Congruence Identities Arising From Dynamical Systems

Bau-Sen Du

Institute of Mathematics Academia Sinica Taipei 11529, Taiwan dubs@math.sinica.edu.tw (Appl. Math. Letters, 12(1999), 115-119)

Abstract

By counting the numbers of periodic points of all periods for some interval maps, we obtain infinitely many new congruence identities in number theory.

Let S be a nonempty set and let f be a map from S into itself. For every positive integer n, we define the n^{th} iterate of f by letting $f^1 = f$ and $f^n = f \circ f^{n-1}$ for $n \ge 2$. For $y \in S$, we call the set $\{f^k(y) : k \ge 0\}$ the orbit of y under f. If $f^m(y) = y$ for some positive integer m, we call y a periodic point of f and call the smallest such positive integer m the least period of y under f. We also call periodic points of least period 1 fixed points. It is clear that if y is a periodic point of f with least period m, then, for every integer $1 \le k \le m - 1$, $f^k(y)$ is also a periodic point of f with least period m and they are all distinct. So, every periodic orbit of f with least period m consists of exactly m points. Since distinct periodic orbits of f are pairwise disjoint, the number (if finite) of distinct periodic points of f with least period m. Therefore, if there is a way to find the number of distinct periodic orbits of a map, then we obtain infinitely many congruence identities in number theory. This is an interesting application of dynamical systems theory to number theory which is not found in [1, 2].

Let $\phi(m)$ be an integer-valued function defined on the set of all positive integers. If $m = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$, where the p_i 's are distinct prime numbers, r and k_i 's are positive integers, we let $\Phi_1(1, \phi) = \phi(1)$ and let $\Phi_1(m, \phi) =$

$$\phi(m) - \sum_{i=1}^{r} \phi(\frac{m}{p_i}) + \sum_{i_1 < i_2} \phi(\frac{m}{p_{i_1} p_{i_2}}) - \sum_{i_1 < i_2 < i_3} \phi(\frac{m}{p_{i_1} p_{i_2} p_{i_3}}) + \dots + (-1)^r \phi(\frac{m}{p_1 p_2 \dots p_r}),$$

where the summation $\sum_{i_1 < i_2 < \cdots < i_j}$ is taken over all integers i_1, i_2, \cdots, i_j with $1 \le i_1 < i_2 < \cdots < i_j \le r$. If $m = 2^{k_0} p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$, where the p_i 's are distinct odd prime numbers, and $k_0 \ge 0, r \ge 1$, and the k_i 's ≥ 1 are integers, we let $\Phi_2(m, \phi) =$

$$\phi(m) - \sum_{i=1}^{\prime} \phi(\frac{m}{p_i}) + \sum_{i_1 < i_2} \phi(\frac{m}{p_{i_1} p_{i_2}}) - \sum_{i_1 < i_2 < i_3} \phi(\frac{m}{p_{i_1} p_{i_2} p_{i_3}}) + \dots + (-1)^r \phi(\frac{m}{p_1 p_2 \dots p_r})$$

If $m = 2^k$, where $k \ge 0$ is an integer, we let $\Phi_2(m, \phi) = \phi(m) - 1$.

Let f be a map from the set S into itself. For every positive integer $m = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$, where p_i 's and k_i 's are defined as above, if $\phi(m)$ represents the number of distinct solutions of the equation $f^m(x) = x$ (i.e. the number of fixed points of $f^m(x)$) in S, then in the above formula for $\Phi_1(m, \phi)$, the periodic points of f with least period $\frac{m}{p_{i_1}^{t_{i_1}} p_{i_2}^{t_{i_2}} \cdots p_{i_j}^{t_{i_j}}} < m$, where $1 \le t_{i_s} \le k_{i_s}$, $1 \le s \le j$ are

integers, have been counted

$$\begin{array}{ll} j & \text{times in the evaluation of} & \phi(\frac{m}{p_{i_u}}), 1 \leq u \leq j, \\ \binom{j}{2} & \text{times in the evaluation of} & \phi(\frac{m}{p_{i_u}p_{i_v}}), 1 \leq u < v \leq j, \\ \binom{j}{3} & \text{times in the evaluation of} & \phi(\frac{m}{p_{i_u}p_{i_v}p_{i_w}}), 1 \leq u < v < w \leq j \\ & \vdots \\ \binom{j}{j} & \text{times in the evaluation of} & \phi(\frac{m}{p_{i_1}p_{i_2}\cdots p_{i_j}}). \end{array}$$

Totally, they have been counted

$$-j + \binom{j}{2} - \binom{j}{3} + \dots + (-1)^j \binom{j}{j} = [(1-1)^j - 1] = -1$$

times. Therefore, $\Phi_1(m, \phi)$ is indeed the number of periodic points of f with least period m. Similar argument applies to Φ_2 . So, we obtain the following result:

Theorem 1. Let S be a nonempty set and let g be a map from S into itself such that, for every positive integer m, the equation $g^m(x) = x$ (or $g^m(x) = -x$ respectively) has only finitely many distinct solutions. Let $\phi(m)$ (or $\psi(m)$ respectively) denote the number of these solutions. Then, for every positive integer m, the following hold:

- (1) The number of periodic points of g with least period m is $\Phi_1(m, \phi)$. Consequently, $\Phi_1(m, \phi) \equiv 0 \pmod{m}$.
- (2) If $0 \in S$ and g is odd, then the number of symmetric periodic points (i.e. periodic points whose orbits are symmetric with respect to the origin) of g with least period 2m is $\Phi_2(m, \psi)$. Consequently, $\Phi_2(m, \psi) \equiv 0 \pmod{2m}$.

Successful applications of the above theorem depend of course on a knowledge of the function ϕ or ψ . For continuous maps from a compact interval into itself, the method of symbolic representations as introduced in [3, 4, 5] is very powerful in enumerating the numbers (and hence generating the function ϕ or ψ) of the fixed points of all positive integral powers of the maps. However, to get simple recursive formulas for the function ϕ or ψ , an appropriate map must be

chosen. The method of symbolic representations is simple, powerful, and easy to use. Once you get the hang of it, the rest is only routine. See [3, 4, 5] for some examples regarding how this method works. In the following, we present some new sequences which are found neither in [2] nor in "superseekerresearch.att.com". Proofs of these results can be followed from those of [3, 4, 5].

Theorem 2. For integers $n \ge 4$ and 1 < m < n - 1, let $f_{m,n}(x)$ be the continuous map from [1, n] onto itself defined by: $f_{m,n}(1) = m + 1$, $f_{m,n}(2) = 1$, $f_{m,n}(m) = m - 1$, $f_{m,n}(m+1) = m + 2$, $f_{m,n}(n-1) = n$, $f_{m,n}(n) = m$, and $f_{m,n}(x)$ is linear on [j, j + 1] for every integer j with $1 \le j \le n - 1$. Also let f(x) be the continuous map from [1, 4] onto itself defined by: f(1) = f(3) = 4, f(2) = 1, f(4) = 2, and f(x) is linear on [1, 2], [2, 3], and on [3, 4]. For integers $n \ge 3$, we also define sequences $< a_{n,k} > as$ follows:

$$a_{n,k} = \begin{cases} 2^{k+1} - 1, & \text{for } 1 \le k \le n-1, \\ 3a_{n,k-1} - \sum_{i=2}^{n-1} a_{n,k-i}, & \text{for } n \le k. \end{cases}$$

Then the following hold:

- (a) For any positive integer k, $a_{3,k}$ is the number of distinct fixed points of the map $f^k(x)$ in [1,4], and for any positive integer k, any integers $n \ge 4$ and 1 < m < n 1, the number of distinct fixed points of the map $f_{m,n}^k(x)$ in [1, n] is $a_{n,k}$ which is clearly independent of m for all 1 < m < n 1. Consequently, for any integer $n \ge 3$, if $\phi_{a_n}(k) = a_{n,k}$ and Φ_1 is defined as in Theorem 1, then $\Phi_1(k, \phi_{a_n}) \equiv 0 \pmod{k}$ for all integers $k \ge 1$.
- (b) For every integer $n \ge 3$, the generating function $G_{a_n}(z)$ of the sequence $\langle a_{n,k} \rangle$ is $G_{a_n}(z) = (3z \sum_{k=2}^{n-1} kz^k)/(1 3z + \sum_{k=2}^{n-1} z^k).$

Theorem 3. For every integer $n \ge 1$, let $g_n(x)$ be the continuous map from [1, 2n + 1] onto itself defined by: $g_n(1) = n + 1$, $g_n(2) = 2n + 1$, $g_n(n + 1) = n + 2$, $g_n(n + 2) = n$, $g_n(2n + 1) = 1$, and $g_n(x)$ is linear on [j, j + 1] for every integer j with $1 \le j \le 2n$. We also define sequences $< b_{n,k} >$ as follows:

$$\begin{cases} b_{n,2k-1} = 1, & \text{for } 1 \le k \le n, \\ b_{n,2k-1} = 2^{k-n-1}(2k-1) + 1, & \text{for } n+1 \le k \le 2n, \\ b_{n,2k} = 2^{k+1} - 1, & \text{for } 1 \le k \le 2n, \\ b_{n,k} = 3b_{n,k-2} - \sum_{i=2}^{2n} b_{n,k-2i}, & \text{for } k \ge 4n+1. \end{cases}$$

Then, for any integers $k \ge 1$ and $n \ge 1$, $b_{n,k}$ is the number of distinct fixed points of the map $g_n^k(x)$ in [1, 2n+1]. Consequently, if $\phi_{b_n}(k) = b_{n,k}$ and Φ_1 is defined as in Theorem 1, then $\Phi_1(k, \phi_{b_n}) \equiv 0$ (mod k) for all integers $k \ge 1$. Moreover, the generating function $G_{b_n}(z)$ of the sequence $\langle b_{n,k} \rangle$ is $G_{b_n}(z) = (z + \sum_{k=2}^{2n} (-1)^k k z^k)/(1 - z - \sum_{k=2}^{2n} (-1)^k z^k)$.

Remark. In Theorem 3, when n = 1, the sequence $\langle b_{n,k} \rangle$ becomes the Lucas sequence: 1,3,4,7,11, \cdots .

Theorem 4. For integers $n \ge 2$, $2 \le j \le 2n + 1$, and $2 \le m \le 2n + 1$, let $h_{j,m,n}(x)$ be the continuous map from [1, 2n + 2] onto itself defined by: $h_{j,m,n}(1) = j$, $h_{j,m,n}(x) = 1$ for all even

integers x in [2, 2n], $h_{j,m,n}(x) = 2n+2$ for all odd integers x in [3, 2n+1], $h_{j,m,n}(2n+2) = m$, and $h_{j,m,n}(x)$ is linear on [j, j+1] for every integer j with $1 \le j \le 2n+1$. We also define sequences $< c_{j,m,n,k} >$ as follows:

$$c_{j,m,n,k} = \begin{cases} 2n+1, & \text{for } k = 1, \\ (2n+1)^2 - 2[2n - (j-m)], & \text{for } k = 2, \\ (2n+1)^3 - 6n[2n+1 - (j-m)], & \text{for } k = 3, \\ (2n+1)c_{j,m,n,k-1} - [2n - (j-m)]c_{j,m,n,k-2} - (j-m)c_{j,m,n,k-3}, & \text{for } k \ge 4. \end{cases}$$

Then, for any integers $n \ge 2, 2 \le j \le 2n + 1, 2 \le m \le 2n + 1$, and $k \ge 1, c_{j,m,n,k}$ is the number of distinct fixed points of the map $h_{j,m,n}^k(x)$ in [1, 2n + 2]. Consequently, if $\phi_{c_{j,m,n}}(k) = c_{j,m,n,k}$ and Φ_1 is defined as in Theorem 1, then $\Phi_1(k, \phi_{c_{j,m,n}}) \equiv 0 \pmod{k}$ for all integers $k \ge 1$. Moreover, the generating function $G_{c_{j,m,n}}(z)$ of the sequence $\langle c_{j,m,n,k} \rangle$ is $G_{c_{j,m,n}}(z) = \{(2n+1)z - 2[2n - (j-m)]z^2 - 3(j-m)z^3\}/\{1 - (2n+1)z + [2n - (j-m)]z^2 + (j-m)z^3\}.$

Remarks. (1) For fixed integers $n \ge 2, q, r$, and s, let $\phi(k)$ be the map on the set of all positive integers defined by: $\phi(1) = 2n + 1$, $\phi(2) = (2n + 1)^2 - 2q$, $\phi(3) = (2n + 1)^3 - 6r$ and $\phi(k) = (2n + 1)\phi(k - 1) - q\phi(k - 2) - s\phi(k - 3)$ for all integers $k \ge 4$. Then Theorem 4 implies that, for some suitable choices of q, r, s, and a map $f, \phi(k)$ are the numbers of fixed points of $f^k(x)$ and hence, for Φ_1 defined as in Theorem 1, $\Phi_1(k, \phi) \equiv 0 \pmod{k}$ for all integers $k \ge 1$. If we only consider $\phi(k)$ as a sequence of positive integers and disregard whether it represents the numbers of fixed points of all positive integral powers of some map, we can still ask if $\Phi_1(k, \phi) \equiv 0 \pmod{k}$ for all integers $k \ge 1$. Extensive computer experiments suggest that this seems to be the case for some other choices of q, r, and s. Therefore, there should be a number-theoretic approach to this more general problem as does in Theorem 5 below.

(2) Note that, in Theorem 4 above, when j = 2 nd m = 2n + 1, we actually have $c_{2,2n+1,n,k} = (2n-1)^k + 2$ which satisfies the difference equation $c_{2,2n+1,n,k+1} = (2n-1)c_{2,2n+1,n,k} - 4(n-1)$ for all positive integers k.

The following result concerning the linear recurrence of second-order can be obtained by counting the fixed points of all positive integral powers of maps similar to those considered in Theorem 4. The number-theoretic approach can also be found in [6, 7].

Theorem 5. For integers $n \ge 2$ and $1 - n \le m \le n$, let $\langle d_{m,n,k} \rangle$ be the sequences defined by

$$d_{m,n,k} = \begin{cases} n, & \text{for } k = 1, \\ n^2 + 2m, & \text{for } k = 2, \\ nd_{m,n,k-1} + md_{m,n,k-2}, & \text{for } k \ge 3. \end{cases}$$

For any integers $n \ge 2$, $1-n \le m \le n$ and $k \ge 1$, if $\phi_{d_{m,n}}(k) = d_{m,n,k}$ and Φ_1 is defined as in Theorem 1, then $\Phi_1(k, \phi_{d_{m,n}}) \equiv 0 \pmod{k}$ for all integers $k \ge 1$. Moreover, the generating function $G_{d_{m,n}}(z)$ of the sequence $\langle d_{m,n,k} \rangle$ is $G_{d_{m,n}}(z) = (nz + 2mz^2)/(1 - nz - mz^2)$.

The following result is taken from [4, Theorem 3]. More similar examples can also be found in [4].

Theorem 6. For every integer $n \ge 2$, let $p_n(x)$ be the continuous odd map from [-n, n] onto itself defined by $p_n(i) = i + 1$ for every integer i with $1 \le i \le n - 1$, $p_n(n) = -1$, and $p_n(x)$ is linear on [j, j + 1] for every integer j with $-n \le j \le n - 1$. We also define sequences $< s_{n,k} >$ as follows:

$$s_{n,k} = \begin{cases} 1, & \text{for } 1 \le k \le n-1, \\ 2^{k-n}(2k) + 1, & \text{for } n \le k \le 2n-1, \\ 3s_{n,k-1} - \sum_{i=2}^{2n-1} s_{n,k-i}, & \text{for } 2n \le k. \end{cases}$$

Then, for any integers $n \ge 2$ and $k \ge 1$, $a_{2n,k}$ is the number of distinct fixed points of the map $p_n^k(x)$ in [-n, n], where $a_{2n,k}$ is defined as in Theorem 2, and $s_{n,k}$ is the number of distinct solutions of the equation $p_n^k(x) = -x$ in [-n, n]. Consequently, if $\psi_{s_n}(k) = s_{n,k}$ and Φ_2 is defined as in Theorem 1, then $\Phi_2(k, \psi_{s_n}) \equiv 0 \pmod{2k}$. Moreover, the generating function $G_{s_n}(z)$ of $< s_{n,k} >$ is $G_{s_n}(z) = [z - 2z^2 - z^3 + \sum_{k=5}^{n-1} (k-4)z^k + (3n-4)z^n - \sum_{k=n+1}^{2n-1} (2n-k)z^k]/(1 - 3z + \sum_{k=2}^{2n-1} z^k)$. (When n = 2, ignore $-2x^2$, and when n = 3, ignore $-x^3$).

Remark. Numerical computations suggest that the maps ψ_{s_n} in Theorem 6 also satisfy $\Phi_1(k, \psi_{s_n}) \equiv 0 \pmod{k}$ for all integers $k \geq 1$. However, our method cannot verify this. There may be an algebraic-theoretic verification of it.

ACKNOWLEDGMENTS The author wants to thank Professor Peter Jau-Shyong Shiue for his many invaluable suggestions and encouragements in writing this paper.

References

- J. C. Lagarias, Number theory and dynamical systems, The unreasonable effectiveness in number theory (Orono, ME, 1991), 35-72, Proceedings of symposia in applied mathematics vol. 46, American Mathematical Society, Providence, RI, 1992.
- [2] N. J. A. Sloane and S. Plouffe The encyclopedia of integer sequences, Academic Press, New York, 1995.
- [3] B.-S. Du, The minimal number of periodic orbits of periods guaranteed in Sharkovskii's theorem, Bull. Austral. Math. Soc. 31 (1985), 89-103; Corrigendum: 32 (1985), 159.
- [4] B.-S. Du, Symmetric periodic orbits of continuous odd functions on the interval, Bull. Inst. Math. Acad. Sinica 16 1988, 1-48.
- [5] B.-S. Du, A simple method which generates infinitely many congruence identities, *Fibonacci Quarterly* 27 (1989), 116-124.
- [6] R. S. Melham and A. G. Shannon, Some congruence properties of generalized second-order integer sequences *Fibonacci Quarterly* 32, (1994), 424-428.
- [7] P. S. Bruckman, Advanced problem H-517, *Fibonacci Quarterly* **34** (1996), 473.