

Γ−

∂•

��

(XΓ)diag• ϕ•
// Γ•

(XΓ)diag−
ϕ−

//

∂◦

��

Γ−

∂◦

��

(XΓ)diag◦ ϕ◦
// Γ◦

Demonstration. The application ϕ− which associate to aa the edge a is clearly nat-
ural, bijective and simultaneously equivariant with respect to +• and +◦. Therefore,
as ∂• and ∂◦ are equivariant by definition to +• and +◦ respectively, so are ∂• ◦ ϕ−
and ∂◦ ◦ ϕ−. The application ϕ• (resp. ϕ◦) is induced between (XΓ)diag• = Γ−/σ•
(resp. (XΓ)diag◦ = Γ−/σ◦) and Γ• by equivariance of ∂• ◦ϕ− with respect to σ• (resp.
by equivariance of ∂◦ ◦ ϕ− with respect to σ◦).

Let’s prove now that ϕ• and ϕ◦ are both bijective. First, as (∂•◦ϕ−) : (XΓ)diag− →
Γ• and (∂◦ ◦ ϕ−) : (XΓ)diag− → Γ◦ are surjective, the two applications ϕ• and ϕ◦ are
both surjective by commutativity of the diagrams. Let’s show that ϕ• is injective.

5

Let x and x′ be two elements of (XΓ)diag• such that ϕ•(x) = ϕ•(x
′), then by surjec-

tivity of ∂• : (XΓ)diag− → (XΓ)diag• there exist a and a′ in Γ− such that x = ∂•(aa)
and x′ = ∂•(aa′) then,

ϕ•(∂•(aa)) = ϕ•(∂•(aa′)) ⇒ ∂•(ϕ−(aa)) = ∂•(ϕ−(aa′))

⇒ ∂•(a) = ∂•(a
′)

⇒ ∃n, a+• n = a′

⇒ ∃n, σn• (aa) = aa′

⇒ ∂•(aa) = ∂•(aa′)

Thus x = x′ and ϕ• is injective. Let’s show now that ϕ◦ is also injective. Let x
and x′ be two elements of (XΓ)diag◦ such that ϕ◦(x) = ϕ◦(x

′), then by surjectivity

of ∂◦ : (XΓ)diag− → (XΓ)diag◦ there exist a and a′ in Γ− such that x = ∂◦(aa) and
x′ = ∂◦(aa′) then,

ϕ◦(∂◦(aa)) = ϕ◦(∂◦(aa′)) ⇒ ∂◦(ϕ−(aa)) = ∂◦(ϕ−(aa′))

⇒ ∂◦(a) = ∂◦(a
′)

⇒ ∃n, a+◦ n = a′

⇒ ∃n, σn◦ (aa) = aa′

⇒ ∂◦(aa) = ∂◦(aa′)

Thus x = x′ and ϕ◦ is also injective, which ends the demonstration. �

Corollary. There are a natural bijections between the cycles of the permutation σ•
(resp. the permutation σ◦) and the black vertices of Γ (resp. the the white vertices
of Γ). Those two natural bijections are both unique.

Demonstration. It suffice to notice that the elements of (XΓ)diag• = Γ−/σ• and
(XΓ)diag◦ = Γ−/σ◦ are nothing but the cycles of the two permutations σ• and σ◦
respectively, then it become obvious that the bijections ϕ• and ϕ◦ of the theorem
satisfy the statement. Uniqueness is granted by construction. �

1.3. Labeled vs. Unlabeled Diagrams. Historically, the dichotomy between
labeled and unlabeled structures had been greatly clarified and properly emphasized
by the discovery by A. Joyal of combinatorial species [10]. The subject was, and
still is, a very prolific source of discovery from the Quebec school of combinatorics
and from a growing community of researchers around the world. One must cite the
wonderful book [6] by F. Bergeron, G. Labelle and P. Leroux, which gives a briliant
exposition of the whole subject.

On a given set of vertices X one can build different trivalent diagrams and pointed
trivalent diagrams. Let’s denote by D3(X) and D•3(X) the corresponding sets of
structures, let’s call X the labeling alphabet and let’s talk about diagrams one can
build on that set, to be labeled diagrams on X or diagrams labeled by X. Any bijec-
tion % between two finite sets X and Y induce another bijection %∗ between the sets
D3(X) and D3(Y) of pointed trivalent diagrams labeled by X and Y respectievly.
This induced bijection is the relabeling operation, from D3(X) to D3(Y), according
to the bijection % between the labeling sets. It is also referred as a transport of struc-
ture along the relabeling bijection %. The same considerations applied to pointed

6

trivalent diagrams give rise to an induced bijection, also denoted by %∗ for simplicity,
between the sets of D•3(X) and D•3(Y) of pointed trivalent diagrams labeled by X
and Y .

What precedes leads to the consideration of the Joyal Functors D3 and D•3 of
the two combinatorial species of trivalent diagrams and pointed trivalent diagrams
respectively. In the formalism of Joyal, two labeled structures are said to be conju-
gated or isomorphic if they coincide modulo the relabeling operation. An unlabeled
structure is then just a conjugacy class of labeled structures. Let’s denote by D̃3[n]
and D̃•3[n] the sets of unlabeled trivalent diagrams, unpointed and pointed respec-
tively. In precise terms, the symmetric group Sn acts via relabeling on the set of
structures labeled by { 1, . . . , n } and the sets D̃3(n) and D̃•3(n) can be seen as the
quotient sets of this induced group action.

D̃3(n)
def.
= D3({ 1, . . . , n })/Sn and D̃•3(n)

def.
= D•3({ 1, . . . , n })/Sn

We call the corresponding natural projections,

πn : D3({ 1, . . . , n })→ D3({ 1, . . . , n })/Sn

πn : D•3({ 1, . . . , n })→ D•3({ 1, . . . , n })/Sn

the condensation maps of the combinatorial species D3 and D•3. The idea being
that labeled structures form vast ‘clouds’ composed of a myriad of structures with
differences between them varying from pointless and insignificant if the structures
are conjugated, to essential and noteworthy if they are not conjugated, unlabeled
structures ultimately standing as the rare and the interesting.

2. Characteristic Labeling

A characteristic labeling is the choice of a unique representative in every conjugacy
class of structure. In other terms, a characteristic labeling can be seen as a natural
section to the condensation map π. The characteristic labeling that we like are
those which are computable. We like them even more if there is an efficient way to
compute them.

Pointed trivalent diagrams have the enjoyable property to possess many char-
acteristic labelings that are computable with efficient algorithms. This situation
is to be contrasted with that of general graphs. No algorithm is known to decide
in polynomial time whether two given graphs are isomorphic, and having an effi-
cient algorithm computing characteristic labeling of general graphs would render
that particular problem trivial. We shall precise that, what makes trivalent dia-
grams particular in that respect, is not much in them being trivalent, but more in
them being cyclically oriented at their vertices. Indeed, general graphs having only
trivalent vertices still suffer from the above problem.

What we give now, is a succinct description of an algorithm producing a charac-
teristic labeling of pointed trivalent diagrams Γ and having linear time complexity
in the number of edges of Γ. The idea is the following, build a rooted planar binary
tree T by depth-first traversal of the edges of the diagram (not the vertices, I insist

7

on the edges). Given a particular edge a of Γ, the two directions that are explored
from it, are given by the two σ• and σ◦ operations on the set of edges. We take care
to never revisit a previously visited edge and we label the edges of Γ by numbers
from 1 to n according to the order of their appearance in the depth-first traversal.

Algorithm 1: Visit (x : X)

begin1

if visited [x] then return2

visited [x]← true3

`0 [x]← c4

`1 [c]← x5

c← c+ 16

Visit (s0 [x])7

Visit (s1 [x])8

end9

Algorithm 2: Relabel (x : X)

begin1

c← 12

for i ∈ X do3

visited [i]← false4

Visit (x)5

for k ∈ { 1, ..., n } do6

t0 [k]← `0 [s0 [`1 [k]]]7

t1 [k]← `0 [s1 [`1 [k]]]8

end9

2.1. Implementation. We need as global data, seven arrays as follows and an
integer c,

visited : X → Bool

`0 : { 1, ..., n } → X

`1 : X → { 1, ..., n }
s0, s1 : X → X

t0, t1 : { 1, ..., n } → { 1, ..., n }
Algorithm 1 which is an auxiliary recursive program computing the transport bijec-
tions `0 and `1. Algorithm 2 is the main entry point of the relabeling process. It
does the initialization job (line 2 to 4) and the actual relabeling of the input diagram
(line 6 to 8). It takes as input a trivalent diagram labeled with the elements of the
set X and pointed by the element x of X. which is described by the arrays s0 and s1

and the element x ∈ X are descriptions of the input diagram via its associated two
permutations σ• and σ◦ (cf. section 1.2). The output diagram is encoded by the two
arrays t0 and t1 in the very same fashion. The visited array is used to remember the
positions already visited by the relabeling process. The integer c serves as a counter

8

ae
g f

hc

i b

d

57
9 6

32

8 4

1

Figure 2. If one gives as input to the relabeling algorithm (algorithm 2) the
pointed diagram shown on the left with an arbitrary initial labeling on the
arbitrary alphabet X = { a, b, c, d, e, f, g, h, i }, it produces the characterstic
relabeling shown on the right with numbers from 1 to 9 according to the
depth-first traversal order of algorithm 1. One shall notice the natural cutting
between the edges labeled by 2 and 8 that arise from the depth-first traversal.

to label the vertices in the order they are encountered, `0 and `1 are internal arrays
describing the mutual inverse transport bijections between the input diagram and
the output diagram.

2.2. Adequacy. The idea behind that algorithm is quit simple and present no
difficulty excepting the actual proof of the relabeling being characteristic. There is
two ways to do the proof, one is conceptual by nature, the other is more technical.
The particular description of the algorithm is itself part of that former argument.
We shall give both arguments because preferring one or the other is simply a mater
of taste. Let’s give the conceptual argument first.

One could have taken the input diagram to be labeled by the set { 1, ..., n } then
shown that the output labeled diagram stay unchanged if one conjugate the input
labeled diagram according to any permutation of the labeling set. Such a proof
would typically look rather technical if not difficult. Instead, we rather abstract
the labeling alphabet of the input diagram to be an ordinary set X having exactly
n distinct elements, and this requirement being the only assumption made on X.
In particular, we make absolutely no assumption on the elements of X or on any
structure that this particular set may carry.

A moment thought may convince the reader that abstracting the input label set
to X and making no assumption whatsoever on the elements of that particular set
indeed guaranties the required invariance, but this argument is undeniably subtle
and may seems a hand waving argument to most people, so we give now another
proof avoiding such considerations.

Theorem 2.1. Algorithm 2 produce a characteristic relabeling of the connected
pointed trivalent diagrams of size n.

Demonstration. A permutation σ of the input label set X induce a conjugacy of
the two input permutations s0 and s1 yielding two permutations s′0 = σ · s0 · σ−1

and s′1 = σ · s1 · σ−1. Now, putting `0(x) = c and `′0(x′) = c according to line 4 of
9

algorithm 1 with x′ = σ(x) and varying x yields `′0 = `0 · σ−1. Similarly, considering
line 5 of the same algorithm, we get `′1 = σ · `1. Permutations t0, t′0, t1 and t′1
verifying the following identities (by line 6-8 of algorithm 2),

t0 = `0 · s0 · `1 t′0 = `′0 · s′0 · `′1
t1 = `0 · s1 · `1 t′1 = `′0 · s′1 · `′1

and substituting `′0, `′1, s′0, and s′1 for their above values, yields by a mutual cancel-
lation of the σ’s,

t′0 = (`0 · σ−1) · (σ · s0 · σ−1) · (σ · `1) = t0

t′1 = (`0 · σ−1) · (σ · s1 · σ−1) · (σ · `1) = t1

Thus proving the required invariance of the result. �

3. Generating Algorithm

Let’s imagine that along the way of exploring a particular pointed trivalent di-
agram with algorithm 2 of section 2, we emit a sequence of events describing the
particular cycles of the permutations t0 and t1 we encounter at each stage of the tra-
versal. Those events typically saying for example : there we reach a new unforeseen
black vertex (forward connection) and we label its adjacent edges c, c+ 1, c+ 2, or
there we reach a previously visited white vertex (backward connection), or there we
reach an unforeseen white vertex, etc...

One shall easily convince oneself that such a sequence of events, relying only
on the execution march of the algorithm and not on the particular labeling of the
input diagram, is in fact characteristic to the diagram. If sufficiently detailed, that
sequence of events can be used to unambiguously characterize pointed trivalent
diagrams. The idea now, would be to consider a rooted planar tree with leaves
labeled by pointed trivalent diagrams and with edges labeled by events in such a
way that the sequence of events one gets along any branch from the root to a leaf
is the very sequence of events that unambiguously characterize the corresponding
pointed trivalent diagram.

We now get a usable principle of generation if we require two further properties.
First exhaustivity, meaning that every conjugacy class of pointed trivalent diagram
gets represented on a particular leaf of the tree, then non-redundancy, meaning that
every such conjugacy class gets represented just once. Assuming that we spend only
a constant time on each node of that tree and that the number of those nodes is
linearly bounded by the number of its leaves, this would provide a constant amortized
time algorithm to generate pointed trivalent diagrams.

To ease the memory requirements of the generator, we won’t actually build the
generation tree in memory. It will instead be realized in the calling pattern between
the procedures of the generating program. Also, the program would be more useful
if it generates the diagrams in permutational form instead of a sequence of events
describing it. This mean that we have to carry around a partial diagram that
gets built along the way of exploring the generation tree, each generating event

10

completing that description and each backtrack reverting the particular changes we
have made.

3.1. Implementation. Fundamentally, the present algorithm generate by back-
track all the possible executions of the relabeling algorithm 2 of section 2 which
itself is a backtrack on all the possible paths inside the input pointed trivalent di-
agram. This leads to a tricky double-backtrack algorithm. Such a technique needs
two stacks to store the intermediate values of the two backtracks at work. One of
the two stacks can be rendered implicit in the recursive formulation of the algorithm
but the other is necessarily explicit.

We refer to that stack (modeling the parameter stack of the recursive algorithm
1 of section 2) through the following self-explanatory methods (reference to the
stack object itself being removed in the code, for the sake of brievety), the last two
methods being just suggestive alias to insertion and removal primitives.

Push : Integer× Stack→ Stack

Pop : Stack→ Integer× Stack

StackIsEmpty : Stack→ Bool

Mask,Reveal : Integer× Stack→ Stack

All of those methods can have constant execution time implementations, for example
through a doubly linked list and an array to have both, constant iteration time
needed line 8 of algorithm 4 and random access needed for Mask and Reveal to
have constant execution time. Note that no membership test is needed, although it
could have been implemented with constant execution time with the help of just an
additional boolean array.

Manipulation of the partial diagram is done through the four Emit procedures,
building cycles of size 1, 2 and 3 in the corresponding black σ• or white σ◦ permu-
tation of the diagram and their four Revert counterparts doing just the converse.
The entry point of the algorithm is the Generate procedure (algorithm 3). The
Output method called line 4 of the Recurse procedure (algorithm 9) is a user-
defined procedure that serves as an outlet to the algorithm. It can be used for
instance to do printing jobs or to collect some statistics on pointed trivalent dia-
grams. In section 5 and 4 below, we give natural bijections to the combinatorial
species of triangular maps and to that of subgroups of the modular group.

3.2. Adequacy. There is at least two properties to be proved, first non-redundency
and then exhaustivity. The non-redundency property is a simple consequence of
the characteristicness of the sequence of the depth-first traversal (theorem 2.1).
But exhaustivity still remains to be proved, it results by induction from a local
exhaustivity property. To explain what we mean by local exhaustivity we shall take
a close look at the Dispatch procedure (algorithm 4).

11

Algorithm 3: Generate ()

begin1

if MaxSize ≥ 1 then2

c← 23

EmitBlack1Cycle (1)4

Dispatch (1)5

if MaxSize ≥ 3 then6

c← 47

EmitBlack3Cycle (1, 2, 3)8

Push (1)9

Push (2)10

Dispatch (3)11

end12

Algorithm 4: Dispatch (s : integer)

local t : integer1

begin2

if c+ 3 ≤MaxSize+ 1 then3

TryForeward (s)4

if c+ 1 ≤MaxSize+ 1 then5

TryClosedBlack (s)6

TryClosedWhite (s)7

for t ∈ Stack do8

Mask (t)9

TryBackward (s, t)10

Reveal (t)11

end12

Algorithm 5: TryForward (s : integer)

begin1

EmitBlack3Cycle (c, c+ 1, c+ 2)2

Push (c+ 1)3

EmitWhite2Cycle (s, c)4

c← c+ 35

Dispatch (c− 1)6

c← c− 37

RevertWhite2Cycle (s, c)8

Pop ()9

RevertBlack3Cycle (c, c+ 1, c+ 2)10

end11

12

Algorithm 6: TryBackward (s, t : integer)

begin1

EmitWhite2Cycle (s, t)2

Recurse ()3

RevertWhite2Cycle (s, t)4

end5

Algorithm 7: TryClosedWhite (s : integer)

begin1

EmitWhite1Cycle (s)2

Recurse ()3

RevertWhite1Cycle (s)4

end5

Algorithm 8: TryClosedBlack (s : integer)

begin1

EmitWhite2Cycle (s, c)2

EmitBlack1Cycle (c)3

c← c+ 14

Recurse ()5

c← c− 16

RevertBlack1Cycle (s)7

RevertWhite2Cycle (s, c)8

end9

Algorithm 9: Recurse ()

local k : integer1

begin2

if StackIsEmpty () then3

Output ()4

else5

k ← Pop ()6

Dispatch (k)7

Push (k)8

end9

The situation at the start of the Dispatch procedure is the following, we have
an edge labeled by s and we ask for all the possibilities that one can encounter in
visiting the next adjacent edge in the black to white direction,

s ...

Algorithms 5, 6, 7 and 8 handle the following four cases.
13

1) TryClosedWhite (s) generates all the diagrams having an univalent white
vertex at the current position.

s

2) TryClosedBlack (s) generates all the diagrams having a bivalent white
vertex and an univalent black vertex at the current position. It labels with
the current value of the counter c the previously unvisited edge.

s c

3) TryForward (s) generates all the diagrams having a bivalent white vertex
at the current position and going on with an unvisited trivalent black vertex
whose adjacent edges are labeled by c, c+ 1 and c+ 2.

s c c + 2

c + 1

...

...

4) TryBackward (s, t) generates all the diagrams having a bivalent white
vertex at the current position and going on with an already visited edge
labeled by t.

s

t

We claim that those four cases exhausts the local possibilities, which is readily
verified by considering all the possibilities of adjacency for the edge labeled s, and
that this local exhaustivity guaranties by induction, the full exhaustivity of the
generating algorithm.

4. First Application : Modular Group

We recall that the modular group PSL2(Z) is the group of integer matrices with
unit determinant,

PSL2(Z) =

{
±
(
a b
c d

)
∈M2(Z)/± Id

∣∣∣∣ ad− bc = 1

}
There are many possible finite presentations for this group and we shall stick to the
following,

PSL2(Z) = 〈A,B |A2 = B3 = 1 〉
with A and B being the following two matrices,

A = ±
(

0 −1
1 0

)
and B = ±

(
1 1
−1 0

)
14

for it renders explicit the following isomorphism,

PSL2(Z) ' Z/2Z ∗ Z/3Z

4.1. Displacements Groups. The modular group acts naturally on the set of
edges of any trivalent diagrams. This action is generated by the two elementary
moves,

a · A = a+◦ 1 and a ·B = a+• 1

The elementary move A acts by exchanging positions of the two adjacent edges of
any bivalent white vertex and by fixing the only adjacent edge of any univalent white
vertex. Similarly, the elementary move B acts by cyclically exchanging the three
adjacent edges of any trivalent black vertex and by fixing the only adjacent edge to
any univalent black vertex.

A

A

A B
BB

B

Figure 3. Here is in picture the result of the action of the two elementary
moves A and B on the various sorts of edges.

Given any trivalent diagram Γ, the two elementary moves just described generate
a group ΦΓ called the displacement group of Γ. It is easily verified that it is the quo-
tient group of PSL2(Z) by the kernel of the group action ρ : PSL2(Z)→ SΓ− . The
modular group has therefore a universal status with respect to that construction, it
can be considered as the universal group of displacements for the species of triva-
lent diagrams. If one restricts attention to finite trivalent diagrams, the profinite
completion of PSL2(Z) would be a more appropriate candidate for that purpose.

4.2. Unrooted Planar Binary Trees. One can associate to any (unrooted) pla-
nar binary tree T a connected and acyclic trivalent diagram Γ, called its enriched
barycentric subdivision Γ = T sb+, by putting an extra white vertex in the middle of
every edges of T . The set of directed edges of T and that of undirected edges of Γ
are in bijection in two natural ways.

There is another famous presentation of the modular group, it is given by two
generators S and T and two relations as follows,

PSL2(Z) = 〈S, T |S2 = (ST)3 = 1 〉

with S and T being the following two matrices,

S = ±
(

0 −1
1 0

)
and T = ±

(
1 1
0 1

)
15

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11a12

a13

Figure 4. We see on this example the result of iterating the elementary
move T on the edges of a binary tree. The edges are labeled by ak where
ak+1 = T · ak. This can be used to implement depth-first traversals in a
purely iterative way.

The conversion between the two presentations is done through the application of
the following rules,

A→ S S → A

B → (ST)2 T → AB−1

Here are two basic criterion relating connectedness and acyclicity of finite trivalent
diagrams to the transitivity of the action of some displacement group :

1) A finite trivalent diagram Γ is connected if and only if, its displacement
group ΦΓ acts transitively on its set of edges.

2) If it is a tree then the subgroup ΨΓ, of its displacements generated by the
elementary move T , acts transitively on its set of edges.

There is a natural bijection between trivalent diagrams having no univalent white
vertex and those having no univalent black vertex. It works by removing every
univalent black vertex and the adjacent edges in one direction and by growing every
univalent white vertex with a new edge and a new univalent black vertex in the
other direction. This bijection is compatible with connectedness and acyclicity thus
restricts to the class of planar binary trees and we recover the classical bijection
between complete and incomplete planar binary trees.

4.3. Classification Principle. To any connected pointed trivalent diagram, one
can moreover associate the subgroup of the PSL2(Z) consisting of elements that are

16

Table 1. Trivalent diagrams of size up to five.

Table 2. Trivalent diagrams of size six.

Table 3. Trivalent diagrams of size seven.

fixing the distinguished edge of the diagram. We proved in [27] that this correspon-
dence is one to one and we gave a counting in the form of a generating series that
agree perfectly with the number of structures generated by algorithm 3.

17

Table 4. Trivalent diagrams of size eight.

Now, if one changes the distinguished edge of a pointed trivalent diagram, the
corresponding subgroups gets conjugated. We have moreover proved that two sub-
groups in the modular group are conjugated if and only if the associated pointed
trivalent diagrams only differ by the position of their distinguished edges. It follows
that the unpointed trivalent diagrams correspond in a one to one fashion to the
conjuguacy classes of subgroups of the modular group.

We gave in [27] the exhaustive list of trivalent diagram of size up to nine. That
list was computed by hand in a non-systematic fashion. One intent of algorithm
3 of section 3.1 is to permit a retroactive validation of both those tables and the
associated generating series that we reproduce here in tables 6 and 7, they are parts
of the online encyclopedia of integer sequences [20] under the references (A005133)
and (A121350).

5. Second Application : Triangular Maps

By an (oriented) triangular map we mean a finite polyhedral structure composed
of vertex, directed edges, and oriented triangular faces with an adjacency relation
among them. Suggestively enough a directed edge, also called an arc, is bordered by
an ordered pair of vertices, we call its origin and its destination respectively, such
that triangular faces are each bordered by a cycle of three arcs whose destination of
whom coincide with the origin of their following arc in cyclic order.

The following definition is useful in grasping the adjacency relations of a com-
binatorial map but insufficient because lacking some traversal informations such as
the cyclic orientation of the faces.

18

Table 5. Trivalent diagrams of size nine.

Definition 5.1. A combinatorial pre-map Λ is given by three sets Λ0 Λ1 and Λ2

and five applications s, t : Λ1 → Λ0, `, r : Λ1 → Λ2 and .−1 : Λ1 → Λ1 satisfying the
following conditions for all elements a of Λ1,

s(a−1) = t(a) `(a−1) = r(a) (a−1)−1 = a

t(a−1) = s(a) r(a−1) = `(a) a−1 6= a

the four maps s, t, ` and r are further assumed to be surjective.

The elements of the tree sets Λ0, Λ1, and Λ2 are the vertices, the arcs (directed
edges), and faces of the combinatorial map respectively. The two applications s and
t map any arc a to its origin s(a) and destination t(a). The two applications ` and

19

D̃•3(t) = t+ t2 + 4 t3 + 8 t4 + 5 t5 + 22 t6 + 42 t7 + 40 t8 + 120 t9 + 265 t10 + 286 t11

+ 764 t12 + 1729 t13 + 2198 t14 + 5168 t15 + 12144 t16 + 17034 t17 + 37702 t18

+ 88958 t19 + 136584 t20 + 288270 t21 + 682572 t22 + 1118996 t23

+ 2306464 t24 + 5428800 t25 + 9409517 t26 + 19103988 t27 + 44701696 t28

+ 80904113 t29 + 163344502 t30 + 379249288 t31 + 711598944 t32

+ 1434840718 t33 + 3308997062 t34 + 6391673638 t35 + 12921383032 t36

+ 29611074174 t37 + 58602591708 t38 + 119001063028 t39

+ 271331133136 t40 + 547872065136 t41 + 1119204224666 t42

+ 2541384297716 t43 + 5219606253184 t44 + 10733985041978 t45

+ 24300914061436 t46 + 50635071045768 t47 + 104875736986272 t48

+ 236934212877684 t49 + 499877970985660 t50 + o(t50)

Table 6. Order fifty development of the generating series D̃•3(t) giving as
the coefficient of tn the number of connected pointed trivalent diagrams with
n edges (A005133) which is also the number of index n subgroups in the
modular group PSL2(Z).

D̃3(t) = t+ t2 + 2 t3 + 2 t4 + t5 + 8 t6 + 6 t7 + 7 t8 + 14 t9 + 27 t10 + 26 t11

+ 80 t12 + 133 t13 + 170 t14 + 348 t15 + 765 t16 + 1002 t17 + 2176 t18

+ 4682 t19 + 6931 t20 + 13740 t21 + 31085 t22 + 48652 t23 + 96682 t24

+ 217152 t25 + 362779 t26 + 707590 t27 + 1597130 t28 + 2789797 t29

+ 5449439 t30 + 12233848 t31 + 22245655 t32 + 43480188 t33

+ 97330468 t34 + 182619250 t35 + 358968639 t36 + 800299302 t37

+ 1542254973 t38 + 3051310056 t39 + 6783358130 t40 + 13362733296 t41

+ 26648120027 t42 + 59101960412 t43 + 118628268978 t44

+ 238533003938 t45 + 528281671324 t46 + 1077341937144 t47

+ 2184915316390 t48 + 4835392099548 t49 + 9997568771074 t50 + o(t50)

Table 7. Order fifty development of the generating series D̃3(t) giving as
the coefficient of tn the number of connected unpointed trivalent diagrams
with n edges (A121350) which is also the number of conjugacy classes of
index n subgroup in the modular group PSL2(Z).

r map any arc a to its left-hand face `(a) and right-hand face r(a). Finally, the
application .−1 maps any arc a to its inverse a−1 obtained by reversing its direction.

20

Definition 5.2. A morphism ϕ between two combinatorial pre-maps Λ and Λ′ is
a triple of applications ϕ0 : Λ0 → Λ′0, ϕ1 : Λ1 → Λ′1 and ϕ2 : Λ2 → Λ′2 compati-
ble to the five structure applications in the sense that the following diagrams are
commutatives.

Λ1

ϕ1
//

s,t

��

Λ′1

s,t

��

Λ0 ϕ0

// Λ′0

Λ1

ϕ1
//

`,r

��

Λ′1

`,r

��

Λ2 ϕ2

// Λ′2

Λ1

ϕ1
//

.−1

��

Λ′1

.−1

��

Λ1 ϕ1

// Λ′1

5.1. Cyclic Orientation. In a given combinatorial pre-map Λ, the inner border
of a face f is the set `−1(f) = { a ∈ Λ1 | `(a) = f } of arcs having f as their left-
hand face. A combinatorial pre-map is said to be strictly triangular if each of its
faces has exactly three arcs in its inner border. The following definition describes the
traversal information lacking to a triangular combinatorial pre-map to fully describe
a triangular map.

Definition 5.3. A (strictly) triangular map Λ is a strictly triangular combinatorial
pre-map together with a Z/3Z-action Λ1 × Z/3Z → Λ1 given by (a, n) → a + n
acting simply and transitively on the inner-border of every faces.

Definition 5.4. A morphism ϕ between two triangular maps Λ and Λ′ is a morphism
of the underlying combinatorial pre-maps with its ϕ1 component further assumed to
be equivarient with respect to the corresponding Z/3Z-actions, meaning ϕ1(a+1) =
ϕ1(a) + 1 for all arc a of Λ.

5.2. Associated Trivalent Diagram. The adjacency diagram of a triangular map
Λ is the trivalent diagram, denoted Λadj, which sets of white vertices, black vertices
and edges are the following,

Λadj
◦ = {aa}a∈Λ∗1

Λadj
• = {bf}f∈Λ2 Λadj

− = {ca}a∈Λ1

where Λ∗1 is the set of undirected edges of Λ, and which structure applications

∂◦ : Λadj
− → Λadj

◦ , ∂• : Λadj
− → Λadj

• and group actions +◦,+• : Λadj
− × Z → Λadj

− are
defined by the following relations,

∂◦(ca) = aπ(a) ca +◦ 1 = ca−1

∂•(ca) = b`(a) ca +• 1 = ca+1

This operation is functorial for it is easily extended to morphisms of triangular
maps by the following process. To any morphism ϕ between two triangular maps Λ
and Λ′, we associate a morphism denoted ϕadj between the corresponding adjacency
diagrams Λadj and (Λ′)adj defined by the following relations,

ϕadj◦ (aa) = a′ϕ∗1(a) ϕadj• (bf) = b′ϕ2(f) ϕadj− (ca) = c′ϕ1(a)

Functoriality should be obvious by careful inspection.

The .adj functor we get by what precedes is full and faithful, but not essentially
surjective because trivalent diagrams we get as the adjacency diagram of a trivalent

21

Table 8. The three triangular maps with two faces.

map Λ have no univalent white vertex nor univalent black vertex. Let’s call regular a
trivalent diagram having no univalent vertex, the .adj functor is essentially surjective
on the full subcategory of regular trivalent diagrams, and so,

Theorem 5.1. The .adj functor realize an equivalence of categories between the
category of triangular maps and the full subcategory of regular trivalent diagrams.

Demonstration. To prove this theorem we shall describe a reconstruction opera-
tion, which associate to any regular trivalent diagram Γ a triangular map denoted
Γmap, with functorial property and such that for all regular trivalent diagrams Γ and
triangular maps Λ, one have two natural reciprocity isomorphisms as follows,

(Γmap)adj '
nat.

Γ and (Λadj)map '
nat.

Λ

We shall first introduce some notations. Let’s call ΨΓ the subgroup of ΦΓ generated
by the elementary move T (cf. section 4.2) and lets call π : Γ− → Γ−/ΨΓ the natural
projection. The application induced between Γ−/ΨΓ and Γ′−/ΨΓ by an equivariant
map ϕ : Γ− → Γ′− will be denoted ϕΨ. The sets of vertices, edges and faces of the
reconstructed map are the following,

Γmap0 = { dx }x∈Γ−/ΨΓ
Γmap1 = { ea }a∈Γ− Γmap2 = { fy }y∈Γ•

The five structure maps s, t : Γmap1 → Γmap0 , r, ` : Γmap1 → Γmap2 and .−1 : Γmap1 →
Γmap1 and the group action + : Γmap1 ×Z→ Γmap1 of the reconstructed map are given
by the following equations,

s(ea) = dπ(a) `(ea) = f∂•(a) e−1
a = ea+◦1

t(ea) = dπ(a+◦1) r(ea) = f∂•(a−1) ea + 1 = ea+•1

The construction then extends to morphisms in the sense that any morphism ϕ
between to regular trivalent diagrams Γ and Γ′ induces a morphism ϕmap between the
two reconstructed maps Γmap and (Γ′)map which three components are the following,

ϕmap0 (dx) = dϕ−,Ψ(x) ϕmap1 (ea) = eϕ−(a) ϕmap2 (fy) = fϕ•(y)

The fonctoriality of the reconstruction operation and the two reciprocity isomor-
phisms should be clear by careful inspection. End of the demonstration. �

Remark. The content of the above theorem is nothing but a specific notion of
Poincaré duality.

5.3. Exhaustive Generation of Triangular Maps. To adapt the generator algo-
rithm to produce only regular pointed trivalent diagrams and thus pointed triangular
maps, it suffice to remove the call to algorithms 8 and 7 from line 6 and 7 of the
Dispatch procedure (algorithm 4) and the lines 2 to 5 from algorithm 3. Those

22

Table 9. The eleven triangular maps with four faces.

two removals preserve the CAT property, we thus get this way a constant amortized
time generator for pointed triangular maps, as announced.

The tables 8 to 11 shows exhaustive lists of unpointed triangular maps produced
from the output of the generator algorithm. Those tables arise from a two steeps
process. First, generate the full list of pointed regular diagrams of a given size,
then, remove the duplicated diagrams from the list one obtain by forgetting the
base point. An easy and efficient way to do that is to put a linear order on the set of
pointed trivalent diagrams of a given size, then to remove from the list the trivalent
diagrams that are not minimal in their conjugacy class (two pointed diagrams being
conjugated by definition, when they differ only by the position of their base point).

The interpretation of the drawings of tables 8 to 11 deserves some explanations.
For that purpose let’s adopt a geographical terminology. Forgetting for a moment
the surrounding circle and the dashed lines of the drawings, the triangular regions
are called the countries of the maps, the plain lines are the boundaries of their
adjacent countries. One can distinguish the boundaries that are bordering two
distinct countries (the inner boundaries) from those that are bordering a single
country (the outer boundaries). The roads of the maps are symbolized by dashed
lines connecting, in a two by two fashion, the outer boundaries of the maps.

To produce them, we have considered the planar rooted binary tree of the depth-
first traversal of algorithm 1. As already noted, this algorithm provides natural
cuttings for the associated trivalent diagrams. Those cuttings arise as what we
previously called backward connections. In contrast, the edges of the traversal tree
correspond to what we previously called forward connections. In the graphical repre-
sentation, we use an embedding of the produced triangulated polygon in the Poincaré
disc model of the hyperbolic plane as it seems the natural setting for generic non-
overlapping triangular tilings. The surrounding circle around each figure is of course
irrelevant to the structures.

The tables 12 and 13 give the number of pointed triangular maps and unpointed
triangular maps in the form of generating series. They are also part of [20] under
the references (A062980) and (A129114). Their computation is very similar to that

23

Table 10. The eighty one triangular maps with six faces (first part).

24

Table 11. The eighty one triangular maps with six faces (last part, contin-
ued from table 10).

of tables 6 and 7 which is explained in detail in [27]. We shall explain in [26] in a
unified fashion how one can compute generating series for pointed and unpointed
unlabeled maps of various kind and in [25] the unexpected relation of this sequence
to the asymptotcis of the Airy function.

As another byproduct of the the exhaustive list obtained from the generating
algorithm, one can get the precise number of pointed and unpointed triangular
map having a given genus and a given number of triangular faces. Tables 14 and
15 summarize those results for small number of faces. Recently, M. Krikun [12]
kindly communicated us recurrence relations satisfied by the entries of table 14
which he obtained by a clever recursive decomposition of pointed triangular maps.
Those recurrence relations make it possible to evaluate easily those numbers without
running the generator algorithm.

Some lines of those two tables were previously known. For instance, the first line
of table 14 is the number of spherical rooted triangular maps by the number of its
faces [14]. The first line of table 15 is its unpointed counterpart. It is computed by
impressive closed formulae in a recent paper by Liskovets, Gao and Wormald [24].

25

T̃ •3 (t) = 5 t6 + 60 t12 + 1105 t18 + 27120 t24 + 828250 t30 + 30220800 t36

+ 1282031525 t42 + 61999046400 t48 + 3366961243750 t54

+ 202903221120000 t60 + 13437880555850250 t66 + 970217083619328000 t72

+ 75849500508999712500 t78 + 6383483988812390400000 t84

+ 575440151532675686278125 t90 + 55318762960656722780160000 t96

+ 5649301494178851172304968750 t102

+ 610768380520654474629120000000 t108

+ 69692599846542054607811528918750 t114

+ 8370071726919812448859648819200000 t120 + o(t120)

Table 12. Development of the generating series T̃ •3 (t), up to order a
hundred twenty. It gives as the coefficient of t6n the number of connected
unpointed unlabeled triangular maps with n arcs, thus n/2 undirected edges
and n/3 triangular faces (A062980). If we note an that coefficient, the
recurrence is as follows : a1 = 5 and for n ≥ 1, an+1 = (6n + 6) an +∑n−1

k=1 ak an−k.

T̃3(t) = 3 t6 + 11 t12 + 81 t18 + 1228 t24 + 28174 t30 + 843186 t36 + 30551755 t42

+ 1291861997 t48 + 62352938720 t54 + 3381736322813 t60

+ 203604398647922 t66 + 13475238697911184 t72 + 972429507963453210 t78

+ 75993857157285258473 t84 + 6393779463050776636807 t90

+ 576237114190853665462712 t96 + 55385308766655472416299110 t102

+ 5655262782600929403228668176 t108

+ 611338595145132827847686253456 t114

+ 69750597724332100283681465962492 t120 + o(t120)

Table 13. Order a hundred twenty development of the generating series
T̃3(t) giving the number of connected unpointed unlabeled triangular maps
with n arcs, thus n/2 undirected edges and n/3 triangular faces (A129114).

The diagonal terms of those two tables also received close attention. For instance
in [9] Harer and Zagier computed the Euler-Wall characteristic of the maping class
group of once pointed genus g closed oriented surfaces by a remarkable combinatorial
reduction of the problem in which pointed combinatorial maps with one vertex are
counted by genus yielding the diagonal sequence of the first table 1, 105, 50050,
56581525, The diagonal sequence of the second table : 1, 9, 172, 1349005,
gives the number of unpointed triangular maps of genus g with only one vertex. It
has been studied at depth in the article [13] by A. Vdovina and R. Bacher.

26

2 4 6 8 10 12 14
0 4 32 336 4096 54912 786432 11824384
1 1 28 664 14912 326496 7048192 150820608
2 0 0 105 8112 396792 15663360 544475232
3 0 0 0 0 50050 6722816 518329776
4 0 0 0 0 0 0 56581525

Table 14. The number of pointed triangular maps by genus (horizontally)
and number of faces (vertically).

2 4 6 8 10 12 14
0 2 6 26 191 1904 22078 282388
1 1 5 46 669 11096 196888 3596104
2 0 0 9 368 13448 436640 12974156
3 0 0 0 0 1726 187580 12350102
4 0 0 0 0 0 0 1349005

Table 15. The number of unpointed triangular maps by genus (horizon-
tally) and number of faces (vertically).

6. Concluding Remarks and Prespectives

The generating algorithm presented in this paper (section 3) may receive trivial
adaptations to generate wider classes of diagrams and combinatorial maps, possibly
with prescribed degree lists for vertices or faces. Basically, it can be simply gener-
alized to produce any connected pair of permutations with prescribed cyclic types,
up to simultaneous conjugacy.

Another way to extends the study, would be to modify the Dispatch procedure
(algorithm 4 of section 3) to generate not an exhaustive cover of the partial cases, but
instead a single case of them picked at random. This would results, in a fairly strait
forward fashion, in a random sampler algorithm of the corresponding combinatorial
structures instead of an exhaustive generator. The difficulty there, is to precompute
precise conditional probability tables in order to control the probability distribution
of the generated structures by bayesian techniques.

Such tables of conditional probabilities could be computed with the help of gen-
erating series thechniques, namely by following the particular recursive structure of
the algorithm and translating this recursive structure in functional equations on the
generating series. This appeal for a further investigation and will be dealt with in a
subsequent paper.

27

7. Acknowledgements

I am grateful to professors D. Bar Nathan, P. Flajolet, F. Hivert, M. Huttner, M.
Krikun, M. Petitot, B. Salvy, G. Shaeffer, N. Thiery, and D. Zvonkine for usefull
discussions and warm encouragements.

References

[1] R. Nedela A. Mednykh. Enumeration of unrooted maps of a given genus. J. Comb. Theory,
Ser. B, 96(5):706–729, 2006.

[2] D. Bar-Nathan. On associators and the grothendieck-teichmuller group I. Selecta Mathematica,
New Series, 4:183–212, 1998.

[3] R. Cori. Un code pour les graphes planaires et ses applications, volume 27 of Astérisque. Société
Mathématique de France, 1975.

[4] V. G. Drinfel’d. Quasi-hopf algebras. Leningrad Math. J., 1:1419–1457, 1990.
[5] V. G. Drinfel’d. On quasitriangular quasi-hopf algebras and a group closely connected with

Gal(Q̄/Q). Leningrad Math. J., 2:829–860, 1991.
[6] P. Leroux F. Bergeron, G. Labelle. Théorie des espèces et combinatoire des structures arbores-

centes. LACIM Montréal, 1994.
[7] P. Leroux F. Bergeron, G. Labelle. Combinatorial Species and Tree-like Structures. Cambridge

University Press, 1998. English edition of [6].
[8] A. Grothendieck. Esquisse d’un programme. In P. Lochak L. Schneps, editor, Geometric Galois

Actions Vol. I, number 242 in London Math. Soc. Lecture Notes, pages 5–48. Cambridge Univ.
Press, 1997.

[9] D. Zagier J. Harer. The euler characteristic of the moduli space of curves. Invent. Math.,
85:457–486, 1986.

[10] A. Joyal. Une théorie combinatoire des séries formelles. Adv. Math., 42:1–82, 1981.
[11] M. Kontsevich. Intersection theory on the moduli space of curves and the matrix airy function.

Commun. Math. Phys., 147:1–23, 1992.
[12] M. Krikun. Enumeration of triangulations by genus (incomplete draft). Private communica-

tion, 2007.
[13] A. Vdovina R. Bacher. Counting 1-vertex triangulations of oriented surfaces. Discrete Math.,

246(1-3):13–27, 2002.
[14] P. J. Schellenberg R. C. Mullin, E. Nemeth. The enumeration of almost cubic maps. In

R. C. Mullin et al., editor, Proceedings of the Louisiana Conference on Combinatorics, vol-
ume 1 of Graph Theory and Computer Science, pages 281–295, 1970.

[15] A. Mach̀ı R. Cori. Maps, hypermaps and their automorphisms : a survey I, II, III. Expos.
Math., 10(5):403–427, 429–447, 449–467, 1992.

[16] A. Douady R. Douady. Algèbre et théories galoisiennes. Cassini, France, 2003.
[17] L. Schneps. Dessins d’enfants on the Riemann sphere. In P. Lochak L. Schneps, editor, The

Grothendieck Theory of Dessins d’Enfant, number 200 in London Math. Soc. Lecture Notes,
pages 5–48. Cambridge Univ. Press, 1994.

[18] J.P. Serre. Trees. Springer Monographs in Math. Springer-Verlag, 2003.
[19] A.K. Zvonkine S.K. Lando. Graphs on Surfaces and Their Applications. Springer-Verlag, 2004.
[20] N. J. A. Sloane. The on-line encyclopedia of integer sequences. Available on the net at :

http://www.research.att.com/∼njas/sequences/, 2005.
[21] A. B. Lehman T. R. S. Walsh. Counting rooted maps by genus. J. Comb. Th., 13:122–141

and 192–218, 1972.
[22] A. B. Lehman T. R. S. Walsh. Counting rooted maps by genus III. J. Comb. Th., 18:222–259,

1975.
[23] W. Thurston. Three-dimensional manifolds, kleinian groups and hyperbolic geometry. Bull.

Amer. Math. Soc., New Series, 6:357–381, 1982.
28

[24] N. Wormald V. A. Liskovets, Z. Gao. Enumeration of unrooted odd-valent regular planar
maps. To appear, 2005.

[25] S. A. Vidal. Asymptotics of the airy function and triangular maps decomposition. In prepa-
ration.

[26] S. A. Vidal. Multiparametric enumeration of unrooted combinatorial maps. In preparation.
[27] S. A. Vidal. Sur la classification et le dénombrement des sous-groupes du groupe modu-

laire et de leurs classes de conjugaison. Pub. IRMA, Lille, 66(II):1–35, 2006. Preprint :
http://arxiv.org/abs/math.CO/0702223.

[28] T. R. S. Walsh. Combinatorial Enumeration of Non-Planar Maps. PhD thesis, Univ. of
Toronto, 1971.

[29] T. R. S. Walsh. Generating nonisomorphic maps without storing them. SIAM Journal on
Algebraic and Discrete Methods, 4(2):161–178, 1983.

29

	0. Introduction
	0.1. Motivations
	0.2. Problem Statement
	0.3. What is a CAT Generator

	1. Trivalent Diagrams
	1.1. Pointed Trivalent Diagrams
	1.2. Permutational Representation
	1.3. Labeled vs. Unlabeled Diagrams

	2. Characteristic Labeling
	2.1. Implementation
	2.2. Adequacy

	3. Generating Algorithm
	3.1. Implementation
	3.2. Adequacy

	4. First Application : Modular Group
	4.1. Displacements Groups
	4.2. Unrooted Planar Binary Trees
	4.3. Classification Principle

	5. Second Application : Triangular Maps
	5.1. Cyclic Orientation
	5.2. Associated Trivalent Diagram
	5.3. Exhaustive Generation of Triangular Maps

	6. Concluding Remarks and Prespectives
	7. Acknowledgements
	References

