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Based on Dissections
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Abstract— We present a novel technique for encoding and
decoding constant weight binary codes that uses a geometric
interpretation of the codebook. Our technique is based on
embedding the codebook in a Euclidean space of dimension equal
to the weight of the code. The encoder and decoder mappings are
then interpreted as a bijection between a certain hyper-rectangle
and a polytope in this Euclidean space. An inductive dissection
algorithm is developed for constructing such a bijection. We prove
that the algorithm is correct and then analyze its complexity.
The complexity depends on the weight of the code, rather than
on the block length as in other algorithms. This approach is
advantageous when the weight is smaller than the square root
of the block length.

Index Terms— Constant weight codes, encoding algorithms,
dissections, polyhedral dissections, bijections, mappings, Dehn
invariant.

I. INTRODUCTION

We consider the problem of encoding and decoding binary
codes of constant Hamming weight w and block length n.
Such codes are useful in a variety of applications: a few
examples are fault-tolerant circuit design and computing [15],
pattern generation for circuit testing [24], identification cod-
ing [26] and optical overlay networks [25].

The problem of interest is that of designing the encoder and
decoder, i.e., the problem of mapping all binary (information)
vectors of a given length onto a subset of length-n vectors
of constant Hamming weight w in a one-to-one manner. In
this work, we propose a novel geometric method in which
information and code vectors are represented by vectors in w-
dimensional Euclidean space, covering polytopes for the two
sets are identified, and a one-to-one mapping is established by
dissecting the covering polytopes in a specific manner. This
approach results in an invertible integer-to-integer mapping,
thereby ensuring unique decodability. The proposed algorithm
has a natural recursive structure, and an inductive proof is
given for unique decodability. The issue of efficient encoding
and decoding is also addressed. We show that the proposed
algorithm has complexity O(w2), where w is the weight of
the codeword, independent of the codeword length.

Dissections are of considerable interest in geometry, partly
as a source of puzzles, but more importantly because they are
intrinsic to the notion of volume. Of the 23 problems posed by
David Hilbert at the International Congress of Mathematicians
in 1900, the third problem dealt with dissections. Hilbert asked
for a proof that there are two tetrahedra of the same volume
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with the property that it is impossible to dissect one into a
finite number of pieces that can be rearranged to give the
other, i.e., that the two tetrahedra are not equidecomposable.
The problem was immediately solved by Dehn [7]. In 1965,
after 20 years of effort, Sydler [23] completed Dehn’s work.
The Dehn-Sydler theorem states that a necessary and sufficient
condition for two polyhedra to be equidecomposable is that
they have the same volume and the same Dehn invariant. This
invariant is a certain function of the edge-lengths and dihedral
angles of the polyhedron. An analogous theorem holds in
four dimensions (Jessen [11]), but in higher dimensions it is
known only that equality of the Dehn invariants is a necessary
condition. In two dimensions any two polygons of equal area
are equidecomposable, a result due to Bolyai and Gerwein (see
Boltianskii [1]). Among other books dealing with the classical
dissection problem in two and three dimensions we mention
in particular Frederickson [8], Lindgren [13] and Sah [19].

The remainder of the paper is organized as follows. We
provide background and review relevant previous work in Sec-
tion II. Section III describes our geometric approach and gives
some low-dimensional examples. Encoding and decoding al-
gorithms are then given in Section IV, and the correctness of
the algorithms is established. Section V summarizes the paper.

II. BACKGROUND AND PREVIOUS METHODS

Let us denote the Hamming weight of a length-n binary
sequence s := (s1, s2, . . . , sn) by w(s) := |{si : si = 1}|,
where | · | is the cardinality of a set.

Definition 1: An (n,w) constant weight binary code C is
a set of length-n sequences such that any sequence s ∈ C has
weight w(s) = w.

If C is an (n,w) constant weight code, then its rate R :=
(1/n) log2 |C| ≤ R(n,w) := (1/n) log2

(
n
w

)
. For fixed β and

w = bβnc, we have

R := lim
n→∞

R(n,w) = h(β) , (1)

where h(β) := −β log2(β) − (1 − β) log2(1 − β) is the
entropy function. Thus R is maximized when β = 1/2, i.e.,
the asymptotic rate is highest when the code is balanced.

The (asymptotic) efficiency of a code relative to an infinite-
length code with the same weight to length ratio w/n, given by
η := R/R, can be written as η = η1η where η1 := R/R(n,w)
and η := R(n,w)/R. The first term, η1, is the efficiency of
a particular code relative to the best possible code with the
same length and weight; the second term, η, is the efficiency
of the best finite-length code relative to the best infinite-length
code.
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Fig. 1. Efficiency η as a function of block length when β = 1/2

From Stirling’s formula we have

η ≈ 1− log2(2πnβ(1− β))
2nh(β)

. (2)

A plot of η as a function of n is given in Fig. 1 for β = 1/2.
The slow convergence visible here is the reason one needs
codes with large block lengths.

Comprehensive tables and construction techniques for bi-
nary constant weight codes can be found in [2] and the
references therein. However, the problem of finding efficient
encoding and decoding algorithms has received considerably
less attention. We briefly discuss two previous methods that
are relevant to our work. The first, a general purpose technique
based on the idea of lexicographic ordering and enumeration
of codewords in a codebook (Schalkwijk [20], Cover [3]) is an
example of ranking/unranking algorithms that are well studied
in the combinatorial literature (Nijenhuis and Wilf [14]).
We refer to this as the enumerative approach. The second
(Knuth [12]) is a special-purpose, highly efficient technique
that works for balanced codes, i.e., when w = b(n/2)c, and
is referred to as the complementation method.

The enumerative approach orders the codewords lexico-
graphically (with respect to the partial order defined by 0 < 1),
as in a dictionary. The encoder computes the codeword from
its dictionary index, and the decoder computes the dictionary
index from the codeword. The method is effective because
there is a simple formula involving binomial coefficients
for computing the lexicographic index of a codeword. The
resulting code is fully efficient in the sense that η1 = 1.
However, this method requires the computation of the exact
values of binomial coefficients

(
n
k

)
, and requires registers of

length O(n), which limits its usefulness.
An alternative is to use arithmetic coding (Rissanen and

Langdon [18], Rissanen [17]; see also Cover and Thomas [4,
§13.3]). Arithmetic coding is an efficient variable length source
coding technique for finite alphabet sources. Given a source
alphabet and a simple probability model for sequences x,
let p(x) and F (x) denote the probability distribution and
cumulative distribution function, respectively. An arithmetic
encoder represents x by a number in the interval (F (x) −
p(x), F (x)]. The implementation of such a coder can also

run into problems with very long registers, but elegant finite-
length implementations are known and are widely used (Wit-
ten, Neal and Cleary [28]). For constant weight codes, the
idea is to reverse the roles of encoder and decoder, i.e., to
use an arithmetic decoder as an encoder and an arithmetic
encoder as a constant weight decoder (Ramabadran [16]).
Ramabadran gives an efficient algorithm based on an adaptive
probability model, in the sense that the probability that the
incoming bit is a 1 depends on the number of 1’s that have
already occurred. This approach successfully overcomes the
finite-register-length constraints associated with computing the
binomial coefficients and the resulting efficiency is often very
high, in many cases the loss of information being at most one
bit. The encoding complexity of the method is O(n).

Knuth’s complementation method [12] relies on the key
observation that if the bits of a length-n binary sequence are
complemented sequentially, starting from the beginning, there
must be a point at which the weight is equal to bn/2c. Given
the transformed sequence, it is possible to recover the original
sequence by specifying how many bits were complemented
(or the weight of the original sequence). This information is
provided by a (relatively short) constant weight check string,
and the resulting code consists of the transformed sequence
followed by the constant weight check bits. In a series of
papers, Bose and colleagues extended Knuth’s method in
various ways, and determined the limits of this approach
(see [29] and references therein). The method is simple and
efficient, and even though the overall complexity is O(n), for
n = 100 we found it to be eight times as fast as the method
based on arithmetic codes. However, the method only works
for balanced codes, which restricts its applicability.

The two techniques that we have described above both have
complexity that depends on the length n of the codewords. In
contrast, the complexity of our algorithm depends only on
the weight w, which makes it more suitable for codes with
relatively low weight.

As a final piece of background information, we define what
we mean by a dissection. We assume the reader is familiar with
the terminology of polytopes (see for example Coxeter [5],
Grünbaum [9], Ziegler [30]). Two polytopes P and Q in
Rw are said to be congruent if Q can be obtained from P
by a translation, a rotation and possibly a reflection in a
hyperplane. Two polytopes P and Q in Rw are said to be
equidecomposable if they can be decomposed into finite sets of
polytopes P1, . . . , Pt and Q1, . . . , Qt , respectively, for some
positive integer t, such that Pi and Qi are congruent for all
i = 1, . . . , t (see Frederickson [8]). That is, P is the disjoint
union of the polytopes Pi, and similarly for Q. If this is the
case then we say that P can be dissected to give Q (and that
Q can be dissected to give P ).

Note that we allow reflections in the dissection: there are
at least four reasons for doing so. (i) It makes no difference
to the existence of the dissection, since if two polytopes are
equidecomposable using reflections they are also equidecom-
posable without using reflections. This is a classical theorem
in two and three dimensions [8, Chap. 20] and the proof is
easily generalized to higher dimensions. (ii) When studying
congruences, it is simpler not to have to worry about whether
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the determinant of the orthogonal matrix has determinant +1
or −1. (iii) Allowing reflections often reduces the number of
pieces. (iv) Since our dissections are mostly in dimensions
greater than three, the question of “physical realizability” is
usually irrelevant. Note also that we do not require that the Pi

can be obtained from P by a succession of cuts along infinite
hyperplanes. All we require is that P be a disjoint union of
the Pi.

One final technical point: when defining dissections using
coordinates, as in Eqns. (3), (4) below, we use a mixture of
≤ and < signs in order to have unambiguously defined maps.
This is essential for our application. On the other hand, it
means that the “pieces” in the dissection may be missing
certain boundaries. It should therefore be understood that if
we were focusing on the dissections themselves, we would
replace each piece by its topological closure.

For further information about dissections see the books
mentioned in Section I.

III. THE GEOMETRIC INTERPRETATION

In this section, we first consider the problem of encoding
and decoding a binary constant weight code of weight w = 2
and arbitrary length n, i.e., where there are only two bits
set to 1 in any codeword. Our approach is based on the
fact that vectors of weight two can be represented as points
in two-dimensional Euclidean space, and can be scaled, or
normalized, to lie in a right triangle. This approach is then
extended, first to weight w = 3, and then to arbitrary weights
w.

For any weight w and block length n, let Cw denote the
set of all weight w vectors, with |Cw| =

(
n
w

)
. Our codebook

C will be a subset of Cw, and will be equal to Cw for a
fully efficient code, i.e., when η1 = 1. We will represent a
codeword by the w-tuple y′ := (y′1, y

′
2, . . . , y

′
w), 1 ≤ y′1 <

y′2 < . . . < y′w ≤ n, where y′i is the position of the ith
1 in the codeword, counting from the left. If we normalize
these indices y′i by dividing them by n, the codebook C
becomes a discrete subset of the polytope Tw, the convex hull
of the points 0w, 0w−11, 0w−211, . . . , 01w−1, 1w. T2 is a right
triangle, T3 is a right tetrahedron and in general we will call
Tw a unit orthoscheme1.

The set of inputs to the encoder will be denoted by Rw:
we assume that this consists of w-tuples y := (y1, y2, . . . , yw)
which range over a w-dimensional hyper-rectangle or “brick”.
After normalization by dividing the yi by n, we may assume
that the input vector is a point in the hyper-rectangle or “brick”

Bw := [0, 1)× [1− 1/2, 1)× . . .× [1− 1/w, 1) .

We will use x := (x1, x2, . . . , xw) = y/n ∈ Bw and
x′ := (x′1, x

′
2, . . . , x

′
w) = y′/n ∈ Tw to denote the normal-

ized versions of the input vector and codeword, respectively,
defined by xi := yi/n and x′i := y′i/n for i = 1, . . . , w.

The basic idea underlying our approach is to find a dis-
section of Bw that gives Tw. The encoding and decoding

1An orthoscheme is a w-dimensional simplex having an edge path consist-
ing of w totally orthogonal vectors (Coxeter [5]). In a unit orthoscheme these
edges all have length 1.
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Fig. 2. Two ways to dissect rectangle B2 to give triangle T2. Piece 1 may
be rotated about center into its new position, or reflected in main diagonal
and translated downwards.

algorithms are obtained by tracking how the points y and y′

move during the dissection.
The volume of Bw is 1× 1

2×
1
3×· · ·×

1
w = 1

w! . This is also
the volume of Tw, as the following argument shows. Classify
the points x = (x1, . . . , xw) in the unit cube [0, 1]w into w!
regions according to their order when sorted; the regions are
congruent, so all have volume 1/w!, and the region where the
xi are in nondecreasing order is Tw.

We now return to the case w = 2. There are many ways
to dissect the rectangle B2 into the right triangle T2. We
will consider two such dissections, both two-piece dissections
based on Fig. 2.

In the first dissection, the triangular piece marked 1 in Fig. 2
is rotated clockwise about the center of the square until it
reaches the position shown on the right in Fig. 2. In the second
dissection, the piece marked 1 is first reflected in the main
diagonal of the square and then translated downwards until
it reaches the position shown on the right in Fig. 2. In both
dissections the piece marked 2 is fixed.

The two dissections can be specified in terms of coordi-
nates2 as follows. For the first dissection, we set{

(x′1, x
′
2) := (x1, x2) if x1 < x2

(x′1, x
′
2) := (1− x1, 1− x2) if x1 ≥ x2

(3)

and for the second, we set{
(x′1, x

′
2) := (x1, x2) if x1 < x2

(x′1, x
′
2) := (x2 − 1

2 , x1 − 1
2 ) if x1 ≥ x2

(4)

The first dissection involves only a rotation, but seems
harder to generalize to higher dimensions. The second one
is the one we will generalize; it uses a reflection, but as
mentioned at the end of Section II, this is permitted by the
definition of a dissection.

We next illustrate how these dissections can be converted
into encoding algorithms for constant weight (weight 2) binary
codes. Again there may be several solutions, and the best
algorithm may depend on arithmetic properties of n (such as
its parity). We work now with the unnormalized sets R2 and
C2. In each case the output is a weight-2 binary vector with
1’s in positions y′1 and y′2.

2For our use of a mixture of ≤ and < signs, see the remark at the end of
Section II.
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A. First Dissection, Algorithm 1

1) The input is an information vector (y1, y2) ∈ R2 with
1 ≤ y1 ≤ n− 1 and dn/2e+ 1 ≤ y2 ≤ n.

2) If y1 < y2, we set y′1 = y1, y′2 = y2, otherwise we set
y′1 = n− y1 and y′2 = n− y2 + 1.

For n even, this algorithm generates all possible n(n − 1)/2
codewords. For n odd it generates only (n−1)2/2 codewords,
leading to a slight inefficiency, and the following algorithm is
to be preferred.

B. First Dissection, Algorithm 2

1) The input is an information vector (y1, y2) ∈ R2 with
1 ≤ y1 ≤ n, d(n+ 1)/2e+ 1 ≤ y2 ≤ n.

2) If y1 < y2, we set y′1 = y1, y′2 = y2, otherwise we set
y′1 = n− y1 + 1, y′2 = n− y2 + 2.

For n odd, this algorithm generates all n(n−1)/2 codewords,
but for n even it generates only n(n− 1)/2 codewords, again
leading to a slight inefficiency.

C. Second Dissection

1) The input is an information vector (y1, y2) ∈ R2 with
1 ≤ y1 ≤ n− 1 and dn/2e+ 1 ≤ y2 ≤ n.

2) If y1 < y2, we set y′1 = y1, y′2 = y2, otherwise we set
y′1 = y2 − dn/2e, y′2 = y1 − dn/2e+ 1.

For n even, this algorithm generates all n(n−1)/2 codewords,
but for n odd it generates only (n−1)2/2 codewords, leading
to a slight inefficiency. There is a similar algorithm, not given
here, which is better when n is odd.

Note that only one test is required in any of the encoding
algorithms. The mappings are invertible, with obvious decod-
ing algorithms corresponding to the inverse mappings from C2
to R2

We now extend this method to weight w = 3. Fortu-
nately, the Dehn invariants for both the brick B3 and our
unit orthoscheme T3, which is the tetrahedron3 with vertices
(0, 0, 0), (0, 0, 1), (0, 1, 1) and (1, 1, 1), are zero (since in both
cases all dihedral angles are rational multiples of π), and so
by the Dehn-Sydler theorem the polyhedra B3 and T3 are
equidecomposable. As already mentioned in Section I, the
Dehn-Sydler theorem applies only in three dimensions. But
it will follow from the algorithm given in the next section that
Bw and Tw are equidecomposable in all dimensions.

We will continue to describe the encoding step (the map
from Bw to Tw) first. We will give an inductive dissection
(see Fig. 3), transforming B3 to T3 in two steps, effectively
reducing the dimension by one at each step. In the first step,
the brick B3 is dissected into a triangular prism (the product
of a right triangle, T2, and an interval), and in the second step
this triangular prism is dissected into the tetrahedron T3. Note
that the first step has essentially been solved by the dissection
given in Eqn. (4).

For the second step we use a four-piece dissection of the
triangular prism to the tetrahedron T3. This dissection, shown

3To solve Hilbert’s third problem, Dehn showed that this tetrahedron is not
equidecomposable with a regular tetrahedron of the same volume.

Fig. 3. Transformation from tetrahedron to rectangular prism.

1X

2X

3X

Fig. 4. Four-piece dissection of tetrahedron to triangular prism. Pieces 2 and
3 are reflected.

with the tetrahedron and prism superimposed in Fig. 4, appears
to be new.

There is a well-known dissection of the same pair of
polyhedra that was first published by Hill in 1896 [10]. This
also uses four pieces, and is discussed in several references:
see Boltianskii [1, p. 99], Cromwell [6, p. 47], Frederickson [8,
Fig. 20.4], Sydler [22], Wells [27, p. 251]. However, Hill’s
dissection seems harder to generalize to higher dimensions.
Hill’s dissection does have the advantage over ours that it can
be accomplished purely by translations and rotations, whereas
in our dissection two of the pieces (pieces labeled 2 and 3 in
Fig. 4) are also reflected. However, as mentioned at the end of
Section II, this is permitted by the definition of a dissection,
and is not a drawback for our application. 4 Apart from this,
our dissection is simpler than Hill’s, in the sense that his
dissection requires a cut along a skew plane (x1−x3 = 1/3),
whereas all our cuts are parallel to coordinate axes.

To obtain the four pieces shown in Fig. 4, we first make two
horizontal cuts along the planes x3 = 1

3 and x3 = 2
3 , dividing

the tetrahedron into three slices. We then cut the middle slice
into two by a vertical cut along the plane x2 = 1

2 .
There appears to be a tradition in geometry books that

discuss dissections of not giving coordinates for the pieces.
To an engineer this seems unsatisfactory, and so in Table I
we list the vertices of the four pieces in our dissection. Piece
1 has four vertices, while the other three pieces each have
six vertices. (In the Hill dissection the numbers of vertices of
the four pieces are 4, 5, 6 and 6 respectively.) Given these
coordinates, it is not difficult to verify that the four pieces can

4This dissection would also work if piece 2 was merely translated and
rotated, not reflected, but the reflection is required by our general algorithm.
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be reassembled to form the triangular prism, as indicated in
Fig. 4. As already remarked, pieces 2 and 3 are also reflected
(or “turned over” in a fourth dimension). The correctness of
the dissection also follows from the alternative description of
this dissection given below.

Piece Coordinates

1 [0, 0, 0], [0, 0, 1/3], [0, 1/3, 1/3], [1/3, 1/3, 1/3].

2 [0, 0, 1/3], [0, 1/3, 1/3], [1/3, 1/3, 1/3],

[0, 0, 2/3], [0, 1/3, 2/3], [1/3, 1/3, 2/3].

3 [0, 1/3, 1/3], [1/3, 1/3, 1/3], [0, 1/3, 2/3],

[0, 2/3, 2/3], [2/3, 2/3, 2/3], [1/3, 1/3, 2/3].

4 [0, 0, 2/3], [0, 2/3, 2/3], [2/3, 2/3, 2/3],

[0, 0, 1], [0, 1, 1], [1, 1, 1].

TABLE I
COORDINATES OF VERTICES OF PIECES IN DISSECTION OF TETRAHEDRON

SHOWN IN FIG. 4.

The dissection shown in Fig. 4 can be described alge-
braically as follows. We describe it in the more logical
direction, going from the triangular prism to the tetrahedron
since this is what we will generalize to higher dimensions
in the next section. The input is a vector (x1, x2, x3) with
0 ≤ x1 ≤ x2 < 1, 2

3 ≤ x3 < 1; the output is a vector
(x′1, x

′
2, x
′
3) with 0 ≤ x′1 ≤ x′2 ≤ x′3 < 1, given by

(x′1, x
′
2, x
′
3) =

(x1, x2, x3) if x1 ≤ x2 < x3

(x1 − 1
3 , x3 − 1

3 , x2 − 1
3 ) if 1

3 ≤ x1 < x3 ≤ x2

(x3 − 2
3 , x2 − 2

3 , x1 + 1
3 ) if x1 ≤ 1

3 < x3 ≤ x2

(x3 − 2
3 , x1 − 2

3 , x2 − 2
3 ) if x3 ≤ x1 ≤ x2

(5)

The four cases in Eqn. (5), after being transformed, corre-
spond to the pieces labeled 4, 3, 2, 1 respectively in Fig. 4. We
see from Eqn. (5) that in the second and third cases the linear
transformation has determinant −1, indicating that these two
pieces must be reflected.

Since it is hard to visualize dissections in dimensions greater
than three, we give a schematic representation of the above
dissection that avoids drawing polyhedra. Fig. 5 shows a
representation of the transformation from the triangular prism
to the tetrahedron T3, equivalent to that given in Eqn. (5). The
steps shown in Fig. 5 may be referred to as “cut and paste”
operations, because, as Fig. 5 shows, the vector in the trian-
gular prism is literally cut up into pieces which are rearranged
and relabeled. Note that, to complete the transformation, we
precede this operation by the dissection given in Eqn. (4),
finally establishing the bijection between B3 and T3.

We now describe the mapping shown in Fig. 5 in more
detail. The triangular prism is represented by the set of
partially ordered triples (x1, x2, x3) with 0 ≤ x1 ≤ x2 < 1
and 2

3 ≤ x3 < 1, and we wish to transform this into the
tetrahedron consisting of the points (x′1, x

′
2, x
′
3) with 0 ≤ x′1 ≤

x′2 ≤ x′3 < 1.
We divide the interval [0, 1) into w = 3 equal segments

of length 1/w = 1/3, and consider where the points x1, x2

and x3 fall in this interval, given that (x1, x2, x3) is in the
triangular prism. There are three possibilities for where x3 lies
in relation to 0 ≤ x1 ≤ x2 < 1, and we further divide the case
x1 ≤ x3 < x2 into two subcases depending on whether x1 ≥
1
3 or x1 <

1
3 . These are the four cases shown in Fig. 5, and

correspond one-to-one with the four dissection pieces in Fig. 4.
Fig. 5 shows how the triples x1, x2, x3 (reindexed according
to their relative positions) are mapped to the triples x′1, x

′
2, x
′
3.

The last column of Fig. 5 shows the ranges of the x′i in the
four cases; the fact that these ranges are disjoint guarantees
that the mapping from x1, x2, x3 to x′1, x

′
2, x
′
3 is invertible.

The ranges of the x′i will be discussed in more detail in the
following section after the general algorithms are presented.

This operation can now be described without explicitly
mentioning the underlying dissection. Each interval of length
1/w, together with the given xi values within it, is treated
as a single complete unit. In the “cut and paste” operations,
these units are rearranged and relabeled in such a way that the
operation is invertible.

IV. ALGORITHMS AND PROOF OF CORRECTNESS

In the previous section we provided an encoding and de-
coding algorithm for weights w = 2 and w = 3, based on our
geometric interpretation of C2 and C3 as points in Rw. In this
section, the algorithm is generalized to larger values of the
weight w. We start with the geometry, and give a dissection
of the “brick” Bw into the orthoscheme Tw. We work with
the normalized coordinates xi = yi/n (for a point in Bw) and
x′i = y′i/n (for a point in Tw), where 1 ≤ i ≤ w. Later in
this section, we discuss the modifications needed to take into
account the fact that the y′i must be integers.

A. An Inductive Decomposition of the Orthoscheme

Restating the problem, we wish to find a bijection Fw be-
tween the sets Bw and Tw. The inductive approach developed
for w = 3 (where the w = 2 case was a subproblem) will be
generalized. Of course the bijection F1 between B1 and T1

is trivial. We assume that a bijection Fw−1 is known between
Bw−1 and Tw−1, and show how to construct a bijection Fw

between Bw and Tw.
The last step in the induction uses a map fw from the prism

Tw−1× [1− 1
w , 1) to Tw (f2 is the map described in Eqn. (4)

and f3 is described in Eqn. (5)). The mapping Fw from Bw

to Tw is then given recursively by Fw : (x1, x2, . . . , xw) 7→
(x′1, x

′
2, . . . , x

′
w), where

(x′1, x
′
2, . . . , x

′
w) := fw(Fw−1(x1, x2, . . . , xw−1), xw) . (6)

For w = 1 we set

F1 := f1 : B1 → T1, (x1) 7→ (x′1) = (x1) .

By iterating Eqn. (6), we see that Fw is obtained by succes-
sively applying the maps f1, f2,. . . , fw.

The following algorithm defines fw for w ≥ 2. We begin
with an algebraic definition of the mapping and its inverse,
and then discuss it further in the following section. The input
to the mapping fw is a vector x := (x1, x2, . . . , xw), with
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Fig. 5. Cut-and-paste description of the inverse transformation from triangular prism to tetrahedron.

(x1, x2, . . . , xw−1) ∈ Tw−1 and xw ∈ [1−1/w, 1); the output
is a vector x′ := (x′1, x

′
2, . . . , x

′
w) ∈ Tw.

Forward mapping fw (w ≥ 2):

1) Let

i0 := min{i ∈ {1, . . . , w} | xw ≤ xi} .

2) Let

j0 := min{i ∈ {1, . . . , i0} | w − i0 + i− 1 ≤ wxi} − 1 .

3) Set x′k equal to:
xk+j0 −

w+j0−i0
w for k = 1, . . . , i0 − j0 − 1

xw − w+j0−i0
w for k = i0 − j0

xk+j0−1 − w+j0−i0
w for k = i0 − j0 + 1, . . . , w − j0

xk−w+j0 + i0−j0
w for k = w − j0 + 1, . . . , w

(7)

Eqn. (7) identifies the “cut and paste” operations required to
obtain x′k for different ranges of the variable k. If the initial
index in one of the four cases in Eqn. (7) is smaller than the
final index, that case is to be skipped. A case is also skipped
if the subscript for an xi is not in the range 1, . . . , w. Note
in Step 1 that i0 = w if xw is the largest of the xi’s. This
implies that j0 = 0, and then Step 3 is the identity map.

The inverse mapping Gw from Tw to Bw has a similar
recursive definition. The wth step in the induction is the map
gw : Tw → Tw−1 × [1− 1

w , 1) defined below. For w = 1 we
set

G1 := g1 : T1 → B1, (x′1) 7→ (x1) = (x′1) .

The map Gw is obtained by successively applying the maps
gw, gw−1,. . . , g1.

Inverse mapping gw (w ≥ 2):

1) Let

m0 := max{i ∈ {1, . . . , w} | i− 1 ≤ wx′i} .

2) If m0 = w, let j0 := 0, otherwise let

j0 := w −max{i ∈ {m0 + 1, . . . , w} | wx′i ≤ m0} ;

in either case, let i0 := j0 +m0.
3) Set xk equal to:
x′k+w−j0

− i0−j0
w for k = 1, . . . , j0

x′k−j0
+ w+j0−i0

w for k = j0 + 1, . . . , i0 − 1
x′k−j0+1 + w+j0−i0

w for k = i0, . . . , w − 1
x′i0−j0

+ w+j0−i0
w for k = w

(8)

Note that the transformations in Eqn. (7) and Eqn. (8) are
formal inverses of each other, and that these transformations
are volume-preserving. The underlying linear transformations
are orthogonal transformations with determinant +1 or −1.

Before proceeding further, let us verify that in the case w =
3, the mapping fw = f3 agrees with that given in Eqn. (5).
• If x1 ≤ x2 < x3, then i0 = 3, j0 = 0 and the map is the

identity, as mentioned above.
• If x1 < x3 ≤ x2 there are two subcases:
◦ If 1

3 ≤ x1 then i0 = 2, j0 = 0.
◦ If x1 <

1
3 then i0 = 2, j0 = 1.

• If x3 ≤ x1 ≤ x2, then i0 = 1, j0 = 0.
The transformations in Eqn. (7) now exactly match those in
Eqn. (5).

B. Interpretations and Explanations

In Fig. 6, we give a graphical interpretation of the algorithm,
which can be regarded as a generalization of the “cut and
paste” description given above. This figure shows the trans-
formation defined by the wth step fw in the algorithm. At this
step, we begin with a list of w−1 numbers (x1, x2, . . . , xw−1)
in increasing order, and a further number xw which may be
anywhere in the interval [1− 1/w, 1). This list of w numbers
is plotted in the plane as the set of w points (i, wxi) for
i = 1, 2, . . . , w (indicated by the solid black circles in Fig.
6). In the first step in the forward algorithm, the augmented
list (x1, x2, . . . , xw) is sorted into increasing order. In the
sorted list, xw now occupies position i0, so the point (w,wxw)
moves to the left, to the new position (i0, wxw), and the points
(i, wxi) for i = i0 + 1, . . . , w − 1 move to the right. This is
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Fig. 6. A graphical illustration of the forward and inverse mapping.

indicated by the arrows in the figure. The new positions of
these points are marked by hollow circles.

The point (i0, wxw) now lies between the grid points (i0, w)
and (i0, w − 1) (it may coincide with the latter point), since
xw ≥ 1− 1

w . We draw the line y = x+w− i0− 1 (shown as
the dashed-and-dotted line in Fig. 6). This has unit slope and
passes through the points (i0, w− 1) and (0, w− i0− 1). The
algorithm then computes j0 + 1 to be the smallest index i for
which xi is on or above this line. Once i0 and j0 have been
determined, the forward mapping proceeds as follows. The
points (i, wxi) for i = 1, . . . , j0 are shifted to the right of the
figure and are moved upwards by the amount (i0 − j0)/w,
their new positions being indicated by crosses in the figure.
Finally, the origin is moved to the grid point (j0, w− i0 + j0)
and the points are reindexed. The m0 := i0− j0 points which
originally had indices j0 + 1, . . . , i0 become points 1, . . . ,m0

after reindexing. In the new coordinates, the final positions
of the points lie inside the square region [1, w)× [1, w). The

reader can check that this process is exactly equivalent to the
algebraic description of fw given above.

To recover i0 and j0, we first determine the value of m0 :=
i0−j0. This can indeed be done since m0 is precisely the index
of the largest wx′i that lies on or above the line y = x− 1 in
the new coordinate system. Note that the position of this line
is independent of i0 and j0 and (x′1, x

′
2, . . . , x

′
w). This works

because the points wx1, . . . , wxj0 in the original coordinate
system, before the origin is shifted, are moved right by w units
and upwards by w units, so points below the dashed-and-dotted
line remain below the line. Furthermore, observe that in the
new coordinate system the number of points (i, wx′i) below
the line y = m0 is equal to w − j0. Thus the correct i0 and
j0 values may be recovered, and the inverse mapping can be
successfully performed.

The following remarks record two properties of the algo-
rithm that will be used later.

Remark 1: Step 2 of the forward algorithm implies that
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xj0 <
w−i0+j0−1

w and xj0+1 ≥ w−i0+j0
w . It follows that there

is no i in the range 1 ≤ i ≤ w for which
w − i0 + j0 − 1

w
≤ xi <

w − i0 + j0
w

.

Remark 2: The forward algorithm produces a vector x′

whose components satisfy

0 ≤ x′1 ≤ · · · ≤ x′i0−j0 ≤ · · · ≤ x
′
w−j0 <

i0 − j0
w

, (9)

i0 − j0
w

≤ x′w−j0+1 ≤ x′w−j0+2 ≤ · · · ≤ x′w < 1 , (10)

and

x′k <
k − 1
w

, for w − j0 + 1 ≤ k ≤ w . (11)

Eqns. (9) and (10) follow from the minimizations in Steps 1
and 2 of the forward algorithm, respectively. The right-hand
side of Eqn. (11) expresses the fact, already mentioned, that
the first j0 points remain below the dotted-and-dashed line
after they are shifted.

C. Proof of Correctness

We now give the formal proof that the algorithm is correct.
This is simply a matter of collecting together facts that we
have already observed.

Theorem 1: For any w ≥ 1, the forward mapping fw is
a one-to-one mapping from Tw−1 × [1− 1

w , 1) to Tw with
inverse gw.

Proof: First, it follows from Remark 2 that, for x ∈
Tw−1 × [1− 1

w , 1), x′ = (x′1, x
′
2, . . . , x

′
w) satisfies 0 ≤ x′1 ≤

x′2 ≤ · · · ≤ x′w < 1, and so is an element of Tw.
Suppose there were two different choices for x, say x(1)

and x(2), such that

fw(x(1)) = fw(x(2)) = x′ .

We know that x′ determines m0, j0 and i0. So x(1) and x(2)

have the same associated values of i0 and j0. But for a given
pair (i0, j0), Eqn. (7) is invertible. Hence x(1) = x(2), and fw

is one-to-one.
Note that the transformations in Eqn. (7) and Eqn. (8) are

inverses of each other. Hence fw is also an onto map, and gw

is its inverse.

D. Number of Pieces

The map fw, which dissects the prism Tw−1× [1− 1
w , 1) to

give the orthoscheme Tw, has one piece for each pair (i0, j0).
If i0 = w then j0 = 0, while if 1 ≤ i0 ≤ w − 1, j0 takes all
values from 0 to i0 − 1. (It is easy to write down an explicit
point in the interior of the piece corresponding to a specified
pair of values of i0 and j0. Assume i0 < w and set δ = 1/w3.
Take the point with coordinates (x1, . . . , xw) given by xw =
(w− 1)/w+ δ; xi = xw + δ(i− i0) for i = i0 +1, . . . , w− 1;
xi = (i+w− i0− 1− δ)/w for i = 1, . . . , j0; xi = (i+w−
i0 − 1 + δ)/w for i = j0 + 1, . . . , i0 − 1.) The total number
of pieces in the dissection is therefore

1 + 1 + 2 + 3 + · · ·+ (w − 1) =
w2 − w + 2

2
,

which is 1, 2, 4, 7, 11, . . . for w = 1, 2, 3, 4, 5, . . .. This is a
well-known sequence, entry A124 in [21], which by coinci-
dence also arises in a different dissection problem: it is the
maximal number of pieces into which a circular disk can be
cut with w − 1 straight cuts. For example, with three cuts, a
pizza can be cut into a maximum of seven pieces, and this is
also the number of pieces in the dissection defined by f4.

E. The Algorithms for Positive Integers

To apply the above algorithm to the problem of encoding
and decoding constant weight codes, we must work with
positive integers rather than real numbers, which entails a
certain loss in rate, although the algorithms remain largely
unchanged. Let N := {1, 2, 3, . . .}, and let n and w be given
with 2w < n. In a manner analogous to the real-valued case,
we find a bijection between a finite hyper-rectangle or brick
BN

w ⊂ Nw and a subset of the finite orthoscheme TN
w ⊂

Nw, where BN
w is the set of vectors (y1, y2, . . . , yw) ∈ Nw

satisfying

n− (w − i)− bn− (w − i)
i

c+ 1 ≤ yi ≤ n− (w − i) ,

for i = 1, 2, . . . , w, and TN
w is the set of vectors

(y1, y2, . . . , yw) ∈ Nw satisfying

1 ≤ y1 < y2 < · · · < yw ≤ n .

Note that usually |BN
w| < |TN

w |, which entails a loss in rate.
The forward mapping fw is now replaced by the map fN

w ,
which sends (y1, y2, . . . , yw) with (y1, y2, . . . , yw−1) ∈ TN

w−1

and n− b n
w c+ 1 ≤ yw ≤ n to an element of TN

w . Let us write
n = pw + q, where p ≥ 0 and 0 ≤ q ≤ w − 1. We partition
the range 1, 2, . . . , n into w parts, where the first n − w − 1
parts each have p elements, the next q parts each have p+ 1
elements, and the last part has p elements (giving a total of n
elements). This is similar to the real-valued case, where each
interval had length 1/w.

1) Let

i0 := min{i ∈ {1, . . . , w} | yw ≤ yi} .

2) Let

j0 := min{i ∈ {1, . . . , i0} | Vi < yi} − 1 ,

where Vi := (w − i0 + i− 1)p+ max{q − i0 + i, 0}.
3) Set y′k equal to:
yk+j0 − Vj0+1 for k = 1, . . . , i0 − j0 − 1
yw − Vj0+1 for k = i0 − j0
yk+j0−1 + 1− Vj0+1 for k = i0 − j0 + 1, . . . , w − j0
yk−w+j0 + n− Vj0+1 for k = w − j0 + 1, . . . , w

(12)

The inverse mapping gw is similarly replaced by the map
gN

w : TN
w → {(y1, y2, . . . , yw) : (y1, y2, . . . , yw−1) ∈ TN

w−1,
n− b n

w c+ 1 ≤ yw ≤ n}, defined as follows. Again, assume
n = pw + q.

1) Let

m0 := max{i ∈ {1, . . . , w} |Wi < y′i} ,

where Wi := q + (i− 1)p+ min{i− q − 1, 0}.
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2) If m0 = w, let j0 := 0, otherwise let

j0 := w −max{i ∈ {m0 + 1, . . . , w} | y′i ≤Wm0 + p} ;

in either case, let i0 := j0 +m0.
3) Set yk equal to:
y′k+w−j0

− p−Wm0 for k = 1, . . . , j0
y′k−j0

+ n− p−Wm0 for k = j0 + 1, . . . , i0 − 1
y′k−j0+1 − 1 + n− p−Wm0 for k = i0, . . . , w − 1
y′i0−j0

+ n− p−Wm0 for k = w

(13)

We omit the proofs, since they are similar to those for the
real-valued case.

F. Comments on the Algorithm

The overall complexity of the transform algorithm is O(w2),
because at each induction step the complexity is linear in
the weight at that step. Recall that the complexities of
the arithmetic coding method and Knuth’s complementation
method are both O(n). Thus when the weight w is larger
than

√
n, the geometric approach is less competitive. When

the weight is low, the proposed geometric technique is more
efficient, because Knuth’s complementation method is not
applicable, while the dissection operations of the proposed
algorithm makes it faster than the arithmetic coding method.
Furthermore, due to the structure of the algorithm, it is possible
to parallelize part of the computation within each induction
step to further reduce the computation time.

So far little has been said about mapping a binary sequence
to an integer sequence y1, y2, . . . , yw such that yi ∈ [Li, Ui],
where Li and Ui are the lower and upper bound of the valid
range as specified by the algorithm. A straightforward method
is to treat the binary sequence as an integer number and then
use “quotient and remainder” method to find such a mapping.
However, this requires a division operation, and when the
binary sequence is long, the computation is not very efficient.
A simplification is to partition the binary sequence into short
sequences, and map each short binary sequence to a pair of
integers, as in the case of a weight two constant weight codes.
Through proper pairing of the ranges, the loss in the rate can
be minimized.

The overall rate loss has two components, the first from
the rounding involved in using natural numbers, the second
from the loss in the above simplified translation step. However,
when the weight is on the order of

√
n, and n is in the range

of 100 − 1000, the rate loss is usually 1 − 3 bits per block.
For example, when n = 529, w = 23, then the rate loss is
2 bits/block compared to the best possible code which would
encode k0 = 132 information bits.

V. CONCLUSION

We propose a novel algorithm for encoding and decoding
constant weight binary codes, based on dissecting the polytope
defined by the set of all binary words of length n and weight
w, and reassembling the pieces to form a hyper-rectangle
corresponding to the input data. The algorithm has a natural
recursive structure, which enables us to give an inductive proof
of its correctness. The proposed algorithm has complexity

O(w2), independent of the length of the codewords n. It is
especially suitable for constant weight codes of low weight.
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