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Representing and reasoning about qualitative tempo-
ral information is an essential part of many artifi-
cial intelligence tasks. Lots of models have been pro-
posed in the litterature for representing such tempo-
ral information. All derive from a point-based or an
interval-based framework. One fundamental reasoning
task that arises in applications of these frameworks is
given by the following scheme: given possibly indefi-
nite and incomplete knowledge of the binary relation-
ships between some temporal objects, find the consis-
tent scenarii between all these objects. All these mod-
els require transitive tables — or similarly inference
rules — for solving such tasks.

In [30], we have defined an alternative model, re-
named in [31] S-languages – for Set-languages – to rep-
resent qualitative temporal information, based on the
only two relations of precedence and simultaneity. In
this paper, we show how this model enables to avoid
transitive tables or inference rules to handle this kind
of problem.

Keywords: Temporal reasoning, formal languages, con-
straints satisfaction.

1. Introduction

Representing and reasoning about qualitative
temporal information is an essential part of many
artificial intelligence tasks. These tasks appear in
such diverse areas as natural language processing,
planning, plan recognition, and diagnosis. Allen
[1,2] has proposed an interval algebra framework
and Vilain and Kautz [34] have proposed a point
algebra framework for representing such qualita-
tive information. All models that have been pro-
posed afterwards in the litterature derive from
these two frameworks. Placing two intervals on the
Timeline, regardless of their length, gives thirteen
relations, known as Allen’s [2] relations. Vilain [33]

provided relations for points and intervals, Kan-
drashina [18] provided relations for points, inter-
vals and chains of intervals. Relations between two
chains of intervals have been studied in depth by
Ladkin who named them non convex intervals [20].
Al-Khatib [19] used a matricial approach. Ligozat
[22] has studied relations between chains of points,
named generalized intervals.

One fundamental reasoning task that arises in
applications in these frameworks is given by the
following scheme: given possibly indefinite and in-
complete knowledge of the relationships between
some temporal objects, find the consistent scenarii
between all these objects. All these models have
in common that the representations of temporal
information are depicted as sets of binary rela-
tionships and are viewed as binary constraint net-
works. The reasoning is then based on transitive
tables that describe the composition of any two
binary relations. All these models require transi-
tive tables - or similarly inference rules - for solv-
ing such tasks. The logical approach of the I.A.
community explains this fact.

The framework of formal languages, inside which
the model of S-languages has been proposed [30,
31], provides the same material both for expressing
the temporal objects and the n-ary relationships
between them. The reasoning is based on three
natural extensions of very well-known rational op-
erations on languages: the intersection, the shuffle
and the projection. More precisely, we have shown
in [31] that binary relations between two general-
ized intervals are in a natural correspondence with
S-languages that express Delannoy paths of or-
der 2. By the way, we provide to Henry Delannoy
(1833-1915) a large domain of applications (though
unexpected) of his theory of minimal paths of the
queen from one corner to any other position on a
chess-board [9].

The main idea for using formal languages for
temporal representation and reasoning is that a
word can be viewed as a line, with an arrow from
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left to right (the way of reading in european lan-
guages). Hence, assigning a letter to each temporal
object, as its identity, and using as many occur-
rences of this identity as it has points or interval
bounds, it is possible to describe an atomic tempo-
ral relation between n objects on the timeline, as
far as there is no simultaneity, with a word on an
n-alphabet (alphabet with n letters). Simultane-
ity requires to be able to write several letters in-
side a same box. This is the aim of the theory of
S-languages.

In this paper, we show how the S-languages
framework allows to represent n-ary qualitative
temporal relations and to reason without any tran-
sitive tables.

In the next part, we recall the basis of for-
mal languages, following [3,13], and S-languages,
and we examine the usual operations of the rela-
tional algebra [21] in the context of S-languages.
We then provide two examples of how to reason
without transitivity tables. The first one is a revis-
itation of the well-known unsatisfiable closed net-
work of Allen [2] . The second one revisits the
Manna-Pnuelli’s problem of the allocation of a re-
source between several requesters [24]. This aims
to show how a problem of concurrency for complex
systems, written in modal temporal logic can be
solved with the S-languages framework.

2. Formal languages

Let us first recall some basis on formal lan-
guages.

2.1. Basis

An alphabet X is a finite nonempty set of sym-
bols called letters. A word (of length k ≥ 0) over
an alphabet X is a finite sequence x1, . . . , xk of
letters in X . A word x1, . . . , xk is usually written
x1 . . . xk. The unique word having no letter, i.e. of
length zero, called the empty word, is denoted by
ε. The length of a word f is denoted by |f |. The
number of occurrences of a letter a in the word
f is denoted by |f |a. The set of all words (resp.
of length n) on X is denoted by X∗ (resp. Xn).
Let us remark that X∗ =

⋃
n≥0X

n. The set of all
words on X is written X∗. A subset of X∗ is called
a language. The empty set ∅ is the least language

and X∗ is the greatest language for the order of
inclusion.

Let u and v be words in X∗. If u = u1 . . . ur and
v = v1 . . . vs are words, then u.v (usually written
uv), called the concatenation of u and v, is the
word u1 . . . urv1 . . . vs. For instance let X = {x, y},
u = xx and v = yy, then the concatenation is
uv = xxyy. Let us notice that uv 6= vu. We also
have to set u0 = {ε} , u1 = u, un+1 = uun. One
has v.ε = ε.v = v.

The concatenation can be extended to languages
on X by setting L.L′ = {uv|u ∈ L, v ∈ L′}. This
operation endows 2X∗

with a structure of non-
commutative monoid. We also have L0 = {ε} ,
L1 = u, Ln+1 = LLn, L∗ =

⋃
n≥0L

n.
u∗ =

⋃
n≥0u

n. Even if u∗ is a set, it can be
worked with like an element, so that we will take
this alternative and use u∗ as a word or S-word.

The shuffle is a very useful operator which is
used in concurrency applications. The shuffle op-
erator describes all possibilities of doing two con-
current sequences of actions in a sequential man-
ner. Therefore, this is not a binary combination
of X∗ because, from two words, it provides a set
of words, that is a language. Its definition is the
following: Let u and v be two words written on
an alphabet X∗. The shuffle of u and v is the
language u∨∨v = {α1β1 . . . αkβk ∈ X∗|α1, βk ∈
X∗, α2, . . . , αk, β1, . . . , βk−1 ∈ X+, u = α1 . . . αk,
v = β1 . . . βk}. For instance let X = {x, y}, then
xx∨∨yy = {xxyy, xyxy, yxxy, xyyx, yxyx, yyxx}.

The concatenation uv means an order between
u and v, this is a word of the language u∨∨v. One
has ε∨∨v = v∨∨ε = v for any word v of X∗. The
shuffle can be naturally extended to languages on
X by setting L∨∨L′ =

⋃
u∈L,v∈L′ u∨∨v. The shuf-

fle endows 2X∗

with a structure of commutative
monoid.

Words are read from left to right, so that the
reading induces a natural arrow of Time. Any oc-
currence of a letter can be viewed as an instant
numbered by its position inside the word. Traces
languages or paths expressions [8] are used for
such a purpose: planning the order of execution of
events. But with these languages, it is not possible
to differentiate two occurrences that are concur-
rent (i.e. one may be before, at the same time or
after the other) from those that must occur at the
same time: these two events are said to commute.
It is presupposed that the granularity of the time
measurement is fine enough to avoid the case at
the same time.
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2.2. S-alphabet, S-words, S-languages

In order to model explicitly concurrency with
words, various tools have been proposed such as
event structures or equivalence relations on words
i.e. traces. In those theories, it is not possible to
model only synchronization. One is able to say
that two events can be done at the same time but
it is not possible to express that they have to be
done at the same time. This is due to the fact
that concurrency is modelled inside a deeply se-
quential framework, hence, synchronization is sim-
ulated with commutativity. But one has to handle
with instant, in the sense of Russell [29]. This is
why we introduce the concept of S-alphabet which
is a powerset of a usual alphabet.

2.2.1. Basic definitions
Let us set

Definition 2.1 If X is an alphabet, an S-alphabet
overX is a non-empty subset of 2X−∅. An element
of an S-alphabet is an S-letter. A word on an S-
alphabet is an S-word. A set of words on an S-
alphabet is an S-language.

S-letters are written either horizontally or verti-

cally: {̂a, b} = {a, b,
{

a
b

}
}. For S-letters with only

two letters, we also write
(
a
b

)
instead of

{
a
b

}
.

Examples of S-alphabets over X are:

1. the natural one Ẋ = {{a}| a ∈ X} that is
identified with X .

2. the full S-alphabet over X , i.e. X̂ = 2X − ∅.
3. S-alphabets obtained from others S-alphabets

with the following construction:

For an S-alphabet Y over X , define
︷︸︸︷
Y =

{A|∃A1, . . . , Ak ∈ Y : A =
⋃k

i=1 Ai}.
︷︸︸︷
Y is

also an S-alphabet over X .

Note that, for all S-alphabets Y and Z over X , we

have

︷︸︸︷︷︸︸︷
Y =

︷︸︸︷
Y and

︷ ︸︸ ︷
Ŷ ∪ Z =

︷ ︸︸ ︷
Y ∪ Z. A S-word

on a full S-alphabet overX will be simply designed
by an S-word on X .

In this work, we use the full S-alphabet X̂ =
2X − ∅. Identifying any singleton with its letter,
we write X ⊂ X̂ and X∗ ⊂ X̂

∗

.
In order to link S-words on X with letters of X ,

we set

Definition 2.2 Let X = {x1, . . . , xn} be an n-

alphabet and f ∈ X̂
∗

. We note ‖f‖x for x ∈ X the
number of occurrences of x appearing inside the
S-letters of f , and ‖f‖ the integer

∑
1≤i≤n ‖f‖xi

.

The Parikh vector of f , denoted ~f , is the n-tuple
(‖f‖x1

, . . . , ‖f‖xn
).

Example 1 :

f =

{
a

b

}
cba

{
a

c

}
c

{
a

b

}
a




a

b

c



 aaaa is an S-

word such that ~f = (10, 4, 4).

2.2.2. Concatenation and shuffle
The concatenation of two S-words or two S-

languages are defined exactly in the same way as
in formal languages. The S-shuffle has to be gen-
eralized in the following way:

Definition 2.3 Let X and Y be two disjoint alpha-
bets, f ∈ X̂

∗

, g ∈ Ŷ
∗

. The S-shuffle of f and

g is the language [f ||g] = {h1 . . . hr|hi ∈ X̂ ∪ Y ,
with max(|f |, |g|) ≤ r ≤ |f | + |g| and such that
there are decompositions of f and g: f = f1 . . . fk,
g = g1 . . . gk, satisfying, (i) ∀i ∈ [r], |fi|, |gi| ≤ 1,
(ii) 1 ≤ |fi| + |gi|, and (iii) hi = fi ∪ gi}.

For instance [aa||bb]={aabb, a
{

a
b

}
b, abab,

{
a
b

}
ab

,ab
{

a
b

}
,

{
a
b

}{
a
b

}
, baab, ba

{
a
b

}
, abba,

{
a
b

}
ba,

baba, b
{

a
b

}
a, bbaa} = {f ∈ {̂a, b}

∗
|~f = (2, 2)}.

The S-shuffle of two S-languages L and L′ writ-
ten on two disjoint alphabets is the language
[L||L′] = ∪f∈L,f ′∈L′ [f ||f ′].

The S-shuffle is, like the shuffle, an associative
and commutative operations, which allows to note
[u1|| · · · ||un] for the S-shuffle of n S-words or S-
languages.

In the case where all S-words of a language
L share the same Parikh vector, we note ~L this
common Parikh vector. In particular, on the n-
alphabet X = {x1, · · · , xn}, the language,

L(p1, · · · , pn) = {f ∈ X̂∗|~f = (p1, · · · , pn)}

that we call (p1, · · · , pn)-Delannoy Language – on
X –, are of a particular interest for temporal qual-
itative reasoning, as we will show it in the next
section. Let us just recall [31] that the cardinality
D(p1, . . . , pn) of a (p1, · · · , pn)-Delannoy Language
is given by the following functional equation:
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D(p1, . . . , pn) =
∑

Pred(p1,...,pn)

Dn(p̃1, · · · , p̃n)

where for p > 0), p̃ = {p, p − 1}; 0̃ = {0} and
Pred((p1, · · · , pn)) = {(p̃1, · · · , p̃n)}−{(p1, · · · , pn)}.

In particular D(p, q)=D(p, q− 1)+D(p− 1, q−
1) + D(p − 1, q) with the initial steps D(0, 0) =
D(0, 1) = D(1, 0) = 1.

Like Pascal’s table for computing binomial num-
bers, there is a Delannoy table for computing De-
lannoy numbers, given in Table 1.

p
q 0 1 2 3 4 5 6 7 8

0 1 1 1 1 1 1 1 1 1

1 1 3 5 7 9 11 13 15 17

2 1 5 13 25 41 61 85 113 145

3 1 7 25 63 129 231 377 575 833

4 1 9 41 129 321 681 1289 2241 3649

5 1 11 61 231 681 1683 3653 7183 13073

6 1 13 85 377 1289 3653 8989 19825 40081

7 1 15 113 575 2241 7183 19825 48639 108545

8 1 17 145 833 3649 13073 40081 108545 265729

9 1 19 181 1159 5641 22363 75517 224143 598417

Table 1

Delannoy table

D(p, q) are the well-known Delannoy numbers
[9,35,32] that enumerate Delannoy paths in a
(p,q)-rectangular chessboard. A Delannoy path is
given as a path that can be drawn on a rect-
angular grid, starting from the southwest corner,
going to the northeast corner, using only three
kinds of elementary steps: north, east, and north-
east. Hence they are minimal paths with diagonal
steps. The natural correspondence between (p,q)-
Delannoy paths and L(p, q) on the alphabet {a, b}
is: the S-letter a corresponds to a north-step, the
S-letter b to a east-step and the S-letter

(
a
b

)
to

north-east-step.

2.2.3. Projection
We extend the well-known notion of projec-

tion in formal languages theory to S-languages.
The aim is to be able to erase all occurrences of
some letters in an S-word and having as results
a new S-word. The problem is how to handle an
S-letter with all its letters erased. For that pur-
pose we set: let X be an alphabet and f ∈ X̂

∗

,
Xf = {x ∈ X |‖f‖x 6= 0}.

Definition 2.4 Let X be an alphabet and Y ⊆ X.
The S-projection from X̂

∗

to Ŷ
∗

is a monoid mor-
phism πX

Y defined by the image of the S-letters: for
s ⊂ X, its image is πX

Y (s) = s∩Y if this intersec-
tion is not empty, ε if not.

The projection on Y of an S-word f is denoted f|Y
instead of πX

Y (f).

Example 2 (Example 1 continued)

Let f =

{
a

b

}
cba

{
a

c

}
c

{
a

b

}
a




a

b

c



 aaaa,

– f|{a} = aaaaaaaaaa,
– f|{b}=bbbb,
– f|{c}=cccc,

– f|{a,b} =

{
a

b

}
baa

{
a

b

}
a

{
a

b

}
aaaa,

– f|{b,c} = bcbccb

{
b

c

}
,

– f|{a,c}= aca

{
a

c

}
caa

{
a

c

}
aaaa,

– f|{a,b,c}=f .

3. Qualitative Temporal Objects and Relations in

the binary algebra and their transitivity tables

We examine qualitative temporal objects and re-
lations inside the framework of relational algebra,
as Ladkin and Maddux initiated it [21]. We recall
the usual qualitative temporal binary algebra: the
point algebra, the interval algebra [2], the point-
interval algebra [33,34], chains algebra.

In this paper, we use the term situation for the
description of a unique temporal relation (com-
plete information) between objects, which is some-
times called an atomic relation.

Let us recall the principia of transitivity table.
Given a particular theory Σ supporting a set of
mutually exhaustive and pairwise disjoint dyadic
situations, three individuals, a, b and c and a pair
of dyadic relations R1 and R2 selected from Σ such
that R1(a, b) and R2(b, c), the transitive closure
R3(a, c) represents a disjunction of all the possi-
ble dyadic situations holding between a and c in
Σ. Each R3(a, c) result can be represented as one
entry of a matrix for each R1(a, b) and R2(b, c) or-
dered pair. If there are n dyadic situations sup-
ported by Σ, then there will be n×n entries in the
matrix. This matrix is a transitivity table. Transi-
tive tables for binary situations have been written
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for convex intervals (Allen), for points, for points
and convex intervals: knowing an atomic relation
between objets A and B and an atomic relation
between objects B and C, derive the possible - or
other said not prohibited - relations between ob-
jects A and C.

Cohn et al. [28] have studied transitivity tables
for reasoning in both time and space in a more
general context. They noted the difficulty to build
such secure transitivity tables.

3.1. The Point Algebra.

The three situations are the three basic tempo-
ral relations: before <, equals = and after > as
shown in Figure 1. The set of point qualitative

Fig. 1. situations of the black point with respect to the
white point.

u u u

e e e

< = >

temporal binary relations is the set : {<,>,=,6
,>, 6=,⊥,⊤}, where ⊥ is the empty relation (no
feasible relation) and ⊤ the universal relation (any
relation is feasible). The transitive table is given
in Figure 2

◦ < = >

< < < ⊤
= < = >

> ⊤ > >

Fig. 2. point transitivity table

For instance, if A < B and B > C then A⊤C.

3.2. The Interval Algebra.

In Figure 3, we recall the thirteen situations be-
tween two intervals studied by Allen [1].

The transitivity table is given in Table 4 where1:
2 = ⊤, that is there is no constraint, every situa-

1The notation is taken, whenever possible, from Delan-
noy paths draw as kind of greek letters on the chess, with
the following convention: Upper case for 5-subsets, lower
case for 3-subsets

Rel OR Rel∼

equals(=) OR equals(=)

started-by (s∼) OR starts (s)

contains(d∼) OR during (d)

finished-by (f∼) OR finishes (f)

overlaps (o)ORoverlapped-by(o∼)

meets (m) OR met-by (m∼)

before (<) OR after (>)

Fig. 3. the set of 13 situations between two intervals on line

tion is allowed,
3 = ⊤−{<,m,m∼, >}, which means that the two
intervals intersects on an interval, this is exactly
what Kamp named the overlapping2 relation ◦ on
two processes [17] and Freksa the contemporary
relation [14],
Γ∼ = {<,m, o, s, d}, that is the relation begin be-
fore,
Λ = {<,m, o, d∼, f∼}, that is the relation end af-
ter
α = {<,m, o}, δ∼ = {o, s, d}, ρ∼ = {o∼, d, f},

ŝ = {s,=, s∼}, f̂ = {f,=, f∼}
and using the following property:
∀A ⊆ ⊤, x ∈ A iff x∼ ∈ A∼.

◦ = < > d d∼ o o∼ m m∼ s s∼ f f∼

= = < > d d∼ o o∼ m m∼ s s∼ f f∼

< < < 2 Γ∼ < < Γ∼ < Γ∼ < < Γ∼ <

> > 2 > Λ∼ > Λ∼ > Λ∼ > Λ∼ > > >

d d < > d 2 Γ∼ Λ∼ < > d Λ∼ d Γ∼

d∼ d∼ Λ Γ 3 d∼ ρ δ ρ δ ρ d∼ δ d∼

o o < Γ δ∼ Λ α 3 < δ o ρ δ∼ α

o∼ o∼ Λ > ρ∼ Γ 3 α∼ ρ > ρ∼ α∼ o∼ δ

m m < Γ δ∼ < < δ∼ < f̂ m m δ∼ <

m∼ m∼ Λ > ρ∼ > ρ∼ > ŝ > ρ∼ > m∼ m∼

s s < > d Λ α ρ∼ < m∼ s ŝ d α

s∼ s∼ Λ > ρ∼ d∼ ρ o∼ ρ m∼ ŝ s∼ o∼ d∼

f f < > d Γ δ∼ α∼ m > d α∼ f f̂

f∼ f∼ < Γ δ∼ d∼ o δ m∼ δ o d∼ f̂ f∼

Fig. 4. interval transitivity table

2In french, couverture
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3.3. The Point-Interval Algebra

In order to take into account both instantaneous
and durative processes, Vilain provided a model
with points and intervals [33]. Figure 5 shows the
five situations between a point and an interval.

u u uu u

Fig. 5. The 5 situations between a point and an interval
(each point designs a situation)

Besides the two preceding transitivity tables, are
needed six more transitivity tables:
(i) points/intervals-intervals/points,
(ii) points/intervals-intervals/intervals,
(iii) points/points-points/intervals,
(iv) intervals/intervals-intervals/points,
(v) intervals/points-points/intervals,
(vi) intervals/points-points/points.

3.4. Chains Algebras

The T-model of Kandrashina [18] has three
qualitative basic notions: the point, the interval
and the sequence of intervals. Situations between
two sequences of intervals are derived from situa-
tions between intervals. Some frequent situations
are shown like the one in Figure 6:

Fig. 6. S1 alternates S2

These objects has been revisited and studied for
their own by Ladkin [20] under the name of non-
convex intervals. Ligozat [22] generalized to se-
quences of points and/or intervals under the name
of generalized intervals.

There are 3 situations between two points, 5 be-
tween a point and an interval, 13 situations be-
tween two intervals, 8989 situations between two
sequences of three intervals or two sequences of 6
points. Ladkin [20, Theorem1], proved the number
of situations between two chains of intervals is at
least exponential in the number of intervals. The
exact number of situations between a sequence of
p points and a sequence of q points has been pro-

vided by [6, p. 83] without doing the connection

with Delannoy numbers.

Freksa studied transitivity tables with respect to

convex set of intervals [14], Randel & al. [28] have

studied transitivity tables for reasoning in both

time and space in a more general context, both in

order to below the complexity rate of the compu-

tations. That was also the aim of Vilain et al. who

have studied the fragment of the interval algebra,

that can be written without disjunction inside the

point algebra, based on the fact that relations be-

tween intervals can be translated in terms of their

bounds, inside the point algebra. An interval A is

a couple of its bounds (a, ā) viewed as points they

can contain or not, with the constraint a < ā. Sit-

uations between intervals are represented in terms

of the situations of their bounds:

– A is before B iff a < ā < b < b̄

– A meets B iff a < ā = b < b̄

– A overlaps B iff a < b < ā < b̄

– A starts iff B a = b < ā < b̄

– A during iff b < a < ā < b̄

– A finishes iff b < a < ā = b̄

– A equals B iff a = b < ā = b̄.

4. Qualitative Temporal Objects and Relations

in the S-languages framework

4.1. Temporal Objects

All temporal items previously reviewed are

based on points or maximal convex interval, that is

isolated points or pairing points. The idea is to as-

sign an identity to each temporal objects. The set

of these identities is the alphabet on which the S-

languages will be written. A temporal object with

identity a and p bounds and/or isolated points is

depicted by the (S-)word ap. To distinguish be-

tween points and bounds, it is possible to mark the

right bound of an interval. If one non-marked letter

follows a non-marked letter, then the first one de-

picts a point. For instance the S-word aaāaaaāaā

depicts the sequence : point, interval, point, point,

interval, interval.
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C
B
A

Fig. 7. A relation between 3 chains of intervals

4.2. Temporal Relations

A relation between n temporal items, using al-
phabet X = {x1, · · · , xn}, is an S-word on X̂∗ =
2X − ∅ that describes exactly the situation of the
points on the timeline, described by the relation.
For instance

Example 3 (Examples 1 and 2 continued) Let A, B,
C three temporal items as depicted in figure 7.

On the alphabet X = {a, b, c}, item A is written
aaaaaaaaaa, item B bbbb and item C cccc. The
situation between them is given by the S-word f of
Example 1, that is

f =

{
a

b

}
cba

{
a

c

}
c

{
a

b

}
a




a

b

c



 aaaa. Hence, in

Example 2, we have computed:
– f|{a}, which is item A,
– f|{b}, which is item B,
– f|{c}, which is item C,
– f|{a,b}, which is the relation between A and B,
– f|{b,c}, which is the relation between B and C,
– f|{a,c}, which is the relation between A and C,
– f|{a,b,c}, which is the relation between A, B and
C.

The following theorem [31] is the most impor-
tant for our purpose:

Theorem 4.1 For any integer n ≥ 1, let T1, · · · , Tn

be n temporal items, Xn = {x1, . . . , xn} be an
alphabet and xp1 , · · · , xpn – writing xn the word
x . . . x︸ ︷︷ ︸
ntimes

– their temporal words on X. Let us de-

note by Π(p1, . . . , pn) the set of all n-ary situations
among T1, · · · , Tn, L(p1, · · · , pn) is its correspond-
ing language.

In dimension 2, it is obvious to see that there
is a natural correspondence between L(p, q) and
Delannoy paths in a (p,q)-rectangular chessboard.
The correspondence between interval situations,
L(p, q) and (2,2)-Delannoy paths is shown in Fig-
ure 9, inside the Nökel Lattice [25].

The arrow means, for S-words, the Thue rewrit-
ing rules [3] ab →

(
a
b

)
→ ba, which is exactly the

→ �� →

ab

<

(
a

b

)

=

ba

>

Fig. 8. Point lattice

Point lattice as we can see it in Figure 8. Autebert

et al. have proved [4] that the S-language L(p, q)
on the alphabet {a, b} (that is any set of situations

between a sequence of p points and a sequence of
q points or Ligozat’s Π(p, q) set [22]) can be gener-

ated from the single S-word apbq and these Thue
rewriting rules. They also rigorously proved that

these rules make the (p,q)Parikh vector S-language

to be a distributive lattice. They also characterize
the subset of union-irreducible S-words, which is

the lattice of ideals of the language :
{ap−1bq−1 | p > 0, q}||{c} ∪ {ap−kblakbq−l | 0 <

l ≤ q, 0 < k ≤ p}. Its cardinality is 2pq.
Autebert and Schwer [5] generalized the results

to the n-ary case, proving that L(p1, · · · , pn), with
the following Thue rewriting rule is also a lattice,

but not distributive because not modular, as soon

as n ≥ 3 like Figure 10 shows it. Given an arbitrary
order over the letters of X by a1 < a2 < · · · < an,

this induces over the S-letters a partial order P <

Q ⇐⇒ [∀x ∈ P, ∀y ∈ Q : x < y]. Then the Thue

system denoted −→ on X̂∗, by the following:

∀P,Q,R ∈ X̂ such that P < Q and R = P ∪ Q,
set PQ −→ R and R −→ QP .

abc

��	 @@R
{b,a}c

��	 A
A
A
AU

a{c,b}

�
�
�
��

@@R
bac

?
b{c,a}

?
bca

@@R
{c,b}a

@@R

acb

?
{c,a}b

?
cab

��	
c{b,a}

��	

{c,b,a}

�
�
�
��

A
A
A
AU

cba

Fig. 10. L(1, 1, 1) is a non modular lattice.
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-

aabb
(<)

��
-

a
(
a
b

)
b

(m)
abab
(o)

���

@@R

��(
a

b

)
ab

(s)

���

@@R

��

ab
(
a

b

)

(f∼)

���

@@R

baab
(d)

@@R

��
��

(
a
b

)(
a
b

)

(=)

���

@@R

abba
(d∼)

���

��

ba
(
a

b

)

(f)
@@R

��(
a

b

)
ba

(s∼)

��� baba
(o∼)

- �� -

b
(
a
b

)
a

(m∼)

bbaa
(>)

Fig. 9. The Nökel Lattice for the interval Algebra

4.3. Operations on temporal relations

In a relational algebra, relations are basic ob-
jects on which operators operate. Apart of sets op-
erators like union, intersection and complementa-
tion, we have yet seen two operations : the com-
position ◦ and the inverse ∼. The inverse opera-
tion exchanges the role of the objects: aSb ⇐⇒
b(S)∼a. There is an other unary operation, closed
to the Time arrow: the symmetry function that
inverses the arrow of Time. The symmetrical of
aSb is aS∼b. In the framework of S-languages, the
transposition is the identity function; the symme-
try function is the mirror one that is the reading
from right to left.

The third operation, the composition, is the fun-
damental operation for the reasoning. We show
now how the S-language framework avoids such a
material.

These operations have their correspondents in-
side the S-languages framework, but we prefer to
simulate them with the two new operators from S-
words to S-languages that we now introduce. The
first one is the inverse of the projection, named in-
tegration, it is an unary operator; the second one
is the main operator, it is closed to the composi-
tion of relations. It aims to answer the following
question: having three worlds X, Y, Z – with pos-
sible intersections –, and having information f in

world X and information g in world Y, what pos-
sible – i.e. not forbidden – information can be de-
duced from them in world Z? This operator is the
one which allows to avoid transitive table.

Definition 4.2 For any alphabet Z and any word
f ∈ X̂

∗

,

– The free integration of the S-word f on the
alphabet Z, denoted

∫
Z
f , is the S-language

∫

Z

f = [π
Xf∪Z

Xf
]
−1

(f) = {g ∈ Ẑ ∪Xf

∗
|g|Xf

= f}

– For any distinct letters t1, · · · , tn of Z, and
ν = (tp1

1 , · · · , t
pn
n ), the bounded to ν integra-

tion of the S-word f on the alphabet Z, de-
noted

∫ ν

Z
f , is the S-language

∫ ν

Z

f = (

∫

Z

f) ∩ (

∫

Z∪Xf

L(p1, . . . , pn)) =

{g ∈ Ẑ ∪Xf

∗
|g|Xf

= f, ∀i : ||g||ti
= pi}

These definitions are extended to languages in
the following natural way:
The free integration of the S-language L on the
alphabet Z, denoted

∫
Z
L, is the S-language

∫

Z

L =
⋃

f∈L

∫

Z

f
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The bounded to ν integration of the S-language L
on the alphabet Z, denoted

∫ ν

Z
L, is the S-language

∫ ν

Z

L =
⋃

f∈L

∫ ν

Z

f

For instance - cf. end of Section 2 - let Z =
{a, b, c} and ν = (a10, b4, c4).

∫ ν

Z
a10 =

∫ ν

Z
b4 =∫ ν

Z
c4 = LZ(10, 4, 4).∫ ν

Z
f|{a,b} = [f|{a,b}||c

4] and
∫ ν

Z
f|{b,c} = [f|{b,c}||a

10].
We then have∫ ν

Z
f|{a,b} ∩

∫ ν

Z
f|{b,c}=

{
a

b

}
cb([aa||cc]).

{
a

b

}
a




a

b

c



 aaaa

which contains the word f .
We never compute the integration. It is just an

artifact in order to have every constraints written
on the same alphabet. The operation which costs
the most is the intersection. In fact, we do not do
it. We operate a kind of join, which consists in
(i) computing the set of letters in common under
the two integrals, (ii) verifying if all occurrences of
these letters are ordered in the same manner un-
der the two integrals (iii) shuffle the two subwords
which are between two such following occurrences.

(i) and (ii) causes no problem. If the common
letters are isolated (that is, not inside a shuffle
part), the complexity of (iii) is linear but in the
worse case, it can be exponential. We are studying
convex part of lattices and heuristics in order to
improve the complexity of the computation, in the
spirit of [11].

5. Reasoning inside the S-language framework

It is usual in temporal applications that infor-
mation arrives from many various sources or a
same source can complete the knowledge about a
same set of intervals. The usual way to deal with
that, when no weight of credibility or plausibility
is given, is to intersect all the information. The
knowledge among some set of intervals interferes
with some other sets of intervals by transitivity:
if you know that Marie leaved before your arrival,
and you are waiting for Ivan who attempts to see
Marie, you can tell him that he has missed her.

Vilain and Kautz [34] argued that there are two
kinds of problems:

Problem number 1 Let R1(A,C) andR2(A,C) be
two sets of constraints between intervals A and C,
what is the resulting set of constraints for A and
C?
Problem number 2 Let A, B, C be three intervals
and R(A,B) and R(B,C) the sets of constraints
respectively between A and B and between B and
C. What is the deduced set of constraints between
A and C?

The first problem requires an and logical oper-
ator or an intersection set operator. The second
problem requires a transitivity operator based on
tables.

In our framework, the answers to these two
problems are described exactly in the same man-
ner, the difference being just a matter of integra-
tion alphabet. Let R1(a, b) [resp.R2(b, c), R(a, c)
] be the language associated to R1(a, b) [resp.
R2(b, c), R(a, c)], the first answer is

R(a, c) = πX
Z (

∫ (2,2,2)

X

R1(a, c) ∩

∫ (2,2,2)

X

R2(a, c))

and the second answer is

R(a, c) = πX
Z (

∫ (2,2,2)

X

R1(a, b) ∩

∫ (2,2,2)

X

R2(b, c))

with in both cases Z = {a, c}. More generally, our
main result, set in terms of intersection and inte-
gration, is:

Theorem 5.1 Let I = {I1, . . . , In} be a set of n
temporal items, X = {x1, . . . , xn} be the corre-
sponding alphabet and ν = (xp1

1 , · · · , x
pn
n ) their

Parikh vector. Let J1, . . . , Jk be k non empty sub-
sets of I and Y1, . . . , Yk their corresponding alpha-
bets and νYi

their Parikh vectors. For 1 ≤ i ≤ k,
let {Li1 , . . . ,Lisi

} ⊆ L(νYi
) be a set of languages

describing si-ary temporal qualitative constraints
among Ji.

– The all solution problem for I is given by the
language

⋂

1 ≤ i ≤ k

1 ≤ j ≤ si

∫ νX

X

LIij

– The temporal satisfaction problem for I is sat-
isfied if and only if
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⋂

1 ≤ i ≤ k

1 ≤ j ≤ si

∫ νX

X

LIij
6= ∅

In order to have a look on what kind of language
is computed, let us revisit the unsatisfiable closed
network of [2]. There are four intervals A, B, C,

A C

B

D

�
�
�
�
��	

@
@
@
@
@@R

?

��
��
�*

HH
HH

HY

-

s,m s,m

o

d,d∼ d,d∼

f, f∼

Fig. 11. Allen’s instance of an inconsistent labeling.

D. We then take the alphabet X = {a, b, c, d} and
L(2, 2, 2, 2) on X . The data are :

L1 =

∫ ν

X

{

{
a

d

}
da, d

{
a

d

}
a}

L2 =

∫ ν

X

{

{
c

d

}
dc, d

{
c

d

}
c}

L3 =

∫ ν

X

dbdb

L4 =

∫ ν

X

{ca

{
a

c

}
, ac

{
a

c

}
}

L5 =

∫ ν

X

{bccb, cbbc}

L6 =

∫ ν

X

{adda, daad}

The solution is

L = L1 ∩ L2 ∩ L3 ∩ L4 ∩ L5 ∩ L6

that we now compute.
L1 ∩ L2=

∫ ν

X

{




a

c

d



 d, d




a

c

d



 ,

{
a

d

}{
c

d

}
,

{
c

d

}{
a

d

}
}[a||c]

or equivalently, due to the lack of occurrences of b,
L1 ∩ L2=

[
{




a

c

d



 d, d




a

c

d



 ,

{
a

d

}{
c

d

}
,

{
c

d

} {
a

d

}
}.

[a||c]||bb

]

This language contains 164 words.
L1 ∩ L2 ∩ L3=

{




a

c

d



 bd, db




a

c

d



 ,

{
a

d

}
b

{
c

d

}
,

{
c

d

}
b

{
a

d

}
}.

[a||b||c]
This language contains 52 words.
L1 ∩ L2 ∩ L3 ∩ L4=

{

{
a

d

}
b

{
c

d

}
,

{
c

d

}
b

{
a

d

}
}.

[{
a

c

}
||b

]

This language contains 6 words.
L1 ∩ L2 ∩ L3 ∩ L4 ∩ L5=

{

{
a

d

}
b

{
c

d

}{
a

c

}
b,

{
c

d

}
b

{
a

d

}
b

{
a

c

}
}

This language has 2 words.

L1 ∩ L2 ∩ L3 ∩ L4 ∩ L5 ∩ L6 = ∅

This language is empty: the problem is unsatisfi-
able.

6. Temporal reasoning about concurrent systems

Most of the temporal properties of programs
have been studied inside either the framework of
temporal logics or modal logic. Temporal reason-
ing about concurrent systems can be partitioned
in a natural way into two classes related to the
modality used : necessity, symbolized by 2 or pos-
sibility, symbolized by 3. Translated in a tempo-
ral framework, we use the terms always and some-
time. These modalities were studied first by the
Megarians3, then by Aristotle and the Stoic. De-
spite their variant, these modalities are linked to
the universal ∀ and particular ∃ quantifiers.

Manna and Pnuelli [23,24], defined three impor-
tant classes of temporal properties of concurrent
programs that are investigated inside the modal

3A school founded by Euclid of Megaric, student of
Socrates, like Plato, this school was concurrent of Aristo-
tle’s one.
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temporal framework. They are invariance, liveness
and precedence properties. The first two ones are
closely related to the two basis modalities 2, which
is interpreted as always from now on and 3 which
is interpreted as sometimes or at least one time
from now on. The third one is an extension of the
3 class, proposed by Manna and Pnuelli, closed to
the U , the until modality in order to capture prece-
dence in general. These three classes are available
for temporal properties in general. We first review
these three classes and then we revisit their ex-
ample inside our formal languages framework. Our
purpose is not to criticize their solution, but only
to translate it inside our model.

6.1. Temporal properties types

The first class is the class of invariance proper-
ties. These are properties that can be expressed by
a temporal formula of the form: 2ψ or ϕ ⇒ 2ψ.
Such a formula, stated for a program P , says that
every computation of P continuously satisfies ψ
throughout the rest of the computation either from
the beginning (first formula) or whenever ϕ be-
comes true. Among properties falling into this class
are: partial correctness, error-free behavior, mu-
tual exclusion and absence of deadlocks.

The second set, associated to the sometimes

modality defines the liveness properties class.
These properties are expressible by temporal for-
mulas of the form: 3ψ or ϕ ⇒ 3ψ. In both cases
these formulas guarantee the occurrence of some
event ψ; in the first case unconditionally and in the
second case conditional on an earlier occurrence
of the event ϕ. Among properties falling into this
class are: total correctness, termination, accessibil-
ity, lack of individual starvation, and responsive-
ness.

The third class is the precedence properties class
which is very well-known inside the artificial intel-
ligence community. In a broad sense, Manna and
Pnuelli asserted that precedence properties are all
the properties that are expressible using the until
operator U in formulas such as χUψ or ϕ⇒ χUψ.
In both cases the formulas again guarantee the
occurrence of the event ψ, but they also ensure
that from now until that occurrence, χ will con-
tinuously hold. Among properties falling into the
until class are strict (FIFO) responsiveness, and
bounded overtaking. The meaning they give to the
precedence operator, that is to the formula p < q,

is that q eventually happens, and p < q is auto-
matically satisfied if q never happens. Hence we
have:

p < q ≡ ¬((¬p)Uq)

We are now ready to embark inside the prob-
lem of allocating a single resource between several
requesters as explained in [24]. In this paper we
recall almost every thing about their specification,
because this kind of problem is of general interest
for all complex systems.

6.2. The Allocation Problem

Let us consider a program G (granter) serving
as an allocator of a single resource between sev-
eral processes (requesters) R1, . . . , Rk competing
for the resource. Let each Ri communicate with G
by means of two boolean variables: ri and gi. The
variable ri is set to true (= 1) by the requester
to signal a request for the resource. Once Ri has
the resource it signals its release by setting it to
false (= 0). The allocator G signals Ri that the
resource is granted to him by setting gi to true.
Having obtained a release signal from Ri, which is
indicated by ri = false, some time later, it will
appropriate the resource by setting gi to false.

6.2.1. Properties of the system described inside
the modal logic framework.

Several obvious and important properties of
this system belong to the invariance and liveness
classes.

An invariant property. Insuring that the resource
is granted to at most one requester at a time is an
invariant property:

2(

k∑

i=1

gi) ≤ 1

A liveness property: responsiveness The impor-
tant property that ensures responsiveness, i.e.
which guarantees that every request ri will even-
tually be granted by setting gi to true is a liveness
property:

(∀i)(1 ≤ i ≤ k)(ri ⇒ 3gi)

Precedence properties. Two precedence proper-
ties are set.
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– An absolute precedence property: Absence of Un-
solicited Response. An important but often over-
looked desired feature is that the resource will not
be granted to a party who has not requested it. A
similar property in the context of a communica-
tion network is that every message received must
have been sent by somebody. This is expressible
by the temporal formula:

¬gi ⇒ (ri < gi)

The formula states that if presently gi is false,
i.e., Ri does not presently have the resource, then
before the resource will be granted to Ri the next
time, Ri must signal a request by setting ri to true.
– A relative precedence property: a Strict (FIFO)
Responsiveness. Sometimes the weak commit-
ment of eventually responding to request is not
sufficient. At the other extreme we may insist
that responses are ordered in a sequence paral-
lelling the order of arrival of the corresponding
requests. Thus if requester Ri succeeded in plac-
ing in request before requester Rj , the grant to
Ri should precede the grant to Rj . A straightfor-
ward translation of this sentence yields the fol-
lowing intuitive but slightly imprecise expression:
(ri < rj) ⇒ (gi < gj). A more precise expression
is (∀i, j)(i 6= j)(1 ≤ i, j ≤ k)

((ri ∧ ¬rj ∧ ¬gj) ⇒ (¬gjUgi).

It states that if ever we find ourselves in a situa-
tion where ri is presently on, rj and gj are both
off, then we are guaranteed to eventually get a gi,
and until that moment, no grant will be made to
Rj . Note that ri ∧ ¬rj implies that Ri’s request
precedes Rj ’s request, which has not been materi-
alized yet.

We implicitly rely here on the assumption that
once a request has been made, it is not withdrawn
until the request has been honored. This assump-
tion can also be made explicit as part of the spec-
ification, using another precedence expression:

ri ⇒ gi < (¬ri).

Note that while all the earlier properties are re-
quirements from the granter, and should be viewed
as the post-condition part of the specification, this
requirement is the responsibility of the requesters.
It can be viewed as part of the pre-condition of the
specification.

Two assumptions are also implicitly used but
not mentioned:

1. a process is not allowed to make an other
request until he has given the resource back,

2. there are as many requests from Ri as grants
for Ri.

We now are leaving the way Manna and Pnuelli
have resolved the problem inside the modal logic
framework: finding an abstract computation model
based on sequences of transitions and states, a
proof system [24].

6.3. revisitation of the allocation problem inside
the S-languages framework

6.3.1. Objects and relations representations
Our formalization attempts to translate any in-

formation into a temporal information. The two
boolean variables introduced in the formulation of
the problem do not belong to the problem but to
one of its data interpretation. These boolean vari-
ables are evolving through the timeline. It is nat-
ural to represent the values of boolean variables
evolving through the time as characteristics func-
tion of boolean variables on a linear order that can
be called temporal boolean functions [7,15,16]. In-
side a determined and bounded period of time, the
temporal boolean functions ri (resp. gi) can be in-
terpreted as a chain of intervals with ni intervals,
where ni is the number of requests (resp. grants).
This number is exactly known at the end of the
fixed period of time. Any interval is a maximal pe-
riod inside which the value of ri (resp. gi) is true.

A priori, for the general specification, either we
can choose to write ni as an indeterminate number
or to set ∗ for saying that there is a finite but un-
known number. To each requesters, we provide 2k
chains of intervals written on their identities alpha-
bet X = {r1, g1, . . . , rk, gk, }. Any language L that
satisfies the problem is such that its Parikh num-
ber is ~L ⊆ ((2, 2)IN, . . . , (2, 2)IN)︸ ︷︷ ︸

k times

. But for the sake

of an easier reading, we will use the following al-
phabet X = {r1, r̄1, g1, ḡ1 . . . , rk, r̄k, gk, ḡk}, which
allows to make a distinction between the beginning
of the interval (no marked letter) and the end of
the interval (marked letter) so that any language
L that satisfies the problem is such that its Parikh
number is ~L ⊆ ((1, 1, 1, 1)IN, . . . , (1, 1, 1, 1)IN)︸ ︷︷ ︸

k times

.
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6.3.2. The specification.
The invariant property. Insuring that the re-
source is granted to at most one requester at a
time can be interpreted like this: this constraint
only concerns granters. After having read a letter
gi – a beginning of an allocation to Ri –, the first
following occurrence of a letter of type g or ḡ in-
side the S-word is necessarily a ḡi letter (the end
of the current allocation to Ri. This constraint is
formulated by the S-language

L1 =

∫

X

(g1ḡ1, . . . , gkḡk)∗.

Hence we have L ⊆ L1.

The liveness property. The guaranty that every
request ri will eventually be granted concerns each
Ri individually. This organizes every couple of S-
words (rir̄i)

∗ and (giḡi)
∗ saying that after each

occurrence of a letter ri, the first occurrence of a
letter among the set {ri, r̄i, gi, ḡi} is an occurrence
of the letter gi. There is no constraint between the
occurrences of the letters r̄i and ḡi that is to say
that we get

L ⊆
⋂

1≤i≤k

∫

X

(rigi[r̄i, ḡi])
∗

But we can give a more precise S-language, be-
cause we know that the sequence of actions related
to any request is the following: request, allocation,
release and deallocation. So more precisely we can
give

L ⊆ L2 =
⋂

1≤i≤k

∫

X

(rigir̄iḡi)
∗.

The two precedence properties.
– Absence of Unsolicited Response. A resource
will be not granted to a party who has not re-
quested it. This constraint is already written in the
preceding constraint.
– Strict (FIFO) Responsiveness. Grants are or-
dered in the same order as the corresponding re-
quests. This concerns how the occurrences of ri,
rj , gi, gj are shuffled together. The case where
ri = rj has been already taken into account in L2.
Restricted to the alphabet {ri, rj , gi, gj}, if Ri re-
quests before Rj , either Ri is granted before the
request of Rj or after4. But Rj can request before

4The system is not allowed to receive simultaneous re-
quests.

Ri. That is we get four cases that can be organized
as product but not as a shuffle. Hence we have

L ⊆ L3 =
⋂

1≤i<j≤k

∫

X

(rigi, rjgj , rirjgigj , rjrigjgi)
∗

6.3.3. The solution.
All constraints are now to be specified in terms

of S-languages. Every S-word contained in L1 ∩
L2∩L3 satisfies the problem, hence the solution is
L =

∫
X

(g1ḡ1, . . . , gkḡk)∗∩
⋂

1≤i≤k

∫
X

(rigir̄iḡi)
∗ ∩⋂

1≤i6=j≤k

∫
X

(rigi, rjgj, rirjgigj , rjrigjgi)
∗

If the system can’t realize two tasks simultane-
ously, the solution will be L ∩X∗.

6.3.4. Example
Let us suppose that there are three requesters

and the order of the requests is R1R2R3R1R3.
The temporal objects are the four chains expressed
with the S-words - that are also words - r1r̄1r1r̄1,
g1ḡ1g1ḡ1, r3r̄3r3r̄3, g3ḡ3g3ḡ3, and the intervals ex-
pressed with the S-words r2r̄2, g2ḡ2. The set of
all possible situations is given by the language
[r1r̄1r1r̄1||g1ḡ1g1ḡ1||r3r̄3r3r̄3||g3ḡ3g3ḡ3||r2r̄2||g2ḡ2].
That is the S-language with Parikh vector ((2, 2),
(2, 2),(1, 1),(1, 1), (2, 2), (2, 2)) on the ordered al-
phabet {r1, r̄1, g1, ḡ1, r2, r̄2, g2, ḡ2, r3, r̄3, g3, ḡ3}.

The requests order R1R2R3R1R3 induces the
following sequence between the letters of type r :
r1r2r3r1r3.
L2 =

∫
X
{r1g1r̄1ḡ1r1g1r̄1ḡ1, r2g2r̄2ḡ2, r3g3r̄3ḡ3-

r3g3r̄3ḡ3}.
The condition on the r letters and the expression
of sL3 allows to substitute to L3, the language L′

3:
L′

3 =
∫

X
g1g2g3g1g3.

L1 =
∫

X
g1ḡ1g2ḡ2g3ḡ3g1ḡ1g3ḡ3.

The shuffle of all these fragments are depicted
by a Hasse graph of the precedence ordering on the
instants corresponding to the bounds of intervals,
that is the letters in figure 12. This is a graphical
representation of the resulting S-language L.

7. Conclusion

In this paper, we have presented the S-languages
framework and shown how to represent and to rea-
son on qualitative temporal problem. The Hasse
Diagram we provide for the allocation problem has
to be compared with the temporally labeled graph
of Gerevini and Schubert [12].
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Fig. 12. Graphs of the example resulting S-language
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Different implementations have been made in or-
der to improve the complexity on the computa-
tions. They take benefits of the algorithms used
for computing operations in formal languages the-
ory, and the use of automata theory. The problems
come, as usual, from the parts of S-languages that
have to be broken into disjoint parts, in order to
go on in the computation.

Two implementations has already been made,
concerning the interval algebra. The first one is
based on the notion of pattern [11]. The second
one [27] applies it on the linguistical model of De-
sclés based on topological intervals [10]. Bounds of
intervals are labelled in order to mention whether
an interval is open or closed. As L(p1, · · · , pn) is
a lattice, we work on convex parts, following the
approach of Freksa [14]. These prototypes suggest
that ii may be better to compute in two steps: first
accepting all situations, even those not allowed sit-
uations, and second without forbidden situations,
rather than to compute directly the good solution.
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1924

[30] Sylviane R. Schwer. Raisonnement Temporel : les mots
pour le dire. Rapport interne LIPN , 1997

[31] Sylviane R. Schwer, S-arrangements avec répétitions,
Comptes Rendus de l’Académie des Sciences de Paris,
Série I 334 (2002) 261–266.

[32] Neil J.A. Sloane, sequence A001850/M2942, An On-
Line Version of the Encyclopedia of Integer Sequences,
http://www.research.att.com/̃njas/sequences/eisonline.html

[33] Marc Vilain, A system for reasoning about time. Pro-
ceedings of the AAAI (1982) 197–201.

[34] Marc Vilain, Henry Kautz, Constraint Propagation Al-
gorithms for Temporal Reasoning, Proceedings of the
AAAI (1986) 377-382

[35] Eric Weisstein, CRC Concise Encyclopedia of Mathe-
matics, CRC Press, 1999.

http://www.research.att.com/~njas/sequences/eisonline.html

