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CONVEX HULL REALIZATIONS OF THE MULTIPLIHEDRA
STEFAN FORCEY

ABSTRACT. We present a simple algorithm for determining the extremal points in Eu-
clidean space whose convex hull is the n* polytope in the sequence known as the
multiplihedra. This answers the open question of whether the multiplihedra could be
realized as convex polytopes.
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1. INTRODUCTION

Pictures in the form of painted binary trees can be drawn to represent the multiplication
of several objects in a monoid, before or after their passage to the image of that monoid
under a homomorphism. We use the term “painted” rather than “colored” to distinguish
our trees with two edge colorings, “painted” and “unpainted,” from the other meaning
of colored, as in colored operad or multicategory. We will refer to the exterior vertices
of the tree as the root and the leaves , and to the interior vertices as nodes. This will
be handy since then we can reserve the term “vertices” for reference to polytopes. A
partly painted binary tree is painted beginning at the root (the leaves are unpainted),
and always painted in such a way that there are only three types of nodes. They are:
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This limitation on nodes implies that painted regions must be connected, that painting
must never end precisely at a trivalent node, and that painting must proceed up both
branches of a trivalent node. To see the promised representation we let the left-hand,
type (1) trivalent node above stand for multiplication in the domain; the middle, painted,
type (2) trivalent node above stand for multiplication in the range; and the right-hand

Key words and phrases. enriched categories, n-categories, iterated monoidal categories.
Thanks to Xy-pic for the diagrams.
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type (3) bivalent node stand for the action of the mapping. For instance, given a, b, ¢, d
elements of a monoid, and f a monoid morphism, the following diagram represents the
operation resulting in the product f(ab)(f(c)f(d)).

b d

f(ab)(f(e)f(d))

Of course in the category of associative monoids and monoid homomorphisms there is
no need to distinguish the product f(ab)(f(c)f(d)) from f(abcd). These diagrams were
first introduced by Boardman and Vogt in [10] to help describe multiplication in (and
morphisms of) monoids that are not strictly associative (and whose morphisms do not
strictly respect that multiplication.) The n'* multiplihedron is a C'W-complex whose
vertices correspond to the unambiguous ways of multiplying and applying an A,.-map to
n ordered elements of an A..-space. Thus the vertices correspond to the binary painted
trees with n leaves. The edges of the multiplihedra correspond to either an association
(ab)e — a(be) or to an application f(ab) — f(a)f(b).

The complexes now known as the multiplihedra J(n) were first pictured by Stasheft, for
n < 4 in [57]. They were introduced in order to approach a full description of the category
of A spaces by providing the underlying structure for morphisms which preserved the
structure of the domain space “up to homotopy” in the range. Recall that an A., space
itself is a monoid only “up to homotopy,” and is recognized by a continuous action of
the associahedra as described in [56]. Thus the multiplihedra are used to recognize the
Ao maps. Stasheff described how to construct the 1-skeleton of these complexes, but
stopped short of a full combinatorial description.

In [10] Boardman and Vogt took up the challenge of a complete description of the
category of A, spaces and maps (and their finite A, versions.) Their approach was to
use sequences of spaces of binary trees with interior edges given a length in [0, 1]. They
show that the space of such unpainted trees with n leaves (under certain equivalence
relations regarding length zero edges) is precisely the n'* associahedron. They then
developed several equivalent versions of the space of painted binary trees with interior
edges of length in [0, 1]. These are used to define maps between A, spaces which preserve
the multiplicative structure up to homotopy. A later definition of the same sort of map
was published by Iwase and Mimura in [28]. They give the first detailed definition
of the sequence of complexes J(n) now known as the multiplihedra, and describe their
combinatorial properties. The overall structure of the associahedra is that of a topological
operad, with the composition given by inclusion. The multiplihedra together form a
bimodule over this operad, with the action again given by inclusion. This is somewhat to
be expected, since the spaces of painted trees form a bimodule over the operad of spaces
of trees, where the compositions and actions are given by the grafting of trees, root to
leaf. The study of the A, spaces and their maps is still in progress. There is an open
question about the correct way of defining composition of these maps in order to form a

category. In [10] the obvious composition is shown not to be associative. There are also
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interesting questions about the extension of A,-maps, as in [25], and about the transfer
of A, structure through these maps, as in [44]. In the latter there is an open question
about canonical decompositions of the multiplihedra.

The multiplihedra have appeared in several areas related to deformation theory and
A, category theory. A diagonal map is constructed for these polytopes in [52]. This
allows a functorial monoidal structure for certain categories of A.-algebras and A..-
categories. A different, possibly equivalent, version of the diagonal is presented in [45].
The 3 dimensional version of the multiplihedron is called by the name Chinese lantern
diagram in [63], and used to describe deformation of functors. There is a forthcoming
paper by Woodward and Mau in which a new realization of the multiplihedra as moduli
spaces of disks with additional structure is presented [48]. This realization promises to
allow the authors and their collaborators to define A,-functors as in [47].

The multiplihedra also appear in higher category theory. The definitions of bicategory
and tricategory homomorphisms each include commuting pasting diagrams as seen in
[35] and [21] respectively. The two halves of the axiom for a bicategory homomorphism
together form the boundary of the multiplihedra J(3), and the two halves of the axiom
for a tricategory homomorphism together form the boundary of J(4). Since weak n-
categories can be understood as being the algebras of higher operads, these facts can be
seen as the motivation for defining morphisms of operad (and n-operad) algebras in terms
of their bimodules. This definition is mentioned in [6] and developed in detail in [26]. In
the latter paper it is pointed out that the bimodules in question must be co-rings, which
have a co-multiplication with respect to the bimodule product over the operad. There is
also interest in the existence of a canonical parity structure on the multiplihedra which
agrees with the well known such structure on the associahedra. This sort of structure
allows a general interpretation of the polytopes as pasting diagrams in an n-category. In
a future paper we plan to show how the convex hull realization will allow one to describe
the parity structure. Roughly, one embeds a convex polyhedron “generically” in R", so
that the standard flag of R™ meets transversally all the finitely many flags one can build
from incidence chains of faces. Then one can classify the (k — 1)-dimensional cells on the
boundary of a k-cell into positive and negative ones by a certain “scanning” procedure.

The purpose of this paper is to describe how to represent Boardman and Vogt’s spaces
of painted trees with n leaves as convex polytopes which are combinatorially equivalent to
the CW-complexes described by Iwase and Mimura. Our algorithm for the vertices of the
polytopes is flexible in that it allows an initial choice of a constant ¢ between zero and one.
In the limit as ¢ — 1 the convex hull approaches that of Loday’s convex hull representa-
tion of the associahedra as described in [40]. The limit as ¢ — 1 corresponds to the case for
which the mapping strictly respects the multiplication. In the limit as ¢ — 0 the convex
hulls approach a newly discovered sequence of polytopes (see [51] for some of these in the
axioms for pseudomonoids, and visit http://faculty.tnstate.edu/sforcey/ct06.htm
to learn more about the entire sequence). The limit as ¢ — 0 represents the case for which
multiplication in the domain of the morphism in question is strictly associative. The case
for which multiplication in the range is strictly associative was found by Stasheff in [57]
to yield the associahedra. It was long assumed that the case for which the domain was
associative would likewise yield the associahedra, but we will demonstrate (in a sequel to
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this paper) that this is not so. Recall that when both the range and domain are strictly
associative that the polytopes become the cubes.

2. FACETS OF THE MULTIPLIHEDRA

Faces of the multiplihedra of dimension greater than zero correspond to painted trees
that are no longer binary. Here are the three new types of node allowed in a general
painted tree. They correspond to the the node types (1), (2) and (3) in that they are
painted in similar fashion. They generalize types (1), (2), and (3) in that each has greater
or equal valence than the corresponding earlier node type.

(4) (5) (6)

The recursive definition of the n'” multiplihedra is stated by describing the type and
number of the facets, or (n — 2)-dimensional cells, and then defining J(n) as the cone
on the gluing together of these facets along (n — 3)-dimensional cells with matching
associated painted trees. Iwase and Mimura, however, rather than explicitly stating
this recursive definition, give a geometric definition of the C'W-complex and then prove
all the combinatorial facts about the facets. The type and numbers of facets of the

multiplihedra are described in [28]. Here we present an instructive proof in terms of the
trees that correspond to the enumeration of facets in [28].

2.1. Theorem. The number of facets of the n'™ multiplihedron is:
n(n —1)
2

Proof. Recall that we refer to an unpainted tree with only one node as a corolla. A
partly painted corolla is a painted tree with only one node, of type (6). A facet of the
multiplihedron corresponds to a painted tree with only one, unpainted, interior edge, or
to a tree with all its interior edges attached to a single painted node (type (2) or (5)).
The former sort of tree is determined by a selection of s consecutive leaves of the partly
painted corolla, 1 < s < n, which will be the leaves of the subtree which has the sole
interior edge as its root edge. In general this sort of tree will appear thus:

+20=D g,

S

N
0 k—1 n—1

n(n —1)
2

of choosing s — 1 consecutive “gaps between branches” of the corolla, corresponding to

the choice of s consecutive leaves. Note that this count includes one more than the
4
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count of the facets of the associahedron, since it includes the possibility of selecting all
n leaves. In [28] these lower facets are called Ji(r,s) where r = n+ 1 — s and k is the
first “gap between branches” of the s — 1 consecutive gaps (that is, k& — 1 is the first
leaf of the s consecutive leaves.) We will therefore refer to these trees as lower trees. In
the complex J(n) defined in [28] the lower facet Ji(r, s) is a combinatorial copy of the
complex J(r) x K(s).

The trees with all interior (necessarily painted) edges attached to a single painted node

will appear thus:
r1 9 Tt
0/\ = N

.o.on—1

These are determined by choosing any size k proper subset of the “spaces between
branches” of the partly painted corolla, 1 < k < n — 1. Each set of consecutive “spaces
between branches” in that list of k£ chosen spaces determines a set of consecutive leaves
which will be the leaves of a subtree (that is itself a partly painted corolla) with its root
edge one of the painted interior edges. If neither of the adjacent spaces to a given branch
are chosen, its leaf will be the sole leaf of a subtree that is a partly painted corolla with

n—2
-1

only one leaf. Thus we count these trees by Z (n " ) = 2=D _ 1 In 28] these upper

k=0
facets are labeled J (t; 71, ..., r;) where t is the number of painted interior edges and r; is
the number of leaves in the subtree supported by the i*" interior edge. We will therefore
refer to these trees as upper trees. In the complex J(n) defined in [28] the upper facet
J(t;ry, ..., ) is a combinatorial copy of the complex K(t) x J(rq) X -+ x J(ry). O

3. AN ALGORITHM FOR THE EXTREMAL POINTS

In [40] Loday gives an algorithm for taking the binary trees with n leaves and finding
for each an extremal point in R"™!; together whose convex hull is K(n), the (n — 2)-
dimensional associahedron. Note that Loday writes formulas with the convention that
the number of leaves is n 4+ 1, where we instead always use n to refer to the number
of leaves. Given a (non-painted) binary n-leaved tree t, Loday arrives at a point M (t)
in R"! by calculating a coordinate from each trivalent node. These are ordered left
to right based upon the ordering of the leaves from left to right. Following Loday we
number the leaves 0,1,...,n— 1 and the nodes 1,2,...,n — 1. The i node is “between”
leaf i — 1 and leaf ¢ where “between” might be described to mean that a rain drop
falling between those leaves would be caught at that node. Each trivalent node has a
left and right branch, which each support a subtree. To find the Loday coordinate for
the i node we take the product of the number of leaves of the left subtree (I;) and
the number of leaves of the right subtree (r;) for that node. Thus M (t) = (xy,...2,-1)

where z; = [;r;. Loday proves that the convex hull of the points thus calculated for
5



all n-leaved binary trees is the n'" associahedron. He also shows that the points thus
calculated all lie in the n — 2 dimensional affine hyperplane H given by the equation
T4+ Ty =S —1) = In(n—1).

We adjust Loday’s algorithm to apply to painted binary trees as described above, with
only nodes of type (1), (2), and (3), by choosing a number ¢ € (0,1). Then given a
painted binary tree ¢ with n leaves we calculate a point M,(t) in R"™! as follows: we
begin by finding the coordinate for each trivalent node from left to right given by Loday’s
algorithm, but if the node is of type (1) (unpainted, or colored by the domain) then its
new coordinate is found by further multiplying its Loday coordinate by ¢. Thus

if node 7 is type (1)

qliri,
M.(t) = N - h i =
o(t) = (21,...75_1) Where x {lm, if node i is type (2).

Note that whenever we speak of the numbered nodes (1,...,n — 1 from left to right) of
a binary tree, we are referring only to the trivalent nodes, of type (1) or (2). For an
example, let us calculate the point in R? which corresponds to the 4-leaved tree:

Now M, (t) = (¢,4,1).

3.1. Theorem. The convex hull of all the resulting points M, (t) fort in the set of n-leaved
binary painted trees is the n'™ multiplihedron. That is, our convex hull is combinatorially
equivalent to the CW-complex J(n) defined by Iwase and Mimura, and is homeomorphic
to the space of level (painted) trees defined by Boardman and Vogt.

The proof will follow in section 5.

Here are all the painted binary trees with 3 leaves, together with their points M, (t) ER.

Mq = (17 2)7 Mq = (27 1)
Mq = (Q7 2) Mq

M, =(q,2q), M, = (2q¢,q)

(2,9)



Thus for ¢ = 1 we have the six points {(1,2),(2,1),(3,2),(2,3),(3,1),(1,3)}. Their
convex hull appears as follows:

1

The list of vertices for [J(4) based on painted binary trees with 4 edges, for ¢ = 3, is:
(1,2.3) (1/2.2.3) (1/2.,2/2.3) (1/2,1,3/2)
(2,1,3) (2.,1/2.3) (2/2.,1/2.3) (2/2,1/2,3/2)
(3,1.,2) (3,1/2,2) (3.,1/2.,2/2) (3/2,1/2 2/2)
(3,2,1) (3.2,1/2) (3.,2/2,1/2) (3/2,2/2,1/2)
(1,4,1) (1/2,4,1) (1,4,1/2) (1/2, 4, 1/2) (1/2,4/2 1/2)
and here is the convex hull of these points.

/‘




The largest pentagonal facet of this picture corresponds to the bottom pentagonal facet
in the drawing of J(4) on page 53 of [57], and to the pentagonal facet labeled d( 1y in
the diagram of [J(4) in section 5 of [52].

To see a rotatable version of the convex hull which is the fourth multiplihedron, enter
the following homogeneous coordinates into the Web Demo of polymake (with option
visual), at http://www.math.tu-berlin.de/polymake/index.html#apps/polytope.

POINTS
1123
11/223
11/22/23
11/213)/2
1213
121/23
12/21/23
12/21/23/2
1312
131/22
131/22/2
13/21/22/2
1321
1321/2
132/21/2
13/22/21/2
1141
11/241
1141/2
11/241/2
11/24/21/2
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Before proving the main theorem in section 5 we mention a result about the counting
of the binary painted trees with n leaves.

3.2. Theorem. The number of vertices a, of the n'* multiplihedron is given recursively
by:

n—1
a,=C(n—1)+ Zaian_i
i=1

where ag = 0 and C(n — 1) are the Catalan numbers, which count binary (unpainted)
trees as well as the vertices of the associahedron.

Proof. The Catalan numbers C(n — 1) count those vertices which correspond to the
painted binary trees with n leaves which have only the root painted, that is only nodes
of type (1) and (3). Now we count the trees for which the initial (lowest) trivalent node
is painted (type (2)). Each of these consists of a choice of two painted binary subtrees
whose root is the initial painted node, and whose leaves must sum to n. Thus we sum
over the ways that n can be split into two natural numbers. O

3.3. Remark. This formula gives the sequence which begins: 0, 1,2, 6,21, 80, 322, 1348,5814 . . ..
It is sequence A121988 of the On-line Encyclopedia of integer sequences. The recursive
formula above yields the equation

A(x) = zc(x) + (A(x))?

where A(z) is the ordinary generating function of the sequence a,, above and ¢(x) is the
generating function for the Catalan numbers C'(n). (So xzc(x) is the generating function

for the sequence {C'(n—1)}22,.) Recall that ¢(z) = =422 Thus by use of the quadratic

formula we have
1—+v2v1—4x—1
Ax) = 5 .

It is not hard to check that therefore A(x) = zc(x)c(xe(x)). The Catalan transform
of a sequence b, with generating function B(x) is defined in [4] as the sequence with
generating function B(xc(z)). Since xc(x) is the generating function of C(n — 1) then
the number of vertices of the n'* multiplihedron is given by the Catalan transform of the
Catalan numbers C'(n — 1). Thus the theorems of [4] apply, for instance: a formula for
the number of vertices is given by

I~ (2n—k—1\ [2k—2
“"_nz( n—1 )(k:—l) a0 = 0.

k=1

4. SPACES OF PAINTED TREES

Boardman and Vogt develop several versions of the space of colored or painted trees
with n leaves. Some are more useful than others for their purposes in proving theorems
about A, maps. We choose to focus on one version which has the advantage of reflecting
the intuitive dimension of the multiplihedra. The points of this space are based on the
binary painted trees with the three types of nodes pictured in the introduction. The
leaves are always colored by the domain X (here we say unpainted), and the root is

always colored by the range, Y (here we say painted).
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To get a point of the space each interior edge of a given binary painted tree with n
leaves is assigned a value in [0, 1]. When none of the nodes are painted (that is, disallowing
the second node type), and with the equivalence relations we will review shortly, this will
become the space SMU(n, 1) as defined in [10]. Allowing all three types of nodes gives
the space

HW (U ® L1)(n",11).

(In [10] the superscripts denote the colors, so this denotes that there are n inputs
colored “0” and one output colored “1.” This is potentially confusing since these numbers
are also used for edge lengths, and so in this paper we will denote coloring with the shaded
edges and reserve the values to denote edge lengths.)

We want to consider the retract of this space to the level trees, denoted

LW(U® L1)(n°, 1Y),

We will just call it LWU(n). One way to describe this space is by introducing relations on
the lengths of edges. Edge lengths can be chosen freely from [0, 1] subject to the following
conditions. At each trivalent node of a tree t there are two subtrees with their root that
node. The left subtree is defined by the tree with its rooted edge the left-hand branch
of that node and the right subtree is likewise supported by the righthand branch. The
conditions are that for each node of type (2) we have an equation relating the painted
interior edge lengths of the left subtree and the right subtree (interior with respect to the
original t). Let u;...uy be the lengths of the painted interior edges of the left subtree
and let vy ...v; be the painted lengths of the right subtree. Let p, be the number of
leaves of the left subtree and let p, be the number of leaves of the right subtree. The
equation to be obeyed is

The relations on the lengths then are the equations:

1 1
y==z and §u:§(v—l—y+z).

Note that this will sometimes imply that lengths of certain edges are forced to take values
only from [0, p],p < 1.

We have now described a space corresponding to each painted binary tree. Before
describing how to glue together all these subspaces for different trees to create the entire
LWU(n) we show the following:

4.1. Theorem. The dimension of the subspace of LWU(n) corresponding to a given
binary painted tree is n — 1.
10



Proof. After assigning variables to the internal edges and applying the relations, the
total number of free variables is at least the number of interior edges less the number of
painted, type (2), nodes. This difference is always one less than the number of leaves. To
see that the constraining equations really do reduce the number of free variables ton —1,
notice what the equations imply about the painted interior edge lengths (the unpainted
edge lengths are all free variables.) Beginning at the painted nodes which are closest
to the leaves and setting equal to zero one of the two branches (a free variable) at each
node it is seen that all the painted interior edge lengths are forced to be zero. Thus
each painted node can only contribute one free variable—the other branch length must be
dependent. In fact, given a painted binary tree with n leaves and k internal edges, the
space of points corresponding to the allowed choices for the edge values of that tree is
the intersection of an (n — 1)-dimensional subspace of R¥ with [0, 1]*. We see this simply
by solving the system of homogeneous equations indicated by the type (2) nodes and
restricting our solution to the lengths in [0, 1].

In fact, the intersection just described is an (n—1)-dimensional polytope in R*. We see
that this is true since there is a point in the intersection for which each of the coordinates
is in the range (0, %] To see an example of such a point we consider edge lengths of our
binary tree such that the unpainted edges each have length % and such that the painted
edges have lengths in (0, 3]. To achieve the latter we begin at the first painted type (2)
node above the root, and consider the left and right subtrees. If the left subtree has only
one painted edge we assign that edge the length - where p is the number of leaves of
the left subtree; but if not then we assign the root edge of the left subtree the length 2.
We do the same for the right subtree, replacing p with the number of leaves of the right
subtree. This proceeds inductively up the tree. At a given type (2) node if its left /right
p'-leaved subtree has only one painted edge we assign that edge the length % where d
is the denominator of the length assigned to the third edge (closest to the root) of the
that node on the previous step; but if not then we assign the root edge of the left /right
subtree the length % . This produces a set of lengths which obey the relations and are
all < % For example:

O

To describe the equivalence relations on our space we recall the trees with three ad-
ditional allowed node types. They correspond to the the node types (1), (2) and (3) in
that they are painted in similar fashion.

11



These nodes each have subtrees supported by each of their branches in order from left to
right. The interior edges of each tree are again assigned lengths in [0, 1]. The requirements
on edge lengths which we get from each node of type (5) of valence j+1 are the equalities:

ko 1kj
_E ulz__E u22:"':f§:uji
291 P

where ki ... k; are the numbers of painted internal edges of each of the j subtrees, and
p1 ... p; are the numbers of leaves of each of the subtrees. Now we review the equivalence
relation on trees introduced in [10]. Two trees are equivalent if they reduce to the same
tree after shrinking to points their respective edges of length zero. This is why we call
the variable assigned to interior edges “length” in the first place. By “same tree” we
mean possessing the same painted tree structure and having the same lengths assigned
to corresponding edges. For example one pair of equivalence relations appears as follows:

Note that an equivalence class of trees may always be represented by a binary tree, with

only nodes of type (1), (2), and (3), since we can reduce the valence of nodes within an
equivalence class by introducing extra interior edges of length zero. However we often
represent the equivalence class with the tree that shows no zero edges.

Now the space of painted trees with n leaves is given the quotient topology of the
standard topology of the disjoint union of (n — 1)-dimensional polytopes in R¥ | one
polytope for each binary painted tree, under the equivalence relation just described.
LWU(1) is just a single point. Here is the space LWU(2), where we require v = v :

And here is the space LWU(3) :
12



c=h=0

Note that the equations which the variables in LWU(3) must obey are:

1
a=b  and d=-(a+b+c)

2

1
e=f and g:§(e+f+h)
1 1
W= v and y=5%

In [48] the space of painted trees (bicolored metric ribbon trees) is described in a
slightly different way. First, the trees are not drawn with painted edges, but instead the
nodes of type (3) are indicated by color, and the edges between the root and those nodes

can be assumed to be painted. The correspondence is clear: for example,




Secondly, the relations required of the painted lengths are different. In [48] it is required
that the sum of the painted lengths along a path from the root to a leaf must always
be the same. For example, for the above tree, the new relations obeyed in [48] are
u = v+1y = v+ z. This provides the same dimension of n — 1 for the space associated to
a single binary tree with n leaves as found in Theorem 4.1 in this paper.

Thirdly the topology on the space of painted trees with n leaves is described by first
assigning lengths in (0,00) and then defining the limit as some lengths in a given tree
approach 0 as being the tree with those edges collapsed. This topology clearly is equiv-
alent to the definition as a quotient space given here and in [10]. Thus we can use the
results of [48] to show the following:

4.2. Lemma. The space LWU(n) is homeomorphic to the closed ball in R"™*.

Proof. In [48] it is shown that the entire space of painted trees with n leaves with lengths
in [0, 00) is homeomorphic to R U0. (This is done via a homeomorphism to the space
of quilted disks.) Thus if the lengths are restricted to restricted to lie in [0, 1] then the
resulting space is homeomorphic to the closed ball in R"!. O

5. PROOF OF THEOREM 3.1

To demonstrate that our convex hulls are each combinatorially equivalent to the corre-
sponding convex C'W-complexes defined by Iwase and Mimura, we need only check that
they both have the same vertex-facet incidence. We will show that for each n there is
an isomorphism f between the vertex sets (0-cells) of our convex hull and J(n) which
preserves the sets of vertices corresponding to facets; i.e. if S is the set of vertices of
a facet of our convex hull then f(S) is a vertex set of a facet of J(n). To demonstrate
the existence of the isomorphism, noting that the vertices of 7(n) correspond to the bi-
nary painted trees, we only need to check that the points we calculate from those binary
painted trees are indeed the vertices of their convex hull. The isomorphism implied is the
one that takes a vertex associated to a certain tree to the 0-cell associated to the same
tree. Now a given facet of J(n) corresponds to a tree T' which is one of the two sorts
of trees pictured in the proof of Theorem 2.1. To show that our implied isomorphism of
vertices preserves vertex sets of facets we need to show that that our facet is the convex
hull of the points corresponding to the binary trees which are refinements of T. By
refinement of painted trees we refer to the relationship: ¢ refines ¢’ if ¢ results from the
collapse of some of the internal edges of t. Note that the two sorts of trees pictured in
the proof of Theorem 2.1 are each a single collapse away from being the partly painted
corolla.

The proofs of both key points will proceed in tandem, and will be inductive. The main
strategy will be to define a dimension n — 2 affine hyperplane H,(t) in R"~! for each of
the upper an lower facet trees ¢ (as drawn in the proof of Theorem 2.1), and then to show
that these are the bounding hyperplanes of the convex hull. The definition of hyperplane
will actually generalize our algorithm for finding a point M,(¢) in R"! from a binary

tree t with n leaves.
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The lower facets Jx(r, s) correspond to lower trees such as:
~~
0 k1

n—1

l(k,s) =

These are assigned a hyperplane H,(I(k, s)) determined by the equation

T+t Tpgs—a = %8(8 —1).

Recall that r is the number of branches extending from the lowest node, and r+s = n+1.
Thus 1 < k < r. Notice that if s =n (so r = k = 1) then this becomes the hyperplane

given by
:El+---+:)3n_1:%n(n—l):qS(n—l).

Therefore the points M,(t) for t a binary tree with only nodes type (1) and (3) will lie
in the hyperplane H,(I(1,n)) by Lemma 2.5 of [40]. (Simply multiply both sides of the
relation proven there by ¢.) Also note that for ¢ = 1 (thus disregarding the painting)
that these hyperplanes are an alternate to the bounding hyperplanes of the associahedron
defined by Loday using admissible shuffles. Our hyperplanes (for ¢ = 1) each have
the same intersection with the hyperplane H as does the corresponding hyperplane H,,

defined by Loday (for w corresponding to the unpainted version of our tree I(k, s).)

The upper facets J(t;r1,...,r;) correspond to upper trees such as:
0 1 ro ¢ 1

w(t;ry, ..., ) =
These are assigned a hyperplane H,(u(t;ry,...,7:)) determined by the equation

t
1
Ty F Tqrg) T 0 F Ty froddrey) = 5 (n(n —-1)— Zri(ri — 1))

i=1

or equivalently:

Tpy T Trytrg) T T Tl rgtetr ) = E il
1<i<j<t

Note that if t = n (so r; = 1 for all 7) that this becomes the hyperplane given by

1
15



Therefore the points M, (t) for t a binary tree with only nodes type (2) and (3) will lie
in the hyperplane H by Lemma 2.5 of [40].

Proof of Theorem 3.1:

In order to prove the theorem it turns out to be expedient to prove a more general
result. This consists of an even more flexible version of the algorithm for assigning
points to binary trees in order to achieve a convex hull of those points which is the
multiplihedron. To assign points in R"™! to the binary painted trees with n leaves,
we not only choose a value ¢ € (0,1) but also an ordered n-tuple of positive integers
wo, . .., w,—1. Now given a tree t we calculate a point M0*"=1(t) in R"! as follows:
we begin by assigning the weight w; to the i** leaf. We refer to the result as a weighted
tree. Then we modify Loday’s algorithm for finding the coordinate for each trivalent
node by replacing the number of leaves of the left and right subtrees with the sums of
the weights of the leaves of those subtrees. Thus we let L; = >  wj; where the sum is
over the leaves of the subtree supported by the left branch of the i** node. Similarly we
let R; =Y wy where k ranges over the leaves of the the subtree supported by the right
branch. Then

qL;R;, if node i is type (1)

MWorWn—1(4) — e T h P = . o
q (t) = (an Tn-1) where @ {LZRZ-, if node i is type (2).

Note that the original points M, (t) are recovered if w; = 1 for ¢ = 0,...,n — 1. Thus
proving that the convex hull of the points M;"0*"~1(t) where ¢ ranges over the binary
painted trees with n leaves is the n'* multiplihedron will imply the main theorem. For
an example, let us calculate the point in R® which corresponds to the 4-leaved tree:

w w1 Wy W3

t =

Now M 20-3(t) = (quowy, (wo + w ) (we + w3), waws). To motivate this new weighted
version of our algorithm we mention that the weights wy,...,w,_1 are to be thought
of as the sizes of various trees to be grafted to the respective leaves. This weighting is
therefore necessary to make the induction go through, since the induction is itself based
upon the grafting of trees.

5.1. Lemma. For q = 1 the convex hull of the points M"™"n=1(t) for t an n-leaved
binary tree gives the n'" associahedron.

Proof. Recall that for ¢ = 1 we can ignore the painting, and thus for w; = 1 for i =
0,...,n — 1 the points we calculate are exactly those calculated by Loday’s algorithm.
Now for arbitrary weights wy, ..., w,_1 we can form from each weighted tree ¢ (those
weights assigned to the respective leaves) a non-weighted tree ¢’ formed by grafting a
corolla with w; leaves onto the i** leaf of £. Note that for binary trees which are refinements

of ' the coordinates which correspond to the nodes of ¢ below the grafting receive
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precisely the same value from Loday’s algorithm which the corresponding nodes of the
original weighted tree received from the weighted algorithm. Now since Loday’s algorithm
gives the vertices of the associahedra, then the binary trees which are refinements of ¢/
give the vertices of K(n) x K(wp) X -+ x K(wy_1). If we restrict our attention from the
entire binary refinements of ¢ to the nodes of (the refinements of) the grafted corolla with
w; leaves we find the vertices of KC(w;). The definition of a cartesian product of polytopes
guarantees that the vertices of the product are points which are cartesian products of the
vertices of the operands. Polytopes are also combinatorially invariant under change of
basis, and so we can rearrange the coordinates of our vertices to put all the coordinates
corresponding to the nodes of (the refinements of) the grafted corollas at the end of the
point, leaving the coordinates corresponding to the nodes below the graft in order at the
beginning of the point. Thus the nodes below the grafting correspond to the vertices of
KC(n), and so the weighted algorithm (with ¢ = 1) does give the vertices of IC(n). O

5.2. Lemma. For q = 1 the points My*""=1(t) for t an n-leaved binary tree all lie in
the n — 2 dimensional affine hyperplane of R"~! given by the equation:

r1+ -+, = E Wi Ws .

1<i<j<(n—1)

Proof. In Lemma 2.5 of [40] it is shown inductively that when w; =1fori=1,...,n—1
then the point M'(t) = M(t) = (x1,...,2, 1) satisfies the equation S I~ z; =
%n(n —1). As in the proof of the previous lemma we replace the weighted tree ¢ with the
non-weighted ¢/ formed by grafting an arbitrary binary tree with w; leaves to the it leaf
of t. Let m = 3"~ 'w;. Thus the point M (t') = M(t') = (x1,...,,,) satisfies the

equation

1 1
in:i m(m — 1) ZwZZwZ—l

Also the coordinates corresponding to the nodes of the grafted tree with w; leaves sum
up to the value %wi(wi —1). Thus the coordinates corresponding to the nodes below the
graft, that is, the coordinates of the original weighted tree ¢, sum up to the difference:

1<i<j<(n—1)

DO |

O

Since we are proving that the points M"=*n=1(¢) are the vertices of the multiplihe-
dron, we need to define hyperplanes H /%=1 (t) for this weighted version which we will
show to be the the bounding hyperplanes when ¢ has refinement degree 1.

5.3. Definition.
17



Recall that the lower facets J(r, s) correspond to lower trees such as:
S

=
0 k—1 n—1

l(k,s) =

These are assigned a hyperplane H"*""=1(I(k, s)) determined by the equation

T+ Tpys—2 = (¢ Z WiW;
(k—1)<i<j<(k+s—2)

Recall that r is the number of branches from the lowest node, and r + s =n + 1.

5.4. Lemma. For any painted binary tree t the point M"»"n=1(t) lies in the hyperplane
Hon=1(l(k, s5)) iff t is a refinement of I(k, s). Also the hyperplane H .y~ (l(k, s))
bounds below the points MPo--*"=1(t) for t any binary painted tree.

Proof. By Lemma 5.2 we have that any binary tree ¢ which is a refinement of the lower tree
I(k, s) will yield a point M"*»=1(t) which lies in H*"»=1(I(k, s)). To see this we sim-
ply note that the nodes in ¢ associated to the coordinates xy, ..., xxis o in M;”O""’w"*l(t)
will each be of type (1), and so we multiply by ¢ on both sides of the equation proven in
the Lemma.

We now demonstrate that if a binary tree ¢ is not a refinement of a lower tree [(k, s) then
the point Mg"o*»=1(t) will have the property that

T+t Tpys—2 > q Z Wiw;
(k—1)<i<j<(k+s—2)

Recall that the trees which are refinements of [(k,s) have all their nodes inclusively
between k and k+ s — 2 of type (1). Now if ¢ has these same s — 1 nodes k,... ., k+s—2
all type (1) and is not a refinement of [(k, s) then there is no node in ¢t whose deletion
results in the separation of only the leaves k —1,..., k+ s — 2 from the rest of the leaves
of t. Let t’ be the subtree of ¢ determined by taking as its root the node furthest from the
root of t whose deletion results in the separation of all the leaves k—1, ..., k+s—2 from
the rest of the leaves of ¢. Thus ¢’ will have more than just those s leaves, say those leaves
of t labeled k — p,...,k 4+ q— 2 where p > 1, ¢ > s and at least one of the inequalities
strict. Since the situation is symmetric we just consider the case where ¢ = s and p > 1.
Then we have an expression for the sum of all the coordinates whose nodes are in ¢’ and
can write:

(%) T+ + Tpys—2 =¢ Z wiw; | — q(Tp—py1 + -+ Tp1).
(k—p)<i<j<(k+s—2)
18



Notice that the first sum on the right hand side of (x) contains

Tk—p+1 + -+ T+ Z w;Wy .
(k—1)<i<j<(k+s—2)

(There is no overlap between the coordinate values here and the sum since each of the
terms in Tg_p41 + - - - + Tx—1 contains a factor from wy_,, ..., wg_o.) The first sum on the
right hand side of (x) also contains at least one term w,,w; where (k —p) <m < (k —2)
and where w,,w; dose not occur as a term in xy_p41 + - -+ + Tx_1, else the leaf labeled
by m would not lie in #’. Thus we have the desired inequality. Here is a picture of an
example situation, where p = 2. Note that the key term w,,w; in the above discussion is
actually wy_owy1 in this picture.

Now if in the situation for which there does not exist a node of ¢ which if deleted would

separate exactly the leaves k —1,..., k+ s — 2 from the other leaves and root of ¢, there
are also some of the nodes in k,...,k + s — 1 of type (2), the inequality still holds, and
now to a greater degree since some of the factors of ¢ are missing from the right hand
side.

If there does exist a node of ¢ which if deleted would separate exactly the leaves
k—1,...,k+s—2 from the other leaves and root of ¢, but ¢ is not a refinement of I(k, s)
due to the painting (some of the nodes in k, ...,k + s — 1 are of type (2)), then the
inequality holds precisely because the only difference left to right is that the right hand
side has fewer terms multiplied by the factor of q.

]
5.5. Definition.
Recall that the upper facets J(t;r1,...,7;) correspond to upper trees such as:
r1 ro T
0... . ...n—1
U(t, Tye-- art) =
These are assigned a hyperplane H0*=1(u(t;ry, ..., 7)) determined by the equation

Try T T(rytr) T+ Trydrptdrg) = Z RiRj‘
1<i<j<t
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where R; = > w; where the sum is over the leaves of the i*" subtree (from left to right)
with root the type (5) node; the index j goes from (rq+ro+- - -4r;_1) to (ri+ro+- - +r;—1)
(where 79 = 0.) Note that if t =n (so r; = 1 for all 4) that this becomes the hyperplane
given by

T+ +Tpq = E WiwWy.
1<i<j<n-—1

5.6. Lemma. For any painted binary tree t the point M;”O""vwnfl(t lies in the hyperplane
Hon=t(u(t;ry, ... ry)) iff tis a refinement of u(t;ry,..., 7). Also the hyperplane
Hporn=t(u(t;ry, ... 1t)) bounds above the points M o=*=1(t) fort any binary painted
tree.

Proof. Now by by Lemma 5.2 we have that any binary tree ¢t which is a refinement of the
upper tree u(t;ry, ..., ) will yield a point M_0-*»=1(t) which lies in H 0= (u(t; ry, .

Cs )

To see this we simply note that the coordinates &y, , T(r, 1r5), - - - s Ty 4rofotre_y) I MO n=1 (1)

will each be assigned the same value as if the original upper tree had had r; = 1 for all ¢
but where the weights given were Ry, ... R, 1.

We now demonstrate that if a binary tree 7' is not a refinement of an upper tree
u(t;ry, ..., ) then the point M 0~*=1(T) will have the property that

Ly + x(r1+7"2) + -+ L(ry4rod-dri_1) < Z RZR]

1<i<j<t

Recall that R; = ) ;w; where the sum is over the leaves of the i" subtree (from left
to right) with root the type (5) node; the index j goes from (ry + ro + -+ 4+ r;_1) to
(ri+7rg+---+r; —1) (where 7o = 0.) If T" is not a refinement of w(t;r,...,7;) then
for some of the partitioned sets of r; leaves in the partition rq,...,r; it is true that there
does not exist a node of T" which if deleted would separate exactly the leaves in that set
from the other leaves and root of T'. Thus the proof here will use the previous result for
the lower trees. First we consider the case for which 7T is entirely painted—it has only
type (2) nodes. Now by Lemma 5.2 the total sum of the coordinates of M "0*n=1(T)
will be equal to 3, ;_;<, ; wiw;. Consider a (partitioned) set of r,, leaves (starting with
leaf k — 1 ) in the partition rq,...,r; for which there does not exist a node of 7" which
if deleted would separate exactly the leaves in that set from the other leaves and root
of T. (Here k — 1 =1ry +ry+---+r,_1) Let P, be the sum of the r,, — 1 coordinates
Tk + -+ Tpir,, —2. We have by the same argument used for lower trees that

P, > Z WiWy.

(k_l)§i<j§(k+7”m_2)

Now for this 7', for which some of the partitioned sets of r; leaves in the partition
ri,...,7r; there does not exist a node of T" which if deleted would separate exactly the

leaves in that set from the other leaves and root of T', we have:
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t
Try + Triqry) T Ty frgpotrey) = Z wiw; — Z Py < Z R;R;.
m=1

1<i<j<n—1 1<i<y<t

If a tree T” has the same branching structure as 7' but with some nodes of type (1) then
the argument still holds since the argument from the lower trees still applies. Now for a
tree T whose branching structure is a refinement of the branching structure of the upper

tree u(t;ry,...,r), but which has some of its nodes r1, (r1 +79), ..., (r1 +7ro 4+ -+ 1r1_1)
of type (1), the inequality holds simply due to the application of some factors ¢ on the
left hand side. O

Proof. of Theorem 3.1: Now we may proceed with our inductive argument. The base case
of n = 2 leaves is trivial to check. The points in R!' are wow; and qwow,. Their convex
hull is a line segment, combinatorially equivalent to J(2). Now we assume that for all
i < n and for arbitrary ¢ € (0, 1) and for positive integer weights wy, ..., w;_1, that the
convex hull of the points { M, """~ (¢) | t is a painted binary tree with 7 leaves} in R*™*
is combinatorially equivalent to the complex 7 (i), and that the points My "' (t) are
the vertices of the convex hull. Now for i = n we need to show that the equivalence still
holds. Recall that the two items we plan to demonstrate are that the points M "0*n=1(¢)
are the vertices of their convex hull and that the facet of the convex hull corresponding
to a given lower or upper tree T is the convex hull of just the points corresponding to
the binary trees that are refinements of 1. The first item will be seen in the process of
checking the second.

Given an n-leaved lower tree [(k,s) we have from Lemma 5.4 that the points corre-
sponding to binary refinements of I(k, s) lie in an n—2 dimensional hyperplane H*=1(I(k, 5))
which bounds the entire convex hull. To see that this hyperplane does indeed contain a
facet of the entire convex hull we use the induction hypothesis to show that the dimen-
sion of the convex hull of just the points in H*"=1(i(k,s)) is n — 2. Recall that the
tree [(k, s) is the result of grafting an unpainted s-leaved corolla onto leaf k — 1 of an
r-leaved partly painted corolla. Thus the points M -*n=1(¢) for ¢ a refinement of I(k, s)
have coordinates xy, ...,z 51 which are precisely those of the associahedron K(s), by
Lemma 5.1 (after multiplying by ¢). Now considering the remaining coordinates, we see
by induction that they are the coordinates of the multiplihedron 7 (r). This is by process
of considering their calculation as if performed on an r-leaved weighted tree ' formed
by replacing the subtree of ¢ (with leaves xj_1,...,Trys1) with a single leaf of weight
Zf:;j w;. Now after a change of basis to reorder the coordinates, we see that the points
corresponding to the binary refinements of [(k, s) are the vertices of a polytope combi-
natorially equivalent to J(r) x KC(s) as expected. Since r + s = n + 1 this polytope has
dimension r — 1 + s — 2 =n — 2, and so is a facet of the entire convex hull.

Given an n-leaved upper tree u(t,rq,...,r;) we have from Lemma 5.6 that the points
corresponding to binary refinements of wu(t,ry,...,r;) lie in an n — 2 dimensional hy-
perplane H""n=1(u(t,r1,...,7,)) which bounds the entire convex hull. To see that
this hyperplane does indeed contain a facet of the entire convex hull we use the in-
duction hypothesis to show that the dimension of the convex hull of just the points in
Hpor=n=t(u(t,ry,...,r)) is n — 2. Recall that the tree u(t,ry,...,r;) is the result of

grafting partly painted r;-leaved corollas onto leaf ¢ of a t-leaved completely painted
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corolla. Thus the points M 0*"=1(t) for T" a refinement of u(t,r,...,r;) have coor-

dinates corresponding to the nodes in the i*" subtree which are precisely those of the
multiplihedron [J(r;), by the inductive hypothesis. Now considering the remaining coor-
dinates, we see by Lemma 5.1 that they are the coordinates of the associahedron J(t).
This is by process of considering their calculation as if performed on an t-leaved weighted
tree T" formed by replacing each (grafted) subtree of T" (with r; leaves) with a single leaf
of weight > jwj, where the sum is over the r; leaves of the it" grafted subtree. Now
after a change of basis to reorder the coordinates, we see that the points corresponding
to the binary refinements of u(t,ry,...,r;) are the vertices of a polytope combinatorially
equivalent to K(t) x J(ry) x ---x J(r;) as expected. Since 1 + - - -+ 1r; = n this polytope
has dimension t — 2+ (ry — 1)+ (ra — 1) + - -+ (r; — 1) = n — 2, and so is a facet of the
entire convex hull.

Since each n-leaved binary painted tree is a refinement of some upper and or or lower
trees, then the point associated to that tree is found as a vertex of some of the facets
of the entire convex hull, and thus is a vertex of the convex hull. This completes the
proof. Since the dimension of J(n) is n — 1, we have also shown that our convex hull is
homeomorphic to the space of painted trees LWU (n).

O

A picture of the convex hull giving [J(4) is also available at

http://faculty.tnstate.edu/sforcey/ct06.htm.

The convex hull for J(5) with 80 vertices is also pictured there as a Schlegel diagram
generated by polymake.
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