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CONVEX HULL REALIZATIONS OF THE MULTIPLIHEDRA

STEFAN FORCEY

Abstract. We present a simple algorithm for determining the extremal points in Eu-
clidean space whose convex hull is the nth polytope in the sequence known as the multi-
plihedra. This answers the open question of whether the multiplihedra could be realized
as convex polytopes. We use this realization to unite the approach to An-maps of Iwase
and Mimura to that of Boardman and Vogt. We include a review of the appearance of
the nth multiplihedron for various n in the studies of higher homotopy commutativity,
(weak) n-categories, A∞-categories, deformation theory, and moduli spaces. We also
include suggestions for the use of our realizations in some of these areas as well as in
related studies, including enriched category theory and the graph associahedra.
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Figure 1: The main character: the 3-d multiplihedron J (4).
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1. Introduction

The associahedra are the famous sequence of polytopes denoted K(n) from [34] which
characterize the structure of weakly associative products. K(1) = K(2) = a single point,
K(3) is the line segment, K(4) is the pentagon, and K(5) is the following 3d shape:

K(5) =
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The original examples of weakly associative product structure are the An spaces, topo-
logical H-spaces with weakly associative multiplication of points. Here “weak” should
be understood as “up to homotopy.” That is, there is a path in the space from (ab)c to
a(bc). An A∞-space X is characterized by its admission of an action

K(n) × Xn → X

for all n.
Categorical examples begin with the monoidal categories as defined in [24], where there

is a weakly associative tensor product of objects. Here “weak” officially means “naturally
isomorphic.” There is a natural isomorphism α : (U ⊗ V ) ⊗ W → U ⊗ (V ⊗ W ).

The complexes now known as the multiplihedra, usually denoted J (n), were first
pictured by Stasheff, for n ≤ 4 in [35]. The nth multiplihedron as a complex can be seen
as a subdivision of the complex K(n) × I. Indeed the drawing of J (4) in [35] appears
as a pentagonal cylinder. The drawing in Figure 1 of this paper can be seen as a view
of that cylinder from below. In [33] the authors give an alternative definition of J (n)
based on the subdivision of the cylinder with K(n) base.

The multiplihedra were introduced in order to approach a full description of the cate-
gory of A∞ spaces by providing the underlying structure for morphisms which preserved
the structure of the domain space “up to homotopy” in the range. Recall that an A∞
space itself is a monoid only “up to homotopy.” Thus the multiplihedra are used to rec-
ognize the A∞ (as well as An) maps. Stasheff described how to construct the 1-skeleton
of these complexes, but stopped short of a full combinatorial description.

In [6] Boardman and Vogt take up the challenge of a complete description of the
category of A∞ spaces and maps (and their An versions.) Their approach is to use
sequences of spaces of binary trees with interior edges given a length in [0, 1]. They
show that the space of such trees with n leaves (under certain equivalence relations
regarding length zero edges) is precisely the nth associahedron. They then develop several
homotopy equivalent versions of a space of painted binary trees with interior edges of
length in [0, 1]. These they use to define maps between A∞ spaces which preserve the
multiplicative structure up to homotopy. A later definition of the same sort of map
was published by Iwase and Mimura in [17]. They give the first detailed definition of
the sequence of complexes J (n) now known as the multiplihedra, and describe their
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combinatorial properties. A good review of the combinatorics of their definition is in
[18]. This latter reference also shows how the permuto-associahedra can be decomposed
by a combinatorial use of the multiplihedra.

The study of the A∞ spaces and their maps is still in progress. There is an open
question about the correct way of defining composition of these maps in order to form a
category. In [6] the obvious composition is shown not to be associative. There are also
interesting questions about the extension of An-maps, as in [15], and about the transfer
of A∞ structure through these maps, as in [25]. In the latter there is an open question
about canonical decompositions of the multiplihedra. The realizations we describe here
lend themselves well to experimentation upon such decompositions.

The overall structure of the associahedra is that of a topological operad, with the
composition given by inclusion. The multiplihedra together form a bimodule over this
operad, with the action again given by inclusion. This structure mirrors the fact that
the spaces of painted trees form a bimodule over the operad of spaces of trees, where the
compositions and actions are given by the grafting of trees, root to leaf.

The multiplihedra appear frequently in higher category theory. The definitions of
bicategory and tricategory homomorphisms each include commuting pasting diagrams
as seen in [19] and [12] respectively. The two halves of the axiom for a bicategory
homomorphism together form the boundary of the multiplihedra J (3), and the two halves
of the axiom for a tricategory homomorphism together form the boundary of J (4). Since
weak n-categories can be understood as being the algebras of higher operads, these facts
can be seen as the motivation for defining morphisms of operad (and n-operad) algebras
in terms of their bimodules. This definition is mentioned in [3] and developed in detail
in [16]. In the latter paper it is pointed out that the bimodules in question must be
co-rings, which have a co-multiplication with respect to the bimodule product over the
operad.

The multiplihedra have appeared in many areas related to deformation theory and
A∞ category theory. A diagonal map is constructed for these polytopes in [32]. This
allows a functorial monoidal structure for certain categories of A∞-algebras and A∞-
categories. A different, possibly equivalent, version of the diagonal is presented in [26].
The 3 dimensional version of the multiplihedron is called by the name Chinese lantern
diagram in [38], and used to describe deformation of functors. There is a forthcoming
paper by Woodward and Mau in which a new realization of the multiplihedra as moduli
spaces of disks with additional structure is presented [29]. This realization promises to
help allow the authors and their collaborators to define An-functors as in [28], as well as
morphisms of cohomological field theories.

The purpose of this paper is to describe how to represent Boardman and Vogt’s spaces
of painted trees with n leaves as convex polytopes which are combinatorially equivalent
to the CW-complexes described by Iwase and Mimura. Our algorithm for the vertices of
the polytopes is flexible in that it allows an initial choice of a constant q ∈ (0, 1). The
boundary of the open unit interval corresponds to certain quotient spaces of the multi-
plihedron. In the limit as q → 1 the convex hull approaches that of Loday’s convex hull
representation of the associahedra as described in [23]. The limit as q → 1 corresponds
to the case for which the mapping strictly respects the multiplication.
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The limit of our algorithm as q → 0 represents the case for which multiplication
in the domain of the morphism in question is strictly associative. The case for which
multiplication in the range is strictly associative was found by Stasheff in [35] to yield the
associahedra. It was long assumed that the case for which the domain was associative
would likewise yield the associahedra, but we demonstrate in [10] that this is not so. In
the limit as q → 0 the convex hulls instead approach a newly discovered sequence of
polytopes. The low dimensional terms of this new sequence may be found in [31] within
the axioms for pseudomonoids in a monoidal bicategory, or in [7] within the axioms of
enriched bicategories. Recall that when both the range and domain are strictly associative
the multiplihedra become the cubes, as seen in [6].

The results in this paper support two related efforts of further research. The first is to
describe the important quotients of the multiplihedra just mentioned. The other project
already underway is to extend the concept of quotient multiplihedra described here to the
graph associahedra introduced by Carr and Devadoss, in [8]. Indeed the algorithm given
here does generalize in an analogous way when applied to the algorithm for geometric
realizations of the graph associahedra invented by S. Devadoss.

In Section 2 we review the definition and properties of the multiplihedra, introducing a
recursive combinatorial definition (using the painted trees of [6]) of the complex J (n) with
the properties described in [17]. In Section 3 we briefly give some new and provocative
combinatorial results related to the counting of the vertices of J (n). In Section 4 we
describe the method for finding geometric realizations of the multiplihedra as convex
hulls. The main result is that these convex hulls are indeed combinatorially equivalent
to Stasheff’s multiplihedra. In Section 5 we relate our geometric realization to the spaces
of trees defined by Boardman and Vogt. This is done by defining a space of level trees
that obeys the requirements in [6] and which in proof (2) of Lemma 5.5 is shown directly
to be homeomorphic to our convex hull. Section 6 contains the proof of the main result
by means of explicit bounding hyperplanes for the convex hulls.

2. Facets of the multiplihedra

Pictures in the form of painted binary trees can be drawn to represent the multiplication
of several objects in a monoid, before or after their passage to the image of that monoid
under a homomorphism. We use the term “painted” rather than “colored” to distinguish
our trees with two edge colorings, “painted” and “unpainted,” from the other meaning
of colored, as in colored operad or multicategory. We will refer to the exterior vertices
of the tree as the root and the leaves , and to the interior vertices as nodes. This will
be handy since then we can reserve the term “vertices” for reference to polytopes. A
painted binary tree is painted beginning at the root edge (the leaf edges are unpainted),
and always painted in such a way that there are only three types of nodes. They are:

• •

(1) (2)

•

(3)
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//
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//

//
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//
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//
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This limitation on nodes implies that painted regions must be connected, that painting
must never end precisely at a trivalent node, and that painting must proceed up both
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branches of a trivalent node. To see the promised representation we let the left-hand,
type (1) trivalent node above stand for multiplication in the domain; the middle, painted,
type (2) trivalent node above stand for multiplication in the range; and the right-hand
type (3) bivalent node stand for the action of the mapping. For instance, given a, b, c, d
elements of a monoid, and f a monoid morphism, the following diagram represents the
operation resulting in the product f(ab)(f(c)f(d)).

a b c d

• •

•

f(ab)(f(c)f(d))

• •

•/
//

//
//
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Of course in the category of associative monoids and monoid homomorphisms there
is no need to distinguish the product f(ab)(f(c)f(d)) from f(abcd). These diagrams
were first introduced by Boardman and Vogt in [6] to help describe multiplication in
(and morphisms of) topological monoids that are not strictly associative (and whose
morphisms do not strictly respect that multiplication.) The nth multiplihedron is a CW -
complex whose vertices correspond to the unambiguous ways of multiplying and applying
an A∞-map to n ordered elements of an A∞-space. Thus the vertices correspond to the
binary painted trees with n leaves.The edges of the multiplihedra correspond to either
an association (ab)c → a(bc) or to a preservation f(a)f(b) → f(ab). The associations
can either be in the range: (f(a)f(b))f(c) → f(a)(f(b)f(c)); or the image of a domain
association: f((ab)c) → f(a(bc)).

Here are the first few low dimensional multiplihedra. The vertices are labeled, all
but some of those in the last picture. There the bold vertex in the large pentagonal
facet has label ((f(a)f(b))f(c))f(d) and the bold vertex in the small pentagonal facet
has label f(((ab)c)d). The others can be easily determined based on the fact that those
two pentagons are copies of the associahedron K(4), that is to say all their edges are
associations.

J (1) = • f(a)

J (2) = f(a)f(b) f(ab)• •

J (3) =

(f(a)f(b))f(c) • f(a)(f(b)f(c))•
//

//
/

f(a)f(bc)
//

//
//

•
��
��
�

f(a(bc))��
��
��

•f((ab)c) •

/////

f(ab)f(c) //////

•
�����

������
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J (4) =
•

•

f(a)(f(bc)f(d)) (f(a)f(bc))f(d)

f(a(bc))f(d)

f((ab)c)f(d)

(f(ab)f(c))f(d)

f(ab)(f(c)f(d))

f(ab)f(cd)

(f(a)f(b))f(cd)

f(a)(f(b)f(cd))

f(a)(f(b(cd)))

f(a)f((bc)d)
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Faces of the multiplihedra of dimension greater than zero correspond to painted trees
that are no longer binary. Here are the three new types of node allowed in a general
painted tree. They correspond to the the node types (1), (2) and (3) in that they are
painted in similar fashion. They generalize types (1), (2), and (3) in that each has greater
or equal valence than the corresponding earlier node type.

. . . . . .

• •

(4) (5)

. . .

•
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2.1. Definition. By refinement of painted trees we refer to the relationship: t refines t′

means that t′ results from the collapse of some of the internal edges of t. This is a partial
order on n-leaved painted trees, and we write t < t′. Thus the binary painted trees are
refinements of the trees having nodes of type (4)-(6). Minimal refinement refers to the
following specific case of refinement: t minimally refines t′′ means that t refines t′′ and
also that there is no t′ such that both t refines t′ and t′ refines t′′.

The recursive definition of the nth multiplihedron is stated by describing the type and
number of the facets, or (n−2)-dimensional cells. Then the boundary of J (n) is given as
the gluing together of these facets along (n−3)-dimensional cells with matching associated
painted trees. Finally J (n) is defined as the cone on this boundary. It turns out that
the faces can be indexed by, or labeled by, the painted trees in such a way that the face
poset of the nth multiplihedron is equivalent to the face poset of the n-leaved painted
trees. This recasting of the definition allows the two main goals of the current paper: to
unite the viewpoints of [17] and [6], and to do so via a convex polytope realization.
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Iwase and Mimura, however, rather than explicitly stating a recursive definition, give
a geometric definition of the CW -complex and then prove all the combinatorial facts
about its facets. Here (for reference sake) we reverse that order and use their theorems
as definition (in terms of painted trees).

The type and numbers of facets of the multiplihedra are described in [17].
Recall that we refer to an unpainted tree with only one node as a corolla. A painted

corolla is a painted tree with only one node, of type (6). A facet of the multiplihedron
corresponds to a painted tree with only one, unpainted, interior edge, or to a tree with
all its interior edges attached to a single painted node (type (2) or (5)).

2.2. Definition. A lower tree l(k, s) is determined by a selection of s consecutive leaves
of the painted corolla, 1 < s ≤ n, which will be the leaves of the subtree which has the
sole interior edge as its root edge.

l(k, s) =

s
︷︸︸︷

0 n−1k−1

•
•

. . . . . .
. . .

??
??

??
??

??
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//
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To each lower tree corresponds a lower facet of the multiplihedron, which in [17] are
denoted Jk(r, s) where r = n + 1 − s. Here k is the first “gap between branches” of the
s − 1 consecutive gaps (that is, k − 1 is the first leaf of the s consecutive leaves.) In
the complex J (n) defined in [17] the lower facet Jk(r, s) is a combinatorial copy of the
complex J (r) ×K(s).

2.3. Definition. The upper trees u(t; r1, . . . , rt) with all interior (necessarily painted)
edges attached to a single painted node will appear thus:

u(t; r1, . . . , rt) =

0

r1
︷︸︸︷
. . .

r2
︷︸︸︷
. . .

rt
︷︸︸︷

. . . n−1

• • •
. . .

•?
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?:
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In [17] the corresponding upper facets are labeled J (t; r1, . . . , rt). Here t is the number
of painted interior edges and ri is the number of leaves in the subtree supported by the
ith interior edge. In the complex J (n) defined in [17] the upper facet J (t; r1, . . . , rt) is a
combinatorial copy of the complex K(t) × J (r1) × · · · × J (rt).
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Here is a quick count of upper and lower facets, agreeing precisely with that given in
[17].

2.4. Theorem. [17] The number of facets of the nth multiplihedron is:

n(n − 1)

2
+ 2(n−1) − 1.

Proof. The number of lower trees is
n(n − 1)

2
. This follows easily from summing the ways

of choosing s − 1 consecutive “gaps between branches” of the corolla, corresponding to
the choice of s consecutive leaves. Note that this count includes one more than the count
of the facets of the associahedron, since it includes the possibility of selecting all n leaves.

The upper trees are determined by choosing any size k proper subset of the “spaces
between branches” of the painted corolla, 1 ≤ k < n−1. Each set of consecutive “spaces
between branches” in that list of k chosen spaces determines a set of consecutive leaves
which will be the leaves of a subtree (that is itself a painted corolla) with its root edge
one of the painted interior edges. If neither of the adjacent spaces to a given branch are
chosen, its leaf will be the sole leaf of a subtree that is a painted corolla with only one

leaf. Thus we count upper trees by
n−2∑

k=0

(
n − 1

k

)

= 2(n−1) − 1. �

The construction of the nth multiplihedron may be inductively accomplished by col-
lecting its facets, and then labeling their faces. The following definition is identical to
the properties demonstrated in [17].

2.5. Definition. The first multiplihedron denoted J (1) is defined to be the single point
{∗}. It is associated to the painted tree with one leaf, and thus one type (3) internal
node. Assume that the J (k) have been defined for k = 1 . . . n− 1. To J (k) we associate
the k-leaved painted corolla. We define an (n − 2)-dimensional CW -complex ∂J (n) as
follows, and then define J (n) to be the cone on ∂J (n). Now the top-dimensional cells
of ∂J (n) (upper and lower facets of J (n)) are in bijection with the set of painted trees
of two types, upper and lower trees as defined above.

Each sub-facet of an upper or lower facet is labeled with a tree that is a refinement
of the upper or lower tree. Since the facets are products, their sub-facets in turn are
products of faces (of smaller associahedra and multiplihedra) whose dimensions sum to
n − 3. Each of these sub-facets thus comes (inductively) with a list of associated trees.
There will always be a unique way of grafting the trees on this list to construct a painted
tree that is a minimal refinement of the upper or lower tree associated to the facet in
question. For the sub-facets of an upper facet the recipe is to paint entirely the t-leaved
tree associated to a face of K(t) and to graft to each of its branches in turn the trees
associated to the appropriate faces of J (r1) through J (rt) respectively. A sub-facet of
the lower facet Jk(r, s) inductively comes with pair of trees. The recipe for assigning our
sub-facet an n-leaved minimal refinement of the n-leaved minimal lower tree l(k, s) is to
graft the unpainted s-leaved tree to the kth leaf of the painted r-leaved tree.

The intersection of two facets in the boundary of J (n) occurs along sub-facets of each
which have associated painted trees that are identical. Then J (n) is defined to be the
cone on ∂J (n). To J (n) we assign the painted corolla of n leaves.
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2.6. Remark. The listing of types and enumeration of facets above corresponds to prop-
erties (2-a) through (2-c) of [17]. The intersection of facets described in the definition
corresponds to properties (c-1) through (c-4) in [17].

2.7. Example.

J (1) = • •

Here is the complex J (2) with the upper facet K(2)×J (1)×J (1) on the left and the
lower facet J (1) ×K(2) on the right:

• •
•

•
•
•

• •
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And here is the complex J (3). The product structure of facets is listed. Notice how the
sub-facets (vertices) are labeled. For instance, the upper right vertex is labeled by a tree
that could be constructed by grafting three copies of the single leaf painted corolla onto
a completely painted binary tree with three leaves, or by grafting a single leaf painted
corolla and a 2-leaf painted binary tree onto the leaves of a 2-leaf (completely) painted
binary tree.
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K(3)×J (1)×J (1)×J (1)
•

//
//
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3. Vertex Combinatorics

Now for a new result about the counting of the binary painted trees with n leaves.

3.1. Theorem. The number of vertices an of the nth multiplihedron is given recursively
by:

an = C(n − 1) +

n−1∑

i=1

aian−i

where a0 = 0 and C(n − 1) are the Catalan numbers, which count binary (unpainted)
trees as well as the vertices of the associahedron.

Proof. The Catalan numbers C(n − 1) count those vertices which correspond to the
painted binary trees with n leaves which have only the root painted, that is only nodes
of type (1) and (3). Now we count the trees for which the initial (lowest) trivalent node
is painted (type (2)). Each of these consists of a choice of two painted binary subtrees
whose root is the initial painted node, and whose leaves must sum to n. Thus we sum
over the ways that n can be split into two natural numbers. �
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3.2. Remark. This formula gives the sequence which begins:

0, 1, 2, 6, 21, 80, 322, 1348, 5814 . . . .

It is sequence A121988 of the On-line Encyclopedia of integer sequences. The recursive
formula above yields the equation

A(x) = xc(x) + (A(x))2

where A(x) is the ordinary generating function of the sequence an above and c(x) is the
generating function for the Catalan numbers C(n). (So xc(x) is the generating function

for the sequence {C(n−1)}∞n=0.) Recall that c(x) = 1−
√

1−4x

2x
. Thus by use of the quadratic

formula we have

A(x) =
1 −

√

2
√

1 − 4x − 1

2
.

It is not hard to check that therefore A(x) = xc(x)c(xc(x)). The Catalan transform
of a sequence bn with generating function B(x) is defined in [1] as the sequence with
generating function B(xc(x)). Since xc(x) is the generating function of C(n − 1) then
the number of vertices of the nth multiplihedron is given by the Catalan transform of the
Catalan numbers C(n − 1). Thus the theorems of [1] apply, for instance: a formula for
the number of vertices is given by

an =
1

n

n∑

k=1

(
2n − k − 1

n − 1

)(
2k − 2

k − 1

)

; a0 = 0.

We note that A(x) = B(x)c(B(x)) for B(x) = xc(x). It may be that taking a generating
function B(x) to the new one given by B(x)c(B(x)) is the definition of a new kind of
Catalan transform that would be interesting to study in its own right.

4. An algorithm for the extremal points

In [23] Loday gives an algorithm for taking the binary trees with n leaves and finding
for each an extremal point in Rn−1; together whose convex hull is K(n), the (n − 2)-
dimensional associahedron. Note that Loday writes formulas with the convention that
the number of leaves is n + 1, where we instead always use n to refer to the number
of leaves. Given a (non-painted) binary n-leaved tree t, Loday arrives at a point M(t)
in Rn−1 by calculating a coordinate from each trivalent node. These are ordered left
to right based upon the ordering of the leaves from left to right. Following Loday we
number the leaves 0, 1, . . . , n−1 and the nodes 1, 2, . . . , n−1. The ith node is “between”
leaf i − 1 and leaf i where “between” might be described to mean that a rain drop
falling between those leaves would be caught at that node. Each trivalent node has a
left and right branch, which each support a subtree. To find the Loday coordinate for
the ith node we take the product of the number of leaves of the left subtree (li) and
the number of leaves of the right subtree (ri) for that node. Thus M(t) = (x1, . . . xn−1)
where xi = liri. Loday proves that the convex hull of the points thus calculated for
all n-leaved binary trees is the nth associahedron. He also shows that the points thus
calculated all lie in the n − 2 dimensional affine hyperplane H given by the equation
x1 + · · ·+ xn−1 = S(n − 1) = 1

2
n(n − 1).
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We adjust Loday’s algorithm to apply to painted binary trees as described above, with
only nodes of type (1), (2), and (3), by choosing a number q ∈ (0, 1). Then given a
painted binary tree t with n leaves we calculate a point Mq(t) in Rn−1 as follows: we
begin by finding the coordinate for each trivalent node from left to right given by Loday’s
algorithm, but if the node is of type (1) (unpainted, or colored by the domain) then its
new coordinate is found by further multiplying its Loday coordinate by q. Thus

Mq(t) = (x1, . . . xn−1) where xi =

{

qliri, if node i is type (1)

liri, if node i is type (2).

Note that whenever we speak of the numbered nodes (1, . . . , n − 1 from left to right) of
a binary tree, we are referring only to the trivalent nodes, of type (1) or (2). For an
example, let us calculate the point in R3 which corresponds to the 4-leaved tree:

t =

• •

•

• •

•
//

//
//

//
/��
��
�� //

/
��
�

//
/
//

/
��
�

��
�

��
��
��
��
�

��
��
��
��
�

//
//

//

//
//

//

//
/

��
��
��
��
��
�

//
//

//

Now Mq(t) = (q, 4, 1).

4.1. Theorem. The convex hull of all the resulting points Mq(t) for t in the set of n-leaved
binary painted trees is the nth multiplihedron. That is, our convex hull is combinatorially
equivalent to the CW-complex J (n) defined by Iwase and Mimura, and is homeomorphic
to the space of level (painted) trees defined by Boardman and Vogt.

The proof will follow in section 6.

4.2. Example.

Here are all the painted binary trees with 3 leaves, together with their points Mq(t) ∈R2.

Mq
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= (2q, q)
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Thus for q = 1
2

we have the six points {(1, 2), (2, 1), (1
2
, 2), (2, 1

2
), (1

2
, 1), (1, 1

2
)}. Their

convex hull appears as follows:

OO

//

??
??

??
??

??
?•

•?
??

??
??

??
??•

•
•?

??
??

?

•
•–

–

| |

4.3. Example.

The list of vertices for J (4) based on painted binary trees with 4 leaves, for q = 1
2
, is:

(1, 2 ,3) (1/2 ,2 ,3) (1/2 ,2/2 ,3) (1/2, 2/2 ,3/2)
(2, 1, 3) (2 ,1/2 ,3) (2/2 ,1/2 ,3) (2/2, 1/2 ,3/2)
(3 ,1 ,2) (3, 1/2, 2) (3 ,1/2 ,2/2) (3/2, 1/2 ,2/2)
(3, 2, 1) (3 ,2, 1/2) (3 ,2/2, 1/2) (3/2 ,2/2 ,1/2)
(1 ,4 ,1) (1/2, 4, 1) (1, 4, 1/2) (1/2, 4, 1/2) (1/2, 4/2 ,1/2)

These are suggestively listed as a table where the first column is made up of the coordi-
nates calculated by Loday for K(4), which here correspond to trees with every trivalent
node entirely painted. The rows may be found by applying the factor q to each coordi-
nate in turn, in order of increasing size of those coordinates. Here is the convex hull of
these points, where we see that each row of the table corresponds to shortest paths from
the big pentagon to the small one. Of course sometimes there are multiple such paths.
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The largest pentagonal facet of this picture corresponds to the bottom pentagonal facet
in the drawing of J (4) on page 53 of [35], and to the pentagonal facet labeled d(0,1) in
the diagram of J (4) in section 5 of [32]. Just turn the page 90 degrees clockwise to see
the picture of J (4) that is in the introduction of this paper.

To see a rotatable version of the convex hull which is the fourth multiplihedron, enter
the following homogeneous coordinates into the Web Demo of polymake (with option vi-
sual), at http://www.math.tu-berlin.de/polymake/index.html#apps/polytope. In-
deed polymake was instrumental in the experimental phase of this research [11].
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POINTS

1 1 2 3

1 1/2 2 3

1 1/2 2/2 3

1 1/2 2/2 3/2

1 2 1 3

1 2 1/2 3

1 2/2 1/2 3

1 2/2 1/2 3/2

1 3 1 2

1 3 1/2 2

1 3 1/2 2/2

1 3/2 1/2 2/2

1 3 2 1

1 3 2 1/2

1 3 2/2 1/2

1 3/2 2/2 1/2

1 1 4 1

1 1/2 4 1

1 1 4 1/2

1 1/2 4 1/2

1 1/2 4/2 1/2
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5. Spaces of painted trees

Boardman and Vogt develop several versions of the space of colored or painted trees
with n leaves with different uses for proving specific theorems about A∞ maps. We choose
to focus on one version which has the advantage of reflecting the intuitive dimension of
the multiplihedra. The points of this space are based on the binary painted trees with
the three types of nodes pictured in the introduction. The leaves are always colored by
the domain X (here we say unpainted), and the root is always colored by the range, Y
(here we say painted).

To get a point of the space each interior edge of a given binary painted tree with n
leaves is assigned a value in [0, 1]. The result is called a painted metric tree. When none
of the trivalent nodes are painted (that is, disallowing the second node type), and with
the equivalence relations we will review shortly, this will become the space SMU(n, 1)
as defined in [6]. Allowing all three types of nodes gives the space

HW (U ⊗ L1)(n
0, 11).

(In [6] the superscripts denote the colors, so this denotes that there are n inputs colored
“0” and one output colored “1.” This is potentially confusing since these numbers are
also used for edge lengths, and so in this paper we will denote coloring with the shaded
edges and reserve the values to denote edge lengths.)

We want to consider the retract of this space to the level trees, denoted in [6]

LW (U ⊗ L1)(n
0, 11).

The definition in [6] simply declares that a level tree is either a tree that has one or zero
nodes, or a tree that decomposes into level trees. The authors then unpack the definition
a bit to demonstrate that the effect of their recursive requirement is to ensure that the the
space of 2-leaved level trees has dimension 1. They declare in general that their space of
n-leaved level trees will have the expected form, that is, will be homeomorphic to a closed
(n−1)-dimensional ball. We give here a specific way to realize a space of trees satisfying
the recursive requirement and having the expected form. Again the requirement will
ensure that a decomposition of level trees will always be into level trees.

We will denote our version of the space of level trees with n leaves by LWU(n). It is
defined in Definition 5.3 as the space of painted metric trees, after introducing relations
on the lengths of edges.

5.1. Definition. We first describe a space corresponding to each painted binary tree.
We denote it W (t). Edge lengths can be chosen freely from [0, 1] subject to the following
conditions. At each trivalent node of a tree t there are two subtrees with their root that
node. The left subtree is defined by the tree with its rooted edge the left-hand branch
of that node and the right subtree is likewise supported by the righthand branch. The
conditions are that for each node of type (2) we have an equation relating the painted
interior edge lengths of the left subtree and the right subtree (interior with respect to the
original t). Let u1 . . . uk be the lengths of the painted interior edges of the left subtree
and let v1 . . . vj be the painted lengths of the right subtree. Let pu be the number of
leaves of the left subtree and let pv be the number of leaves of the right subtree. The
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equation to be obeyed is
1

pu

k∑

i=1

ui =
1

pv

j
∑

i=1

vi.

For example consider the edge lengths u, v, x, y, z ∈ [0, 1] assigned to the following
tree:

• •

•

• •

•
//

//
//

x //
/��
��
�� //

/
��
�

y //
/
//

/
z��
�

��
�

v

��
��
��
��
�

��
��
��
��
�

u //
//

//

//
//

//

//
/

��
��
��
��
��
�

//
//

//

The relations on the lengths then are the equations:

y = z and
1

2
u =

1

2
(v + y + z).

Note that this will sometimes imply that lengths of certain edges are forced to take values
only from [0, p], p < 1. In [6] the definition of the level trees is given by an inductive
property, which guarantees that decompositions of the trees will always be into level
trees. This seems equivalent to our requirement that the nodes be of types (1)-(6). The
relations on edge length serve to ensure that this requirement is preserved even as some
edges go to zero.

Before describing how to glue together all these subspaces for different trees to create
the entire LWU(n) we show the following:

5.2. Theorem. The dimension of the subspace W (t) of LWU(n) corresponding to a given
binary painted tree is n − 1.

Proof. After assigning variables to the internal edges and applying the relations, the
total number of free variables is at least the number of interior edges less the number of
painted, type (2), nodes. This difference is always one less than the number of leaves. To
see that the constraining equations really do reduce the number of free variables to n−1,
notice what the equations imply about the painted interior edge lengths (the unpainted
edge lengths are all free variables.) Beginning at the painted nodes which are closest
to the leaves and setting equal to zero one of the two branches (a free variable) at each
node it is seen that all the painted interior edge lengths are forced to be zero. Thus
each painted node can only contribute one free variable–the other branch length must be
dependent. Therefore, given a painted binary tree with n leaves and k internal edges, the
space of points corresponding to the allowed choices for the edge values of that tree is
the intersection of an (n−1)-dimensional subspace of Rk with [0, 1]k. We see this simply
by solving the system of homogeneous equations indicated by the type (2) nodes and
restricting our solution to the lengths in [0, 1].

In fact, the intersection just described is an (n−1)-dimensional polytope in Rk. We see
that this is true since there is a point in the intersection for which each of the coordinates
is in the range (0, 1

2
]. To see an example of such a point we consider edge lengths of our

binary tree such that the unpainted edges each have length 1
2

and such that the painted

edges have lengths in (0, 1
2
]. To achieve the latter we begin at the first painted type (2)

node above the root, and consider the left and right subtrees. If the left subtree has only
17



one painted edge we assign that edge the length p

2n
where p is the number of leaves of

the left subtree; but if not then we assign the root edge of the left subtree the length p

4n
.

We do the same for the right subtree, replacing p with the number of leaves of the right
subtree. This proceeds inductively up the tree. At a given type (2) node if its left/right

p′-leaved subtree has only one painted edge we assign that edge the length p′

d
where d

is the denominator of the length assigned to the third edge (closest to the root) of the
that node on the previous step; but if not then we assign the root edge of the left/right

subtree the length p′

2d
. This produces a set of non-zero lengths which obey the relations

and are all ≤ 1
2
. For example:
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// // ��
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To describe the equivalence relations on our space we recall the trees with three ad-
ditional allowed node types. They correspond to the the node types (1), (2) and (3) in
that they are painted in similar fashion.

. . . . . .

• •
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. . .
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These nodes each have subtrees supported by each of their branches in order from left to
right. The interior edges of each tree are again assigned lengths in [0, 1]. The requirements
on edge lengths which we get from each node of type (5) of valence j+1 are the equalities:

1

p1

k1∑

i=1

u1i =
1

p2

k2∑

i=1

u2i = · · · =
1

pj

kj∑

i=1

uji

where k1 . . . kj are the numbers of painted internal edges of each of the j subtrees, and
p1 . . . pj are the numbers of leaves of each of the subtrees. Now we review the equivalence
relation on trees introduced in [6].

5.3. Definition. Now the space of painted metric trees with n leaves LWU(n) is formed
by first taking the disjoint union of the (n−1)-dimensional polytopes W (t), one polytope
for each binary painted tree. Then it is given the quotient topology (of the standard
topology of the disjoint union of the polytopes in Rk) under the following equivalence
relation: Two trees are equivalent if they reduce to the same tree after shrinking to points
their respective edges of length zero. This is why we call the variable assigned to interior
edges “length” in the first place. By “same tree” we mean possessing the same painted
tree structure and having the same lengths assigned to corresponding edges. For example
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one pair of equivalence relations appears as follows:
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Note that an equivalence class of trees may always be represented by any one of several
binary trees, with only nodes of type (1), (2), and (3), since we can reduce the valence
of nodes within an equivalence class by introducing extra interior edges of length zero.
However we often represent the equivalence class with the unique tree that shows no zero
edges. We refer to this as the collapsed tree. Also note that the relations on the variable
lengths of a tree which has some of those lengths set to zero are precisely the relations
on the variables of the collapsed tree equivalent to it.

5.4. Example. LWU(1) is just a single point. Here is the space LWU(2), where we
require u = v :
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• • •
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And here is the space LWU(3) :
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Note that the equations which the variables in LWU(3) must obey are:

a = b and d =
1

2
(a + b + c)

e = f and g =
1

2
(e + f + h)

w =
1

2
v and y =

1

2
z

In [29] the space of painted metric trees (bicolored metric ribbon trees) is described in
a slightly different way. First, the trees are not drawn with painted edges, but instead
the nodes of type (3) are indicated by color, and the edges between the root and those
nodes can be assumed to be painted. The correspondence is clear: for example,
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Secondly, the relations required of the painted lengths are different. In [29] it is required
that the sum of the painted lengths along a path from the root to a leaf must always
be the same. For example, for the above tree, the new relations obeyed in [29] are
u = v + y = v + z. This provides the same dimension of n− 1 for the space associated to
a single binary tree with n leaves as found in Theorem 5.2 in this paper.

Thirdly the topology on the space of painted metric trees with n leaves is described
by first assigning lengths in (0,∞) and then defining the limit as some lengths in a given
tree approach 0 as being the tree with those edges collapsed. This topology clearly is
equivalent to the definition as a quotient space given here and in [6]. Thus we can use
the results of [29] to show the following:

5.5. Lemma. The space LWU(n) is homeomorphic to the closed ball in R
n−1.

Proof. (1) In [29] it is shown that the entire space of painted trees with n leaves with
lengths in [0,∞) is homeomorphic to Rn−1

+ ∪ 0. (This is done via a homeomorphism
to the space of quilted disks.) Thus if the lengths are restricted to lie in [0, 1] then the
resulting space is homeomorphic to the closed ball in Rn−1. �

However, we think it valuable to see how the homeomorphism from the entire space
of trees to the convex polytope might actually be constructed piecewise from smaller
homeomorphisms based on specific n-leaved trees.

Proof. (2) We will use the Alexander trick, which is the theorem that states that any
homeomorphism from the bounding sphere of one disk to another bounding sphere of
a second disk may be extended to the entire disks. We are using this to construct a
homeomorphism ϕ from the convex hull realization of J (n) to LWU(n). First we consider
the barycentric subdivision of the former (n − 1)-dimensional polytope. Recalling that
each face of J (n) is associated with a specific painted n-leaved tree t, we associate that
same tree to the respective barycenter denoted v(t).

We will be creating ϕ inductively. We begin by defining it on the crucial barycenters.
The barycenter of the entire polytope J (n) is associated to the painted corolla, and
should be mapped to the equivalence class represented by the corolla–that is, the class
of trees with all zero length interior edges.

The barycenters of facets of J (n) are each associated to a lower or upper tree. Since
the relations on variable edge lengths are preserved by collapsing zero edges, we can see
that each of these facet trees correspond to a one dimensional subset of the space of
metric trees. Upper trees have one fewer relation than the number of painted interior
edges (and no other interior edges) while lower trees have a single interior edge. The
barycenters of lower facets are mapped to the class represented by their respective tree
with edge length 1. The barycenters of upper facets are mapped to the class represented
by their respective trees with maximal edge lengths. The maximal lengths are found by
choosing an edge with maximal valence type (6) node, and assigning length 1 to that
edge. The other lengths are then determined. Examples of this are shown by the facets
of the hexagon that is LWU(3) above.

Now consider a particular binary painted tree t, associated to a vertex v(t) = Mq(t) of
J (n). The simplicial complex made up of all the simplices in the barycentric subdivision
which contain v(t) we denote U(t). U(t) is spanned by the vertices v(t′) for all t′ < t.
Recall that t′ < t denotes that t′ refines t, which means that t results from the collapse
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of some of the internal edges of t′. U(t) is homeomorphic to the (n − 1)-disk. Next we
will extend our choice of images of the facet barycenters for facets adjacent to v(t) to a
homeomorphism ϕt : U(t) → W (t). This extension will be done incrementally where the
increments correspond to the refinement of trees, so that the piecewise defined mapping
ϕ(x) = ϕt(x) ; x ∈ U(t) (with one piece defined on U(t) for each binary n-leaved t) will
be well defined, 1-1, and onto LWU(n). U(t) for a particular 4-leaved tree is pictured as
a subset of the convex hull realization of J (4) just following this proof.

The incremental construction of our homeomorphism ϕt is by way of subdividing the
respective boundaries of U(t) and W (t) based upon tree refinement. For each tree t′ < t,
let p be the number of free variables in the metric version of t′ (so n − (p + 1) is the
dimension of the face associated to t′), and define U(t′) to be the sub-complex of p-
simplices of U(t) spanned by v(t′) and all the v(t′′) for t′′ < t′. U(t′) is a p-disk by
construction. Also define W (t′) to be the sub-space of the boundary of W (t) given by all
those equivalence classes which can be represented by a metric version of t′, with interior
edge lengths in [0,1]. By a parallel argument to Theorem 5.2 W (t′) is also a p-disk.

To establish the base case we consider a facet barycenter (with associated tree t′ < t).
The barycenter v(t′) and the barycenter of J (n) form a copy of S0 bounding the 1-
simplex U(t′). Now the 1-dimensional subset W (t′) of the boundary of W (t) is made up
of equivalence classes of trees represented by metric versions of t′. The boundary of this
1-disk is the copy of S0 given by the tree with all zero lengths and the tree with maximal
length. Thus we can extend that choice of images made above to a homeomorphism ϕt′

of the 1-disks for each t′.
For an arbitrary tree t′ the boundary of U(t′) is a (p− 1)-spherical simplicial complex

that is made up of two (p − 1)-disks. The first interior disk is the union of U(t′′) for
t′′ < t′. Each (p − 1)-simplex in this first disk contains the barycenter of J (n). Each
(p−1)-simplex in the second exterior disk contains v(t). The shared boundary of the two
disks is a (p−2)-sphere. The boundary of W (t′) is also made up of two (p−1)-disks. The
first disk is the union of W (t′′) for t′′ < t′. The second disk is the collection of equivalence
classes of metric trees represented by t′ with at least one edge set equal to 1. Now we
can build ϕt inductively by assuming it to be defined on the disks: U(t′′) → W (t′′) for all
trees t′′ < t′. This assumed mapping may then be restricted to a homeomorphism of the
(p−2)-spheres that are the respective boundaries of the interior disks, which in turn can
then be extended to the exterior disks and thus the entire (p−1)-spherical boundaries of
U(t′) and W (t′). From there the homeomorphism can be extended to the entire p-disks:
U(t′) → W (t′). This continues inductively until, after the last extension, the resulting
homeomorphism is called ϕt : U(t) → W (t).

Now by construction the map ϕ : J (n) → LWU(n) given by ϕ(x) = ϕt(x) ; x ∈ U(t)
is well defined, continuous, bijective and open.
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6. Proof of Theorem 4.1

To demonstrate that our convex hulls are each combinatorially equivalent to the corre-
sponding convex CW -complexes defined by Iwase and Mimura, we need only check that
they both have the same vertex-facet incidence. We will show that for each n there is
an isomorphism f between the vertex sets (0-cells) of our convex hull and J (n) which
preserves the sets of vertices corresponding to facets; i.e. if S is the set of vertices of a
facet of our convex hull then f(S) is a vertex set of a facet of J (n).

To demonstrate the existence of the isomorphism, noting that the vertices of J (n)
correspond to the binary painted trees, we only need to check that the points we cal-
culate from those binary painted trees are indeed the vertices of their convex hull. The
isomorphism implied is the one that takes a vertex associated to a certain tree to the
0-cell associated to the same tree. Now a given facet of J (n) corresponds to a tree T
which is one of the two sorts of trees pictured in Definitions 2.3 and 2.2. To show that
our implied isomorphism of vertices preserves vertex sets of facets we need to show that
for each T there is one facet that is the convex hull of the points corresponding to the
binary trees which are refinements of T . By refinement of painted trees we refer to the
relationship: t refines t′ if t′ results from the collapse of some of the internal edges of
t. Note that the two sorts of trees pictured in Definitions 2.3 and 2.2 are each a single
collapse away from being the painted corolla.
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The proofs of both key points will proceed in tandem, and will be inductive. The main
strategy will be to define a dimension n − 2 affine hyperplane Hq(T ) in Rn−1 for each
of the upper and lower facet trees T (as drawn in the Definitions 2.3 and 2.2), and then
to show that these are the proper bounding hyperplanes of the convex hull (i.e. that
each actually contains a facet). The definition of hyperplane will actually generalize our
algorithm for finding a point Mq(t) in Rn−1 from a binary tree t with n leaves. The
proof of Theorem 4.1 will however not use these hyperplanes directly, but recast them in
a weighted version. Then they will be recovered when the weights are all set equal to 1.

6.1. Definition. The lower facets Jk(r, s) correspond to lower trees such as:

l(k, s) =

s
︷︸︸︷

0 n−1k−1
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//
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These are assigned a hyperplane Hq(l(k, s)) determined by the equation

xk + · · · + xk+s−2 =
q

2
s(s − 1).

Recall that r is the number of branches extending from the lowest node, and r + s =
n + 1. Thus 1 ≤ k ≤ r. Notice that if s = n (so r = k = 1) then this becomes the
hyperplane given by

x1 + · · ·+ xn−1 =
q

2
n(n − 1) = qS(n − 1).

Therefore the points Mq(t) for t a binary tree with only nodes type (1) and (3) will lie
in the hyperplane Hq(l(1, n)) by Lemma 2.5 of [23]. (Simply multiply both sides of the
relation proven there by q.) Also note that for q = 1 (thus disregarding the painting)
that these hyperplanes are an alternate to the bounding hyperplanes of the associahedron
defined by Loday using admissible shuffles. Our hyperplanes (for q = 1) each have
the same intersection with the hyperplane H as does the corresponding hyperplane Hω

defined by Loday (for ω corresponding to the unpainted version of our tree l(k, s).)
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6.2. Definition. The upper facets J (t; r1, . . . , rt) correspond to upper trees such as:

u(t; r1, . . . , rt) =

0

r1
︷︸︸︷

. . .

r2
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. . .
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These are assigned a hyperplane Hq(u(t; r1, . . . , rt)) determined by the equation

xr1 + x(r1+r2) + · · ·+ x(r1+r2+···+rt−1) =
1

2

(

n(n − 1) −
t∑

i=1

ri(ri − 1)

)

or equivalently:

xr1 + x(r1+r2) + · · ·+ x(r1+r2+···+rt−1) =
∑

1≤i<j≤t

rirj .

Note that if t = n (so ri = 1 for all i) that this becomes the hyperplane given by

x1 + · · · + xn−1 =
1

2
n(n − 1) = S(n − 1).

Therefore the points Mq(t) for t a binary tree with only nodes type (2) and (3) will lie in
the hyperplane H by Lemma 2.5 of [23] (using notation S(n) and H as in that source).

In order to prove Theorem 4.1 it turns out to be expedient to prove a more general
result. This consists of an even more flexible version of the algorithm for assigning
points to binary trees in order to achieve a convex hull of those points which is the
multiplihedron. To assign points in Rn−1 to the binary painted trees with n leaves,
we not only choose a value q ∈ (0, 1) but also an ordered n-tuple of positive integers
w0, . . . , wn−1. Now given a tree t we calculate a point Mw0,...,wn−1

q (t) in Rn−1 as follows:

we begin by assigning the weight wi to the ith leaf. We refer to the result as a weighted
tree. Then we modify Loday’s algorithm for finding the coordinate for each trivalent
node by replacing the number of leaves of the left and right subtrees with the sums of
the weights of the leaves of those subtrees. Thus we let Li =

∑
wk where the sum is

over the leaves of the subtree supported by the left branch of the ith node. Similarly we
let Ri =

∑
wk where k ranges over the leaves of the the subtree supported by the right

branch. Then

Mw0,...,wn−1
q (t) = (x1, . . . xn−1) where xi =

{

qLiRi, if node i is type (1)

LiRi, if node i is type (2).

Note that the original points Mq(t) are recovered if wi = 1 for i = 0, . . . , n − 1. Thus
proving that the convex hull of the points Mw0,...,wn−1

q (t) where t ranges over the binary
25



painted trees with n leaves is the nth multiplihedron will imply the main theorem. For
an example, let us calculate the point in R3 which corresponds to the 4-leaved tree:

t =

w0 w1 w2 w3
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Now Mw0,...,w3
q (t) = (qw0w1, (w0 + w1)(w2 + w3), w2w3). To motivate this new weighted

version of our algorithm we mention that the weights w0, . . . , wn−1 are to be thought
of as the sizes of various trees to be grafted to the respective leaves. This weighting is
therefore necessary to make the induction go through, since the induction is itself based
upon the grafting of trees.

6.3. Lemma. For q = 1 the convex hull of the points Mw0,...,wn−1
q (t) for t an n-leaved

binary tree gives the nth associahedron.

Proof. Recall that for q = 1 we can ignore the painting, and thus for wi = 1 for i =
0, . . . , n − 1 the points we calculate are exactly those calculated by Loday’s algorithm.
Now for arbitrary weights w0, . . . , wn−1 we can form from each weighted tree t (with
those weights assigned to the respective leaves) a non-weighted tree t′ formed by grafting a
corolla with wi leaves onto the ith leaf of t. Note that for binary trees which are refinements
of t′ the coordinates which correspond to the nodes of t′ below the grafting receive
precisely the same value from Loday’s algorithm which the corresponding nodes of the
original weighted tree received from the weighted algorithm. Now since Loday’s algorithm
gives the vertices of the associahedra, then the binary trees which are refinements of t′

give the vertices of K(n) × K(w0) × · · · × K(wn−1). If we restrict our attention in each
entire binary refinement of t′ to the nodes of (the refinements of) the grafted corolla with
wi leaves we find the vertices of K(wi). The definition of a cartesian product of polytopes
guarantees that the vertices of the product are points which are cartesian products of the
vertices of the operands. Polytopes are also combinatorially invariant under change of
basis, and so we can rearrange the coordinates of our vertices to put all the coordinates
corresponding to the nodes of (the refinements of) the grafted corollas at the end of the
point, leaving the coordinates corresponding to the nodes below the graft in order at the
beginning of the point. Thus the nodes below the grafting correspond to the vertices of
K(n), and so the weighted algorithm (with q = 1) does give the vertices of K(n). �

6.4. Lemma. For q = 1 the points Mw0,...,wn−1
q (t) for t an n-leaved binary tree all lie in

the n − 2 dimensional affine hyperplane of Rn−1 given by the equation:

x1 + · · · + xn−1 =
∑

1≤i<j≤(n−1)

wiwj .

Proof. In Lemma 2.5 of [23] it is shown inductively that when wi = 1 for i = 1, . . . , n− 1
then the point M1,...,1

1 (t) = M(t) = (x1, . . . , xn−1) satisfies the equation
∑n−1

i=1 xi =
1
2
n(n− 1). As in the proof of the previous lemma we replace the weighted tree t with the

non-weighted t′ formed by grafting an arbitrary binary tree with wi leaves to the ith leaf
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of t. Let m =
∑n−1

i=1 wi. Thus the point M1,...,1
1 (t′) = M(t′) = (x1, . . . , xm) satisfies the

equation
m−1∑

i=1

xi =
1

2
m(m − 1) =

1

2

n−1∑

i=1

wi(
n−1∑

i=1

wi − 1).

Also the coordinates corresponding to the nodes of the grafted tree with wi leaves sum
up to the value 1

2
wi(wi − 1). Thus the coordinates corresponding to the nodes below the

graft, that is, the coordinates of the original weighted tree t, sum up to the difference:

1

2

(
n−1∑

i=1

wi(

n−1∑

i=1

wi − 1) −
n−1∑

i=1

wi(wi − 1)

)

=
∑

1≤i<j≤(n−1)

wiwj

�

Since we are proving that the points Mw0,...,wn−1
q (t) are the vertices of the multiplihe-

dron, we need to define hyperplanes Hw0,...,wn−1
q (t) for this weighted version which we will

show to be the the bounding hyperplanes when t is a facet tree.

6.5. Definition.

Recall that the lower facets Jk(r, s) correspond to lower trees such as:

l(k, s) =

s
︷︸︸︷

0 n−1k−1
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These are assigned a hyperplane Hw0,...,wn−1
q (l(k, s)) determined by the equation

xk + · · · + xk+s−2 = q




∑

(k−1)≤i<j≤(k+s−2)

wiwj



 .

Recall that r is the number of branches from the lowest node, and r + s = n + 1.

6.6. Lemma. For any painted binary tree t the point Mw0,...,wn−1
q (t) lies in the hyperplane

Hw0,...,wn−1
q (l(k, s)) iff t is a refinement of l(k, s). Also the hyperplane Hw0,...,wn−1

q (l(k, s))
bounds below the points Mw0,...,wn−1

q (t) for t any binary painted tree.

Proof. By Lemma 6.4 we have that any binary tree t which is a refinement of the lower tree
l(k, s) will yield a point Mw0,...,wn−1

q (t) which lies in Hw0,...,wn−1
q (l(k, s)). To see this we sim-

ply note that the nodes in t associated to the coordinates xk, . . . , xk+s−2 in Mw0,...,wn−1
q (t)

will each be of type (1), and so we multiply by q on both sides of the equation proven in
the Lemma.
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We now demonstrate that if a binary tree t is not a refinement of a lower tree l(k, s) then
the point Mw0,...,wn−1

q (t) will have the property that

xk + · · · + xk+s−2 > q




∑

(k−1)≤i<j≤(k+s−2)

wiwj



 .

Recall that the trees which are refinements of l(k, s) have all their nodes inclusively
between k and k + s− 2 of type (1). Now if t has these same s− 1 nodes k, . . . , k + s− 2
all type (1) and is not a refinement of l(k, s) then there is no node in t whose deletion
results in the separation of only the leaves k− 1, . . . , k + s− 2 from the rest of the leaves
of t. Let t′ be the subtree of t determined by taking as its root the node furthest from the
root of t whose deletion results in the separation of all the leaves k−1, . . . , k+s−2 from
the rest of the leaves of t. Thus t′ will have more than just those s leaves, say those leaves
of t labeled k − p, . . . , k + p′ − 2 where p ≥ 1, p′ ≥ s and at least one of the inequalities
strict. Since the situation is symmetric we just consider the case where p′ = s and p > 1.
Then we have an expression for the sum of all the coordinates whose nodes are in t′ and
can write:

(∗) xk + · · ·+ xk+s−2 = q




∑

(k−p)≤i<j≤(k+s−2)

wiwj



− q(xk−p+1 + · · · + xk−1).

Notice that the first sum on the right hand side of (∗) contains

xk−p+1 + · · · + xk−1 +
∑

(k−1)≤i<j≤(k+s−2)

wiwj .

(There is no overlap between the coordinate values here and the sum since each of the
terms in xk−p+1 + · · ·+xk−1 contains a factor from wk−p, . . . , wk−2.) The first sum on the
right hand side of (∗) also contains at least one term wmwj where (k − p) ≤ m ≤ (k − 2)
and where wmwj does not occur as a term in xk−p+1 + · · · + xk−1, else the leaf labeled
by m would not lie in t′. Thus we have the desired inequality. Here is a picture of an
example situation, where p = 2. Note that the key term wmwj in the above discussion is
actually wk−2wk+1 in this picture.

t =

s
︷ ︸︸ ︷

0 n−1k−2

•••

•
•
•

QQQQQQQQQ

??
??

??
??

??
??

??
??

??

��
��

��
��

��
��

��
��

��

??
??

??
??

��
�� ��������

��
��

��
��

Now if in the situation for which there does not exist a node of t which if deleted would
separate exactly the leaves k − 1, . . . , k + s− 2 from the other leaves and root of t, there
are also some of the nodes in k, . . . , k + s − 1 of type (2), the inequality still holds, and
now to a greater degree since some of the factors of q are missing from the right hand
side.
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If there does exist a node of t which if deleted would separate exactly the leaves
k−1, . . . , k + s−2 from the other leaves and root of t, but t is not a refinement of l(k, s)
due to the painting (some of the nodes in k, . . . , k + s − 1 are of type (2)), then the
inequality holds precisely because the only difference left to right is that the right hand
side has fewer terms multiplied by the factor of q.

�

6.7. Definition.

Recall that the upper facets J (t; r1, . . . , rt) correspond to upper trees such as:

u(t; r1, . . . , rt) =
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These are assigned a hyperplane Hw0,...,wn−1
q (u(t; r1, . . . , rt)) determined by the equation

xr1 + x(r1+r2) + · · ·+ x(r1+r2+···+rt−1) =
∑

1≤i<j≤t

RiRj .

where Ri =
∑

wj where the sum is over the leaves of the ith subtree (from left to right)
with root the type (5) node; the index j goes from (r1+r2+· · ·+ri−1) to (r1+r2+· · ·+ri−1)
(where r0 = 0.) Note that if t = n (so ri = 1 for all i) that this becomes the hyperplane
given by

x1 + · · ·+ xn−1 =
∑

1≤i<j≤n−1

wiwj.

6.8. Lemma. For any painted binary tree t the point Mw0,...,wn−1
q (t) lies in the hyperplane

Hw0,...,wn−1
q (u(t; r1, . . . , rt)) iff t is a refinement of u(t; r1, . . . , rt). Also the hyperplane

Hw0,...,wn−1
q (u(t; r1, . . . , rt)) bounds above the points Mw0,...,wn−1

q (t) for t any binary painted
tree.

Proof. Now by by Lemma 6.4 we have that any binary tree t which is a refinement of the
upper tree u(t; r1, . . . , rt) will yield a point Mw0,...,wn−1

q (t) which lies in Hw0,...,wn−1
q (u(t; r1, . . . , rt)).

To see this we simply note that the coordinates xr1 , x(r1+r2), . . . , x(r1+r2+···+rt−1) in Mw0,...,wn−1
q (t)

will each be assigned the same value as if the original upper tree had had ri = 1 for all i
but where the weights given were R0, . . . Rn−1.

We now demonstrate that if a binary tree T is not a refinement of an upper tree
u(t; r1, . . . , rt) then the point Mw0,...,wn−1

q (T ) will have the property that

xr1 + x(r1+r2) + · · ·+ x(r1+r2+···+rt−1) <
∑

1≤i<j≤t

RiRj .
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Recall that Ri =
∑

j wj where the sum is over the leaves of the ith subtree (from left

to right) with root the type (5) node; the index j goes from (r1 + r2 + · · · + ri−1) to
(r1 + r2 + · · · + ri − 1) (where r0 = 0.) If T is not a refinement of u(t; r1, . . . , rt) then
for some of the partitioned sets of ri leaves in the partition r1, . . . , rt it is true that there
does not exist a node of T which if deleted would separate exactly the leaves in that set
from the other leaves and root of T . Thus the proof here will use the previous result for
the lower trees. First we consider the case for which T is entirely painted–it has only
type (2) nodes. Now by Lemma 6.4 the total sum of the coordinates of Mw0,...,wn−1

q (T )
will be equal to

∑

1≤i<j≤n−1 wiwj. Consider a (partitioned) set of rm leaves (starting with

leaf k − 1 ) in the partition r1, . . . , rt for which there does not exist a node of T which
if deleted would separate exactly the leaves in that set from the other leaves and root
of T. (Here k − 1 = r1 + r2 + · · · + rm−1) Let Pm be the sum of the rm − 1 coordinates
xk + · · · + xk+rm−2. We have by the same argument used for lower trees that

Pm >
∑

(k−1)≤i<j≤(k+rm−2)

wiwj.

Now for this T , for which some of the partitioned sets of ri leaves in the partition
r1, . . . , rt there does not exist a node of T which if deleted would separate exactly the
leaves in that set from the other leaves and root of T , we have:

xr1 + x(r1+r2) + · · ·+ x(r1+r2+···+rt−1) =
∑

1≤i<j≤n−1

wiwj −
t∑

m=1

Pm <
∑

1≤i<j≤t

RiRj .

If a tree T ′ has the same branching structure as T but with some nodes of type (1) then
the argument still holds since the argument from the lower trees still applies. Now for a
tree T whose branching structure is a refinement of the branching structure of the upper
tree u(t; r1, . . . , rt), but which has some of its nodes r1, (r1 + r2), . . . , (r1 + r2 + · · ·+ rt−1)
of type (1), the inequality holds simply due to the application of some factors q on the
left hand side. �

Proof. of Theorem 4.1: Now we may proceed with our inductive argument. The base case
of n = 2 leaves is trivial to check. The points in R1 are w0w1 and qw0w1. Their convex
hull is a line segment, combinatorially equivalent to J (2). Now we assume that for all
i < n and for arbitrary q ∈ (0, 1) and for positive integer weights w0, . . . , wi−1, that the
convex hull of the points {Mw0,...,wi−1

q (t) | t is a painted binary tree with i leaves} in Ri−1

is combinatorially equivalent to the complex J (i), and that the points M
w0,...,wi−1
q (t) are

the vertices of the convex hull. Now for i = n we need to show that the equivalence still
holds. Recall that the two items we plan to demonstrate are that the points Mw0,...,wn−1

q (t)
are the vertices of their convex hull and that the facet of the convex hull corresponding
to a given lower or upper tree T is the convex hull of just the points corresponding to
the binary trees that are refinements of T. The first item will be seen in the process of
checking the second.

Given an n-leaved lower tree l(k, s) we have from Lemma 6.6 that the points corre-
sponding to binary refinements of l(k, s) lie in an n−2 dimensional hyperplane Hw0,...,wn−1

q (l(k, s))
which bounds the entire convex hull. To see that this hyperplane does indeed contain
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a facet of the entire convex hull we use the induction hypothesis to show that the di-
mension of the convex hull of just the points in Hw0,...,wn−1

q (l(k, s)) is n − 2. Recall that
the tree l(k, s) is the result of grafting an unpainted s-leaved corolla onto leaf k − 1 of
an r-leaved painted corolla. Thus the points Mw0,...,wn−1

q (t) for t a refinement of l(k, s)
have coordinates xk, . . . , xk+s−1 which are precisely those of the associahedron K(s), by
Lemma 6.3 (after multiplying by q). Now considering the remaining coordinates, we see
by induction that they are the coordinates of the multiplihedron J (r). This is by process
of considering their calculation as if performed on an r-leaved weighted tree t′ formed
by replacing the subtree of t (with leaves xk−1, . . . , xk+s−1) with a single leaf of weight
∑k+s−1

j=k−1 wj. Now after a change of basis to reorder the coordinates, we see that the points

corresponding to the binary refinements of l(k, s) are the vertices of a polytope combi-
natorially equivalent to J (r) ×K(s) as expected. Since r + s = n + 1 this polytope has
dimension r − 1 + s − 2 = n − 2, and so is a facet of the entire convex hull.

Given an n-leaved upper tree u(t, r1, . . . , rt) we have from Lemma 6.8 that the points
corresponding to binary refinements of u(t, r1, . . . , rt) lie in an n − 2 dimensional hy-
perplane Hw0,...,wn−1

q (u(t, r1, . . . , rt)) which bounds the entire convex hull. To see that
this hyperplane does indeed contain a facet of the entire convex hull we use the in-
duction hypothesis to show that the dimension of the convex hull of just the points in
Hw0,...,wn−1

q (u(t, r1, . . . , rt)) is n − 2. Recall that the tree u(t, r1, . . . , rt) is the result of
grafting painted ri-leaved corollas onto leaf i of a t-leaved completely painted corolla.
Thus the points Mw0,...,wn−1

q (t) for T a refinement of u(t, r1, . . . , rt) have coordinates cor-

responding to the nodes in the ith subtree which are precisely those of the multiplihedron
J (ri), by the inductive hypothesis. Now considering the remaining coordinates, we see
by Lemma 6.3 that they are the coordinates of the associahedron K(t). This is by process
of considering their calculation as if performed on an t-leaved weighted tree T ′ formed
by replacing each (grafted) subtree of T (with ri leaves) with a single leaf of weight
∑

j wj , where the sum is over the ri leaves of the ith grafted subtree. Now after a change
of basis to reorder the coordinates, we see that the points corresponding to the binary
refinements of u(t, r1, . . . , rt) are the vertices of a polytope combinatorially equivalent to
K(t)×J (r1)×· · ·×J (rt) as expected. Since r1+ · · ·+rt = n this polytope has dimension
t − 2 + (r1 − 1) + (r2 − 1) + · · ·+ (rt − 1) = n − 2, and so is a facet of the entire convex
hull.

Since each n-leaved binary painted tree is a refinement of some upper and or or lower
trees, then the point associated to that tree is found as a vertex of some of the facets of
the entire convex hull, and thus is a vertex of the convex hull. This completes the proof.
Recall that in Lemma 5.3 we have already shown that our convex hull is homeomorphic
to the space of painted trees LWU(n).

�

A picture of the convex hull giving J (4) is also available at
http://faculty.tnstate.edu/sforcey/ct06.htm.
The convex hull for J (5) with 80 vertices is also pictured there as a Schlegel diagram

generated by polymake.
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