Congruence Identities Arising From Dynamical Systems

Bau-Sen Du
Institute of Mathematics
Academia Sinica
Taipei 11529, Taiwan
dubs@math.sinica.edu.tw
(Appl. Math. Letters, 12(1999), 115-119)

Abstract

By counting the numbers of periodic points of all periods for some interval maps, we obtain infinitely many new congruence identities in number theory.

Let S be a nonempty set and let f be a map from S into itself. For every positive integer n, we define the $n^{t h}$ iterate of f by letting $f^{1}=f$ and $f^{n}=f \circ f^{n-1}$ for $n \geq 2$. For $y \in S$, we call the set $\left\{f^{k}(y): k \geq 0\right\}$ the orbit of y under f. If $f^{m}(y)=y$ for some positive integer m, we call y a periodic point of f and call the smallest such positive integer m the least period of y under f. We also call periodic points of least period 1 fixed points. It is clear that if y is a periodic point of f with least period m, then, for every integer $1 \leq k \leq m-1, f^{k}(y)$ is also a periodic point of f with least period m and they are all distinct. So, every periodic orbit of f with least period m consists of exactly m points. Since distinct periodic orbits of f are pairwise disjoint, the number (if finite) of distinct periodic points of f with least period m is divisible by m and the quotient equals the number of distinct periodic orbits of f with least period m. Therefore, if there is a way to find the numbers of periodic points of all periods for a map, then we obtain infinitely many congruence identities in number theory. This is an interesting application of dynamical systems theory to number theory which is not found in [1, 2].

Let $\phi(m)$ be an integer-valued function defined on the set of all positive integers. If $m=$ $p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$, where the p_{i} 's are distinct prime numbers, r and k_{i} 's are positive integers, we let $\Phi_{1}(1, \phi)=\phi(1)$ and let $\Phi_{1}(m, \phi)=$

$$
\phi(m)-\sum_{i=1}^{r} \phi\left(\frac{m}{p_{i}}\right)+\sum_{i_{1}<i_{2}} \phi\left(\frac{m}{p_{i_{1}} p_{i_{2}}}\right)-\sum_{i_{1}<i_{2}<i_{3}} \phi\left(\frac{m}{p_{i_{1}} p_{i_{2}} p_{i_{3}}}\right)+\cdots+(-1)^{r} \phi\left(\frac{m}{p_{1} p_{2} \cdots p_{r}}\right),
$$

where the summation $\sum_{i_{1}<i_{2}<\cdots<i_{j}}$ is taken over all integers $i_{1}, i_{2}, \cdots, i_{j}$ with $1 \leq i_{1}<i_{2}<\cdots<$ $i_{j} \leq r$. If $m=2^{k_{0}} p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$, where the p_{i} 's are distinct odd prime numbers, and $k_{0} \geq 0, r \geq 1$, and the k_{i} 's ≥ 1 are integers, we let $\Phi_{2}(m, \phi)=$

$$
\phi(m)-\sum_{i=1}^{r} \phi\left(\frac{m}{p_{i}}\right)+\sum_{i_{1}<i_{2}} \phi\left(\frac{m}{p_{i_{1}} p_{i_{2}}}\right)-\sum_{i_{1}<i_{2}<i_{3}} \phi\left(\frac{m}{p_{i_{1}} p_{i_{2}} p_{i_{3}}}\right)+\cdots+(-1)^{r} \phi\left(\frac{m}{p_{1} p_{2} \cdots p_{r}}\right),
$$

If $m=2^{k}$, where $k \geq 0$ is an integer, we let $\Phi_{2}(m, \phi)=\phi(m)-1$.
Let f be a map from the set S into itself. For every positive integer $m=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$, where p_{i} 's and k_{i} 's are defined as above, if $\phi(m)$ represents the number of distinct solutions of the equation $f^{m}(x)=x$ (i.e. the number of fixed points of $\left.f^{m}(x)\right)$ in S, then in the above formula for $\Phi_{1}(m, \phi)$, the periodic points of f with least period $\frac{m}{p_{i_{1}}^{t_{i_{1}}} p_{i_{2}}^{t_{2}} \ldots p_{i_{j}}} \quad<m$, where $1 \leq t_{i_{s}} \leq k_{i_{s}}, 1 \leq s \leq j$ are integers, have been counted
j times in the evaluation of $\phi\left(\frac{m}{p_{i_{u}}}\right), 1 \leq u \leq j$,
$\binom{j}{2}$ times in the evaluation of $\phi\left(\frac{m}{p_{i_{u}} p_{i_{v}}}\right), 1 \leq u<v \leq j$,
$\binom{j}{3}$ times in the evaluation of $\phi\left(\frac{m}{p_{i_{u}} p_{i_{v}} p_{i_{w}}}\right), 1 \leq u<v<w \leq j$,

$$
\vdots
$$

$\binom{j}{j} \quad$ times in the evaluation of $\phi\left(\frac{m}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{j}}}\right)$.
Totally, they have been counted

$$
-j+\binom{j}{2}-\binom{j}{3}+\cdots+(-1)^{j}\binom{j}{j}=\left[(1-1)^{j}-1\right]=-1
$$

times. Therefore, $\Phi_{1}(m, \phi)$ is indeed the number of periodic points of f with least period m. Similar argument applies to Φ_{2}. So, we obtain the following result:

Theorem 1. Let S be a nonempty set and let g be a map from S into itself such that, for every positive integer m, the equation $g^{m}(x)=x$ (or $g^{m}(x)=-x$ respectively) has only finitely many distinct solutions. Let $\phi(m)$ (or $\psi(m)$ respectively) denote the number of these solutions. Then, for every positive integer m, the following hold:
(1) The number of periodic points of g with least period m is $\Phi_{1}(m, \phi)$. Consequently, $\Phi_{1}(m, \phi) \equiv$ $0(\bmod m)$.
(2) If $0 \in S$ and g is odd, then the number of symmetric periodic points (i.e. periodic points whose orbits are symmetric with respect to the origin) of g with least period $2 m$ is $\Phi_{2}(m, \psi)$. Consequently, $\Phi_{2}(m, \psi) \equiv 0(\bmod 2 m)$.

Successful applications of the above theorem depend of course on a knowledge of the function ϕ or ψ. For continuous maps from a compact interval into itself, the method of symbolic representations as introduced in [3, 4, 5] is very powerful in enumerating the numbers (and hence generating the function ϕ or ψ) of the fixed points of all positive integral powers of the maps. However, to get simple recursive formulas for the function ϕ or ψ, an appropriate map must be
chosen. The method of symbolic representations is simple, powerful, and easy to use. Once you get the hang of it, the rest is only routine. See [3, 4, 5] for some examples regarding how this method works. In the following, we present some new sequences which are found neither in [2] nor in "superseekerresearch.att.com". Proofs of these results can be followed from those of [3, 4, 5].

Theorem 2. For integers $n \geq 4$ and $1<m<n-1$, let $f_{m, n}(x)$ be the continuous map from $[1, n]$ onto itself defined by: $f_{m, n}(1)=m+1, f_{m, n}(2)=1, f_{m, n}(m)=m-1, f_{m, n}(m+1)=m+2$, $f_{m, n}(n-1)=n$, $f_{m, n}(n)=m$, and $f_{m, n}(x)$ is linear on $[j, j+1]$ for every integer j with $1 \leq j \leq$ $n-1$. Also let $f(x)$ be the continuous map from [1,4] onto itself defined by: $f(1)=f(3)=4$, $f(2)=1, f(4)=2$, and $f(x)$ is linear on $[1,2],[2,3]$, and on $[3,4]$. For integers $n \geq 3$, we also define sequences $<a_{n, k}>$ as follows:

$$
a_{n, k}= \begin{cases}2^{k+1}-1, & \text { for } 1 \leq k \leq n-1, \\ 3 a_{n, k-1}-\sum_{i=2}^{n-1} a_{n, k-i}, & \text { for } n \leq k\end{cases}
$$

Then the following hold:
(a) For any positive integer $k, a_{3, k}$ is the number of distinct fixed points of the map $f^{k}(x)$ in $[1,4]$, and for any positive integer k, any integers $n \geq 4$ and $1<m<n-1$, the number of distinct fixed points of the map $f_{m, n}^{k}(x)$ in $[1, n]$ is $a_{n, k}$ which is clearly independent of m for all $1<m<n-1$. Consequently, for any integer $n \geq 3$, if $\phi_{a_{n}}(k)=a_{n, k}$ and Φ_{1} is defined as in Theorem 1, then $\Phi_{1}\left(k, \phi_{a_{n}}\right) \equiv 0(\bmod k)$ for all integers $k \geq 1$.
(b) For every integer $n \geq 3$, the generating function $G_{a_{n}}(z)$ of the sequence $<a_{n, k}>$ is $G_{a_{n}}(z)=$ $\left(3 z-\sum_{k=2}^{n-1} k z^{k}\right) /\left(1-3 z+\sum_{k=2}^{n-1} z^{k}\right)$.

Theorem 3. For every integer $n \geq 1$, let $g_{n}(x)$ be the continuous map from $[1,2 n+1]$ onto itself defined by: $g_{n}(1)=n+1, g_{n}(2)=2 n+1, g_{n}(n+1)=n+2, g_{n}(n+2)=n, g_{n}(2 n+1)=1$, and $g_{n}(x)$ is linear on $[j, j+1]$ for every integer j with $1 \leq j \leq 2 n$. We also define sequences $<b_{n, k}>$ as follows:

$$
\begin{cases}b_{n, 2 k-1}=1, & \text { for } 1 \leq k \leq n \\ b_{n, 2 k-1}=2^{k-n-1}(2 k-1)+1, & \text { for } n+1 \leq k \leq 2 n \\ b_{n, 2 k}=2^{k+1}-1, & \text { for } 1 \leq k \leq 2 n \\ b_{n, k}=3 b_{n, k-2}-\sum_{i=2}^{2 n} b_{n, k-2 i}, & \text { for } k \geq 4 n+1\end{cases}
$$

Then, for any integers $k \geq 1$ and $n \geq 1, b_{n, k}$ is the number of distinct fixed points of the map $g_{n}^{k}(x)$ in $[1,2 n+1]$. Consequently, if $\phi_{b_{n}}(k)=b_{n, k}$ and Φ_{1} is defined as in Theorem 1 , then $\Phi_{1}\left(k, \phi_{b_{n}}\right) \equiv 0$ $(\bmod k)$ for all integers $k \geq 1$. Moreover, the generating function $G_{b_{n}}(z)$ of the sequence $<b_{n, k}>$ is $G_{b_{n}}(z)=\left(z+\sum_{k=2}^{2 n}(-1)^{k} k z^{k}\right) /\left(1-z-\sum_{k=2}^{2 n}(-1)^{k} z^{k}\right)$.

Remark. In Theorem 3, when $n=1$, the sequence $<b_{n, k}>$ becomes the Lucas sequence: $1,3,4,7,11, \cdots$.

Theorem 4. For integers $n \geq 2,2 \leq j \leq 2 n+1$, and $2 \leq m \leq 2 n+1$, let $h_{j, m, n}(x)$ be the continuous map from $[1,2 n+2]$ onto itself defined by: $h_{j, m, n}(1)=j, h_{j, m, n}(x)=1$ for all even
integers x in $[2,2 n], h_{j, m, n}(x)=2 n+2$ for all odd integers x in $[3,2 n+1], h_{j, m, n}(2 n+2)=m$, and $h_{j, m, n}(x)$ is linear on $[j, j+1]$ for every integer j with $1 \leq j \leq 2 n+1$. We also define sequences $<c_{j, m, n, k}>$ as follows:

$$
c_{j, m, n, k}= \begin{cases}2 n+1, & \text { for } k=1, \\ (2 n+1)^{2}-2[2 n-(j-m)], & \text { for } k=2, \\ (2 n+1)^{3}-6 n[2 n+1-(j-m)], & \text { for } k=3, \\ (2 n+1) c_{j, m, n, k-1}-[2 n-(j-m)] c_{j, m, n, k-2}-(j-m) c_{j, m, n, k-3}, & \text { for } k \geq 4\end{cases}
$$

Then, for any integers $n \geq 2,2 \leq j \leq 2 n+1,2 \leq m \leq 2 n+1$, and $k \geq 1, c_{j, m, n, k}$ is the number of distinct fixed points of the map $h_{j, m, n}^{k}(x)$ in $[1,2 n+2]$. Consequently, if $\phi_{c_{j, m, n}}(k)=c_{j, m, n, k}$ and Φ_{1} is defined as in Theorem 1 , then $\Phi_{1}\left(k, \phi_{c_{j, m, n}}\right) \equiv 0(\bmod k)$ for all integers $k \geq 1$. Moreover, the generating function $G_{c_{j, m, n}}(z)$ of the sequence $<c_{j, m, n, k}>$ is $G_{c_{j, m, n}}(z)=\{(2 n+1) z-2[2 n-$ $\left.(j-m)] z^{2}-3(j-m) z^{3}\right\} /\left\{1-(2 n+1) z+[2 n-(j-m)] z^{2}+(j-m) z^{3}\right\}$.

Remarks. (1) For fixed integers $n \geq 2, q, r$, and s, let $\phi(k)$ be the map on the set of all positive integers defined by: $\phi(1)=2 n+1, \phi(2)=(2 n+1)^{2}-2 q, \phi(3)=(2 n+1)^{3}-6 r$ and $\phi(k)=$ $(2 n+1) \phi(k-1)-q \phi(k-2)-s \phi(k-3)$ for all integers $k \geq 4$. Then Theorem 4 implies that, for some suitable choices of q, r, s, and a map $f, \phi(k)$ are the numbers of fixed points of $f^{k}(x)$ and hence, for Φ_{1} defined as in Theorem $1, \Phi_{1}(k, \phi) \equiv 0(\bmod k)$ for all integers $k \geq 1$. If we only consider $\phi(k)$ as a sequence of positive integers and disregard whether it represents the numbers of fixed points of all positive integral powers of some map, we can still ask if $\Phi_{1}(k, \phi) \equiv 0(\bmod$ k) for all integers $k \geq 1$. Extensive computer experiments suggest that this seems to be the case for some other choices of q, r, and s. Therefore, there should be a number-theoretic approach to this more general problem as does in Theorem 5 below.
(2) Note that, in Theorem 4 above, when $j=2$ nd $m=2 n+1$, we actually have $c_{2,2 n+1, n, k}=$ $(2 n-1)^{k}+2$ which satisfies the difference equation $c_{2,2 n+1, n, k+1}=(2 n-1) c_{2,2 n+1, n, k}-4(n-1)$ for all positive integers k.

The following result concerning the linear recurrence of second-order can be obtained by counting the fixed points of all positive integral powers of maps similar to those considered in Theorem 4. The number-theoretic approach can also be found in [6, 7].

Theorem 5. For integers $n \geq 2$ and $1-n \leq m \leq n$, let $<d_{m, n, k}>$ be the sequences defined by

$$
d_{m, n, k}= \begin{cases}n, & \text { for } k=1 \\ n^{2}+2 m, & \text { for } k=2 \\ n d_{m, n, k-1}+m d_{m, n, k-2}, & \text { for } k \geq 3\end{cases}
$$

For any integers $n \geq 2,1-n \leq m \leq n$ and $k \geq 1$, if $\phi_{d_{m, n}}(k)=d_{m, n, k}$ and Φ_{1} is defined as in Theorem 1, then $\Phi_{1}\left(k, \phi_{d_{m, n}}\right) \equiv 0(\bmod k)$ for all integers $k \geq 1$. Moreover, the generating function $G_{d_{m, n}}(z)$ of the sequence $<d_{m, n, k}>$ is $G_{d_{m, n}}(z)=\left(n z+2 m z^{2}\right) /\left(1-n z-m z^{2}\right)$.

The following result is taken from [4, Theorem 3]. More similar examples can also be found in [4].

Theorem 6. For every integer $n \geq 2$, let $p_{n}(x)$ be the continuous odd map from $[-n, n]$ onto itself defined by $p_{n}(i)=i+1$ for every integer i with $1 \leq i \leq n-1, p_{n}(n)=-1$, and $p_{n}(x)$ is linear on $[j, j+1]$ for every integer j with $-n \leq j \leq n-1$. We also define sequences $<s_{n, k}>$ as follows:

$$
s_{n, k}= \begin{cases}1, & \text { for } 1 \leq k \leq n-1, \\ 2^{k-n}(2 k)+1, & \text { for } n \leq k \leq 2 n-1, \\ 3 s_{n, k-1}-\sum_{i=2}^{2 n-1} s_{n, k-i}, & \text { for } 2 n \leq k\end{cases}
$$

Then, for any integers $n \geq 2$ and $k \geq 1, a_{2 n, k}$ is the number of distinct fixed points of the map $p_{n}^{k}(x)$ in $[-n, n]$, where $a_{2 n, k}$ is defined as in Theorem 2, and $s_{n, k}$ is the number of distinct solutions of the equation $p_{n}^{k}(x)=-x$ in $[-n, n]$. Consequently, if $\psi_{s_{n}}(k)=s_{n, k}$ and Φ_{2} is defined as in Theorem 1, then $\Phi_{2}\left(k, \psi_{s_{n}}\right) \equiv 0(\bmod 2 k)$. Moreover, the generating function $G_{s_{n}}(z)$ of $<s_{n, k}>$ is $G_{s_{n}}(z)=\left[z-2 z^{2}-z^{3}+\sum_{k=5}^{n-1}(k-4) z^{k}+(3 n-4) z^{n}-\sum_{k=n+1}^{2 n-1}(2 n-k) z^{k}\right] /\left(1-3 z+\sum_{k=2}^{2 n-1} z^{k}\right)$. (When $n=2$, ignore $-2 x^{2}$, and when $n=3$, ignore $-x^{3}$).

Remark. Numerical computations suggest that the maps $\psi_{s_{n}}$ in Theorem 6 also satisfy $\Phi_{1}\left(k, \psi_{s_{n}}\right) \equiv$ $0(\bmod k)$ for all integers $k \geq 1$. However, our method cannot verify this. There may be an algebraic-theoretic verification of it.

ACKNOWLEDGMENTS The author wants to thank Professor Peter Jau-Shyong Shiue for his many invaluable suggestions and encouragements in writing this paper.

References

[1] J. C. Lagarias, Number theory and dynamical systems, The unreasonable effectiveness in number theory (Orono, ME, 1991), 35-72, Proceedings of symposia in applied mathematics vol. 46, American Mathematical Society, Providence, RI, 1992.
[2] N. J. A. Sloane and S. Plouffe The encyclopedia of integer sequences, Academic Press, New York, 1995.
[3] B.-S. Du, The minimal number of periodic orbits of periods guaranteed in Sharkovskii's theorem, Bull. Austral. Math. Soc. 31 (1985), 89-103; Corrigendum: 32 (1985), 159.
[4] B.-S. Du, Symmetric periodic orbits of continuous odd functions on the interval, Bull. Inst. Math. Acad. Sinica 16 1988, 1-48.
[5] B.-S. Du, A simple method which generates infinitely many congruence identities, Fibonacci Quarterly 27 (1989), 116-124.
[6] R. S. Melham and A. G. Shannon, Some congruence properties of generalized second-order integer sequences Fibonacci Quarterly 32, (1994), 424-428.
[7] P. S. Bruckman, Advanced problem H-517, Fibonacci Quarterly 34 (1996), 473.

