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GENERATING TREES FOR PERMUTATIONS AVOIDING GENERALIZED

PATTERNS

SERGI ELIZALDE

Abstract. We construct generating trees with one, two, and three labels for some classes of permuta-
tions avoiding generalized patterns of length 3 and 4. These trees are built by adding at each level an
entry to the right end of the permutation, which allows us to incorporate the adjacency condition about
some entries in an occurrence of a generalized pattern. We use these trees to find functional equations
for the generating functions enumerating these classes of permutations with respect to different param-
eters. In several cases we solve them using the kernel method and some ideas of Bousquet-Mélou [4].
We obtain refinements of known enumerative results and find new ones.

1. Introduction

1.1. Generalized pattern avoidance. We denote by Sn the symmetric group on {1, 2, . . . , n}. Let n
and k be two positive integers with k ≤ n, and let π = π1π2 · · ·πn ∈ Sn be a permutation. A generalized
pattern σ is obtained from a permutation σ1σ2 · · ·σk ∈ Sk by choosing, for each j = 1, . . . , k − 1, either
to insert a dash - between σj and σj+1 or not. More formally, σ = σ1ε1σ2ε2 · · · εk−1σk, where each εj

is either the symbol - or the empty string. With this notation, we say that π contains (the generalized
pattern) σ if there exist indices i1 < i2 < · · · < ik such that (i) for each j = 1, . . . , k − 1, if εj is empty
then ij+1 = ij + 1, and (ii) for every a, b ∈ {1, 2, . . . , k}, πia

< πib
if and only if σa < σb. In this case,

πi1πi2 · · ·πik
is called an occurrence of σ in π.

If π does not contain σ, we say that π avoids σ, or that it is σ-avoiding. For example, the permutation
π = 3542716 contains the pattern 12-4-3 because it has the subsequence 3576. On the other hand, π
avoids the pattern 12-43. We denote by Sn(σ) the set of permutations in Sn that avoid σ. More generally,
if Σ = {σ1, σ2, . . .} is a collection of generalized patterns, we say that a permutation π is Σ-avoiding if π
is σ-avoiding for all σ ∈ Σ. We denote by Sn(Σ) the set of Σ-avoiding permutations in Sn.

We use the word length to refer to the number of letters in a permutation, so that Sn is the set of
permutations of length n. A class will consist of a set (e.g., all permutations avoiding a given pattern)
together with a function (e.g., the length). Given a permutation π ∈ Sn, we will write r(π) = πn to
denote the rightmost entry of π. In all our generating functions, the variable t will mark the length of
the permutation.

1.2. Generating trees. Generating trees are a useful tool for enumerating classes of pattern-avoiding
permutations (see, for example, [17, 18]). The nodes at each level of the generating tree are indexed by
permutations of a given length. It is common in the literature to define the children of a permutation π of
length n to be those permutations that are obtained by inserting the entry n+1 in π = π1π2 · · ·πn in such
a way that the new permutation is still in the class. In this paper we consider a variation of this definition.
Here, the children of a permutation π of length n are obtained by appending an entry to the right of π,
and adding one to all the entries in π that were greater than or equal to the new entry. For example, if
the entry 3 is appended to the right of π = 24135, the child that we obtain is 251463. Adding the new
entry to the right of the permutation makes these trees well-suited to enumerate permutations avoiding
generalized patterns, as we will see throughout the paper. We will refer to these trees as rightward

generating trees. This kind of generating trees has been used in [3] to enumerate permutations avoiding
sets of three generalized patterns of length three with one dash, such as {1-23, 2-13, 1-32}.

For some classes of permutations, a label (ℓ) can be associated to each node of the tree in such a
way that the number of children of a permutation and their labels depend only on the label of the
parent. For example, in the tree for 1-2-3-avoiding permutations, we can label each node π with m =

1
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min{πi : ∃j < i with πj < πi} (or m = n + 1 if π = n · · · 21). Then, the children of a permutation with
label (m) have labels (m + 1), (2), (3), . . . , (m), corresponding to the appended entry being 1, 2, 3, . . . , m,
respectively. This succession rule, together with the fact that the root (π = 1 ∈ S1) has label (2),
completely determines the tree. From this rule one can derive a functional equation for the generating
function that enumerates the permutations by their length and the label of the corresponding node in the
tree for this class of 1-2-3-avoiding permutations. For generating trees with one label, these equations are
well understood and their solutions are algebraic series. This is the case of the generating trees obtained
in [3], for example.

In other cases, however, one label is not enough to describe the generating tree in terms of a succession
rule. Generating trees with two labels were used in [4] to enumerate restricted permutations. In fact,
the inspiration for the present paper and many of the ideas used come from Bousquet-Mélou’s work.
One difference is that here trees are constructed by adding at each level an entry to the right end of the
permutation, which allows us to keep track of elements occurring in adjacent positions. In Section 4 we
consider some classes of permutations whose rightward generating tree has three labels for each node.

1.3. Organization of the paper. In this paper we enumerate several families of permutations that
avoid generalized patterns. What ties together the results in the different sections is the technique that
we use to obtain them. The strategy consists of building a rightward generating tree for the family of
permutations, translating the succession rule into a set of functional equations, and applying the kernel
method to them. We have tried this strategy for a number of classes of permutations, and we have found
it to work in several cases, which we include here. This is why the sets of generalized patterns that we
discuss may seem somewhat arbitrary. For other patterns one can construct similar generating trees with
two or three labels, but we have not been able to solve the corresponding functional equations for the
generating function, so we have not included these examples here. In any event, this paper is not meant
to be an exhaustive study of the sets of patterns for which this technique would work.

In general, we have looked for sets of patterns for which the rightward generating tree of the class of
permutations avoiding them has a simple succession rule, once appropriate labels are chosen. In some
cases, we have chosen patterns based on the elegance of their enumerating sequence, like in Section 2.2. In
others, we have chosen patterns whose corresponding generating function has zero radius of convergence,
as is the case in Sections 3.6, 4.1, and 4.2. These seem to be the first instances of generating functions
with zero radius of convergence that arise from generating trees and the kernel method.

We have classified the sets of studied patterns depending on how many labels are needed to describe the
generating tree. In Section 2 we consider some families of permutations where the tree can be described
with one label, which is the value of the rightmost entry in the permutation. The results in this section
are new, and all involve permutations that avoid the pattern 2-1-3. This makes the succession rules easier
because this restriction prevents a permutation with rightmost value r to have a child with rightmost
value greater than r + 1.

In Section 3 we study classes of permutations where each node of the generating tree bears a pair of
labels. For most of them we get rational or algebraic generating functions, and their enumeration has
been done in the literature using different techniques. Section 4 contains some of the main results of the
paper. We find ordinary generating functions for {1-23, 3-12, 34-21}-avoiding and {1-23, 34-21}-avoiding
permutations. Both families are described by generating trees with three labels.

Additional motivation for the study of these families of permutations comes from trying to under-
stand the possible asymptotic behaviors of the number of permutations avoiding generalized patterns
(see [10]). An asymptotic analysis of the coefficients of the generating functions for {1-23, 3-12}-avoiding,
{1-23, 34-21}-avoiding, and {1-23, 3-12, 34-21}-avoiding permutations that we have found may reveal that
their asymptotic growth is strictly smaller than that of Bell numbers but strictly greater than exponen-
tial. This would be the first known instance of a family of pattern-avoiding permutations that exhibits
such a behavior.
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2. Generating trees with one label

In this section we enumerate classes of pattern-avoiding permutations whose rightward generating trees
can be described by a succession rule involving only one label for each node. For some of these classes,
rightward generating trees are not the only way to obtain the results, but they are a tool that works in
all these cases.

The classes in this section avoid the pattern 2-1-3. Note that avoiding this pattern is equivalent to
avoiding the generalized pattern 2-13. Indeed, if π contains an occurrence of 2-1-3, say πiπjπk with
πj < πi < πk, then there must be some index ℓ with j ≤ ℓ < k such that πℓ < πi and πℓ+1 > πi, so
πiπℓπℓ+1 is an occurrence of 2-13. For any class of permutations that avoid this pattern, the corresponding
rightward generating tree has the property that the appended entry at each level can never be more than
one unit larger than the entry appended at the previous level.

2.1. {2-1-3, 2-31}-avoiding permutations. A permutation π is said to avoid the barred pattern 2-31
if every descent in π (an occurrence of the generalized pattern 21) is part of an occurrence of 2-31;
equivalently, for any index i such that πi > πi+1 there is an index j < i such that πi > πj > πi+1. The
bar indicates that the 2 is forced whenever a 31 occurs. For example, the permutation 4627513 avoids
2-31, but 2475613 does not.

We use Mn to denote the n-th Motzkin number. Recall that
∑

n≥0 Mntn = 1−t−
√

1−2t−3t2

2t2 . The next
result seems to be a new interpretation of the Motzkin numbers.

Proposition 2.1. The number of {2-1-3, 2-31}-avoiding permutations of size n is Mn−1.

Proof. Consider the rightward generating tree for {2-1-3, 2-31}-avoiding permutations. Labeling each
permutation with its rightmost entry r = r(π), this tree is described by the succession rule

(1)
(r) −→ (1) (2) · · · (r − 1) (r + 1).

Indeed, the new entry appended to the right of π cannot be greater than πn + 1 in order for the new
permutation to be 2-1-3-avoiding, and it cannot be πn because then it would create an occurrence of 21
that is not part of an occurrence of 2-31.

Defining D(t, u) =
∑

n≥1

∑

π∈Sn(2-1-3,2-31) ur(π)tn, the succession rule above gives the following equa-

tion for the generating function:

(1)

(

1 − t

u − 1
− tu

)

D(t, u) = tu − tu

u − 1
D(t, 1).

The next step is to apply the kernel method. This technique, which has been part of mathematical
folklore for decades, has recently been systematized in [1, 2, 5]. Of the two values of u as a function

of t that cancel the term multiplying D(t, u) on the left hand side, u0 = u0(t) = 1+t−
√

1−2t−3t2

2t is a
well-defined formal power series in t. Substituting u = u0 in (1) gives

D(t, 1) = u0 − 1 =
1 − t −

√
1 − 2t − 3t2

2t
,

which is the generating function for the Motzkin numbers with the indices shifted by one. �

There is also a bijective proof of Proposition 2.1. Given a permutation π = π1π2 · · ·πn ∈ Sn(2-1-3, 2-31),
we can construct a Dyck path of size n (i.e., a sequence of n Us and n Ds so that no prefix contains more
Ds than Us) as follows. A right-to-left maximum of π is an entry πi such that πi > πj for all j > i. Let
πi1 , πi2 , . . . , πim

be the right-to-left maxima of π, with i1 < i2 < · · · < im = n. Consider the Dyck path

ϕ(π) = U i1Dπi1
−πi2 U i2−i1Dπi2

−πi3 U i3−i2 · · ·Dπim−1
−πim U im−im−1Dπim ,

where exponentiation indicates repetition of a step. This map is a bijection between 2-1-3-avoiding
permutations and Dyck paths (see [14]), and it is not hard to see that the condition if π being 2-31-
avoiding is equivalent to the requirement that the path contains no three consecutive steps UDU . So,
we have a bijection between Sn(2-1-3, 2-31) and UDU -free Dyck paths of size n.



4 SERGI ELIZALDE

To finish the proof, we next describe a bijection due to Callan [7] between UDU -free Dyck paths of
size n and Motzkin paths of length n − 1 (i.e., sequences of n − 1 steps U , D, and H with the same
number of Us and Ds and so that no prefix contains more Ds than Us). We say that a U and a D in a
Dyck path are matched if the D is to the right of the U and the letters between them form a Dyck path.
Note that each step is matched with exactly another one. Given a UDU -free Dyck path, first append a
D to it. Now, for each D that is immediately preceded and followed by D steps, delete it and replace
its matching U with an H . Next, replace each occurrence of UDD with a D. Finally, delete the D that
was appended to the path. This produces a Motzkin path of length n− 1. The composition of these two
bijections completes the bijective proof of Proposition 2.1.

2.2. {2-1-3, 2
o
-31}-avoiding permutations. Extending the notion of barred patterns, we say that a

permutation π avoids the pattern 2
o
-31 if every descent in π is the ‘31’ part of an odd number of

occurrences of 2-31; equivalently, for any index i such that πi > πi+1, the number of indices j < i such
that πi > πj > πi+1 is odd.

Proposition 2.2. The number of {2-1-3, 2
o
-31}-avoiding permutations of size n is

(2) |Sn(2-1-3, 2
o
-31)| =

{

1
2k+1

(

3k
k

)

if n = 2k,
1

2k+1

(

3k+1
k+1

)

if n = 2k + 1.

Proof. The rightward generating tree for {2-1-3, 2
o
-31}-avoiding permutations is given by the succession

rule

(1)
(r) −→ · · · (r − 3) (r − 1) (r + 1),

that is, the labels of the children of a node labeled r are the numbers 1 ≤ j ≤ r + 1 such that r − j is
odd. Let J(t, u) =

∑

n≥1

∑

π∈Sn(2-1-3,2
o-31) ur(π)tn =

∑

r≥1 Jr(t)u
r, and let Je(t, u) =

∑

r even Jr(t)u
r.

The succession rule translates into the following functional equation:

(3)

(

1 − tu3

u2 − 1

)

J(t, u) = tu − tu2

u2 − 1
J(t, 1) +

tu(u − 1)

u2 − 1
Je(t, 1).

The kernel 1− tu3

u2−1 as a function in the variable u has three zeroes, two of which are complex conjugates.

Denote them by u1 = a(t)+b(t)i and u2 = ū1 = a(t)−b(t)i. Adding the equations 0 = u2
i −1−uiJ(t, 1)+

(ui − 1)Je(t, 1) for i = 1, 2, we get

a(t)J(t, 1) = a(t)2 − b(t)2 − 1 + (a(t) − 1)Je(t, 1),

and subtracting them gives
J(t, 1) = 2a(t) + Je(t, 1).

Solving this system of equations for J , we get that J(t, 1) = 2a(t) − a(t)2 − b(t)2 − 1. Plugging in the
values of a(t) and b(t) yields the expression

J(t, 1) =
(2 − 3t)f(t)2 + (9t − 2 − g(t))f(t) + (2 − 6t)g(t) + 54t2 − 18t − 4

3tf(t)2
,

where g(t) =
√

3(27t2 − 4) and f(t) = [12tg(t) − 108t2 + 8]1/3. It is easy to check that J = J(t, 1) is a
root of the polynomial tJ3 + (3t − 2)J2 + (3t − 1)J + t = 0. Using the Lagrange inversion formula, one
sees that its coefficients are given by (2), which is sequence A047749 from the On-Line Encyclopedia of
Integer Sequences [16]. Observe that we can also obtain an expression for J(t, u) using (3) and the fact
that Je(t, 1) = −a(t)2 − b(t)2 − 1. �

It is also possible to give a direct bijective proof of Proposition 2.2 that does not use rightward
generating trees. A well-known combinatorial interpretation of the numbers (2) is that they enumerate
lattice paths from (0, 0) to (n, ⌊n/2⌋) with steps E = (1, 0) and N = (0, 1) that never go above the
line y = x/2. We next describe a bijection from Sn(2-1-3, 2

o
-31) to these paths. Let π = π1π2 · · ·πn ∈



GENERATING TREES FOR PERMUTATIONS AVOIDING GENERALIZED PATTERNS 5

Sn(2-1-3, 2
o
-31). Let πi1 , πi2 , . . . , πim

be the right-to-left maxima of π, with i1 < i2 < · · · < im = n. We

claim that the condition that π is {2-1-3, 2
o
-31}-avoiding guarantees that all the differences πij

− πij+1

are even. To see this, fix j and let O be the set of entries a such that aπij
πij+1 is an occurrence of 2-31.

Since π avoids 2
o
-31, the cardinality of O is odd. Now, every a ∈ O must satisfy a > πij+1

. This is
obvious if ij + 1 = ij+1, and otherwise it follows from the fact that if a < πij+1

, then aπij+1πij+1
would

be an occurrence of 2-1-3. On the other hand, any entry a with πij+1
< a < πij

must appear to the left of
πij

, since πij
and πij+1

are consecutive right-to-left maxima, and so a ∈ O. Thus, O is precisely the set of
integers strictly between πij

and πij+1
, which implies that πij

− πij+1
is even. Now, for j = 1, . . . , m− 1,

let aj = (πij
− πij+1

)/2. Let am = ⌊πim
/2⌋. We map π to the following path from (0, 0) to (n, ⌊n/2⌋):

Ei1Na1Ei2−i1Na2Ei3−i2Na3 · · ·Eim−im−1Nam .

It can be checked that this map is a bijection. For example, if π = 4675123, we have πi1πi2πi3 = π3π4π7 =
753, so the corresponding path from (0, 0) to (7, 3) is EEENENEEEN .

Aside from lattice paths, the sequence dn := |Sn(2-1-3, 2
o
-31)| from (2) is also known to enumerate

symmetric ternary trees with 3n edges and symmetric diagonally convex directed polyominoes of area n.
These numbers have also appeared before in connection to pattern-avoiding permutations. It is shown
in [6] that the number of 2143-avoiding Dumont permutations of the second kind of length 2n is dndn+1

(see [6] for definitions). The sequence dn enumerates what the authors call lower boards, which are
2-1-3-avoiding permutations of length n whose diagram fits in a certain shape. A bijection between such
permutations and Sn(2-1-3, 2

o
-31) can be established by composing our bijection into lattice paths with

the one from [6].

Analogously to the definition for the pattern 2
o
-31, we say that a permutation π avoids the pattern

2
e
-31 if every occurrence of 21 in π is part of an even number of occurrences of 2-31. We can also

enumerate {2-1-3, 2
e
-31}-avoiding permutations.

Proposition 2.3. The number of {2-1-3, 2
e
-31}-avoiding permutations of size n is

1

n

⌊n/2⌋
∑

k=0

[

2

(

n

2k

)(

n − k

k − 1

)

+
n

n − k

(

n

2k + 1

)(

n − k

k

)]

.

Proof. Let Q(t) =
∑

n≥1 |Sn(2-1-3, 2
e
-31)| tn. An argument similar to the proof of Proposition 2.2 shows

that

Q(t) =
(2 − 4t)f̃(t)2 + (−2 + 12t− 7t2 − g̃(t))f̃(t) + (2 − 8t)g̃(t) + 8t3 + 46t2 − 8t − 4

3tf̃(t)2
,

where g̃(t) =
√

3(−5t4 + 24t3 − 4t2 + 12t− 4) and f̃(t) = [4(3tg̃(t)− 11t3 − 12t2 − 6t + 2)]1/3. It follows
that Q = Q(t) is a root of the polynomial tQ3 + (4t − 2)Q2 + (4t − 1)Q + t = 0. Applying Lagrange
inversion we get the stated formula. �

2.3. {2-1-3, 2-3-41, 3-2-41}-avoiding permutations. The rightward generating tree for this class of
permutations has a simple succession rule. This allows us to enumerate them easily. Let K(t, u) =
∑

n≥1

∑

π∈Sn(2-1-3,2-3-41,3-2-41) ur(π)tn =
∑

r≥1 Kr(t)u
r.

Proposition 2.4. The generating function for {2-1-3, 2-3-41, 3-2-41}-avoiding permutations where u
marks the value of the rightmost entry is

K(t, u) =
1 − t − 2tu −

√
1 − 2t − 3t2

2t( 1
u + 1 + u) − 2

.

Proof. The succession rule for this class of permutations is

(r) −→
{

(1) (2) if r = 1,

(r − 1) (r) (r + 1) if r > 1,
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with the root labeled (1). This translates into the functional equation

(4)

[

1 − t

(

1

u
+ 1 + u

)]

K(t, u) = tu − tK1(t).

Applying the kernel method we find that K1(t) = 1−t−
√

1−2t−3t2

2t , and substituting back into (4) we get
the expression for K(t, u). �

The generating function K(t, 1) also enumerates {1-3-2, 123-4}-avoiding permutations, as shown in [15,
Example 2.6]. However, no direct bijection between Sn(2-1-3, 2-3-41, 3-2-41) and Sn(1-3-2, 123-4) seems
to be known.

3. Generating trees with two labels

The generating trees in all the examples in the previous section were described using one label for
each node. This will not be the case in the families of permutations in this section. However, we will use
the same technique of translating the succession rule into a set of functional equations and applying the
kernel method to them. This method is what unifies the different classes of permutations studied in this
paper.

Here we enumerate some classes of permutations whose rightward generating tree has a succession rule
that can be described using a pair of labels for each node. These trees give rise to functional equations
with three variables. Even though no method is known to solve them in general, in this section we present
special cases where we have been able to solve the corresponding equations.

In a few cases, one of the two labels is the length of the permutation. When that happens, the
functional equations have only two variables, but the variable t appears multiplied by another variable,
which makes these equations more difficult than the ones in Section 2.

Note that for the classes that we consider in this section, the enumeration of the permutations by their
length has already been done by different authors [8, 9, 11, 12, 15, 18]. Our contribution is a refined
enumeration of these permutations by several parameters, and also the fact that our results are obtained
using the unifying framework of rightward generating trees.

3.1. {2-1-3, 12-3}-avoiding permutations. It was shown in [8] that |Sn(1-3-2, 1-23)| = Mn. A bijection
between Sn(1-3-2, 1-23) and the set of Motzkin paths of length n was given in [11]. Clearly the sets
Sn(1-3-2, 1-23) and Sn(2-1-3, 12-3) are equinumerous, since a permutation π1π2 · · ·πn is {1-3-2, 1-23}-
avoiding exactly when (n+1−πn) · · · (n+1−π2)(n+1−π1) is {2-1-3, 12-3}-avoiding. In this section we
recover the formula for |Sn(2-1-3, 12-3)| using a generating tree with two labels. This method provides a
refined enumeration of {2-1-3, 12-3}-avoiding permutations by two new parameters: the value of the last
entry and the smallest value of the top of an ascent.

Let T1 be the rightward generating tree for the set of {2-1-3, 12-3}-avoiding permutations. Given any
π ∈ Sn, define the parameter

(5) ℓ(π) =

{

n + 1 if π = n(n − 1) · · · 21,

min{πi : i > 1, πi−1 < πi} otherwise.

Let each permutation π be labeled by the pair (ℓ, r) = (ℓ(π), r(π)). Note that since π avoids 12-3,
then necessarily ℓ ≥ r.

Lemma 3.1. The rightward generating tree T1 for {2-1-3, 12-3}-avoiding permutations is specified by the

following succession rule on the labels:

(2, 1)

(ℓ, r) −→
{

(ℓ + 1, 1) (ℓ + 1, 2) · · · (ℓ + 1, ℓ) if ℓ = r,

(ℓ + 1, 1) (ℓ + 1, 2) · · · (ℓ + 1, r) (r + 1, r + 1) if ℓ > r.
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Proof. The permutation obtained by appending an entry to the right of π ∈ Sn(2-1-3, 12-3) is 2-1-3-
avoiding if and only if the appended entry is at most r(π) + 1, and it is 12-3-avoiding if and only if the
appended entry is at most ℓ(π). The labels of the children are obtained by looking at how the values of
(ℓ, r) change when the new entry is added. �

We will use this generating rule to obtain a formula for the generating function

M(t, u, v) :=
∑

n≥1

∑

π∈Sn(2-1-3,12-3)
uℓ(π)vr(π) tn.

For fixed ℓ and r, let Mℓ,r(t) =
∑

n≥1 |{π ∈ Sn(2-1-3, 12-3) : ℓ(π) = ℓ, r(π) = r}| tn. Note that

M(t, u, v) =
∑

ℓ,r Mℓ,r(t)u
ℓvr.

Proposition 3.2. The generating function for {2-1-3, 12-3}-avoiding permutations where u and v mark

the parameters ℓ and r defined above is

M(t, u, v) =
[(1 − u)v + c1t + c2t

2 + c3t
3 + c4t

4 − ((1 − u)v + tu + t2u2v)
√

1 − 2t − 3t2)]u2v

2(1 − u − tu(1 − u) + t2u2)(1 − uv + tuv + t2u2v2)
,

where c1 = 2 − u − v − uv + 2u2v, c2 = u(−1 + (2 − u)v + 2(u − 1)v2), c3 = u2v(−3 + 2v − 2uv), and

c4 = −2u3v2.

Substituting u = v = 1 in the above expression we recover the generating function for the Motzkin
numbers.

Proof. The coefficient of tn in M(t, u, v) is the sum of uℓvr over all the pairs (ℓ, r) of labels that appear
at level n of the tree. By Lemma 3.1, the children of a node with labels (ℓ, ℓ) contribute uℓ+1v +
uℓ+1v2 + · · ·+ uℓ+1vℓ to the next level, and the children of a node with labels (ℓ, r) with ℓ > r contribute
uℓ+1v + uℓ+1v2 + · · · + uℓ+1vr + ur+1vr+1. It follows that

(6) M(t, u, v) = tu2v+t
∑

ℓ

Mℓ,ℓ(t)u
ℓ+1(v+v2+· · ·+vℓ)+t

∑

ℓ>r

Mℓ,r(t)[u
ℓ+1(v+v2+· · ·+vr)+ur+1vr+1].

It will be convenient to define

M>(t, u, v) :=
∑

n≥1

∑

π∈Sn(2-1-3,12-3)
with ℓ(π)>r(π)

uℓ(π)vr(π) tn and M=(t, u, v) :=
∑

n≥1

∑

π∈Sn(2-1-3,12-3)
with ℓ(π)=r(π)

(uv)ℓ(π) tn,

so that M(t, u, v) = M>(t, u, v) + M=(t, u, v). Taking from (6) only the pairs (ℓ, r) with ℓ > r, we get

M>(t, u, v) = tu2v + t
∑

ℓ

Mℓ,ℓ(t)u
ℓ+1(v + v2 + · · · + vℓ) + t

∑

ℓ>r

Mℓ,r(t)[u
ℓ+1(v + v2 + · · · + vr)]

= tu2v + t
∑

ℓ

Mℓ,ℓ(t)u
ℓ+1 vℓ+1 − v

v − 1
+ t

∑

ℓ>r

Mℓ,r(t)u
ℓ+1 vr+1 − v

v − 1

= tu2v +
tuv

v − 1
[M=(t, u, v) − M=(t, u, 1) + M>(t, u, v) − M>(t, u, 1)] .(7)

Similarly, taking from (6) only the pairs (ℓ, r) with ℓ = r,

(8) M=(t, u, v) = t
∑

ℓ>r

Mℓ,r(t)u
r+1vr+1 = tuv

∑

ℓ>r

Mℓ,r(t)(uv)r = tuv M>(t, 1, uv).

Using in (7) the expression of M= in terms of M> given in (8), we get

(9) M>(t, u, v) = tu2v +
tuv

v − 1
[tuv M>(t, 1, uv) − tu M>(t, 1, u) + M>(t, u, v) − M>(t, u, 1)] .

Substituting u = 1 in this equation and collecting the terms in M>(t, 1, v), we have

(10)

(

1 − t2v2

v − 1
− tv

v − 1

)

M>(t, 1, v) = tv − t(t + 1)v

v − 1
M>(t, 1, 1).
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Now we apply the kernel method, substituting v = v0 = v0(t) = 1−t−
√

1−2t−3t2

2t2 in (10) to obtain

M>(t, 1, 1) =
v0 − 1

t + 1
=

1 − t − 2t2 −
√

1 − 2t − 3t2

2t2(t + 1)
.

Plugging this expression for M>(t, 1, 1) back into (10) we get that

(11) M>(t, 1, v) =
(1 − t − 2t2v −

√
1 − 2t − 3t2)v

2t(1 − v + tv + t2v2)
.

If we write equation (9) as

(12)

(

1 − tuv

v − 1

)

M>(t, u, v) = tu2v +
tuv

v − 1
[tuv M>(t, 1, uv) − tu M>(t, 1, u)− M>(t, u, 1)] ,

we can apply again the kernel method, taking v = v1 = v1(t, u) = 1
1−tu . This cancels the left hand side

and gives

M>(t, u, 1) =
[2(1 − u) + u2 − t(1 + 2t)u2 + (1 − 2u)

√
1 − 2t − 3t2)]tu2

2(1 − u + tu + t2u2)(1 − u − tu(1 − u) + t2u2)

using (11). Substituting back into (12) and using (11) again we get that

M>(t, u, v) =
[2 − u − uv + u2v + tu(v − 1) − t(1 + 2t)u2v + (1 − 2u)

√
1 − 2t − 3t2)]tu2v

2(1 − u − tu(1 − u) + t2u2)(1 − uv + tuv + t2u2v2)
.

Finally, combining it with the fact that

M(t, u, v) = M>(t, u, v) + M=(t, u, v) = M>(t, u, v) + tuv M>(t, 1, uv),

we obtain the desired expression for M(t, u, v). �

We have encountered two classes of pattern-avoiding permutations enumerated by the Motzkin num-
bers, namely

(13) |Sn+1(2-1-3, 2-31)| = |Sn(2-1-3, 12-3)| = Mn

(see Proposition 2.1). In Section 2.1 we described a bijection ϕ between 2-3-1-avoiding permutations and
Dyck paths. A permutation π is 2-31-avoiding if and only if ϕ(π) is a UDU -free Dyck path. It is not
hard to check (see [11]) that π is 12-3-avoiding if and only if ϕ(π) is UUU -free. Next we give a bijection
between UDU -free Dyck paths of size n+1 and UUU -free Dyck paths of size n, reproving equation (13).

Given a UDU -free Dyck path, mark each D that is immediately preceded and followed by a D (and
also the rightmost D if it is preceded by a D). Move left each one of the marked Ds so that it immediately
follows its matching U . Finally, delete the rightmost peak (i.e., occurrence of UD). This gives a DDD-
free Dyck path, which can be easily turned into a UUU -free one by reversing it, that is, reading the steps
from right to left and exchanging Us and Ds.

To show that this map is the desired bijection, we now describe its inverse. Given a DDD-free Dyck
path, we first reverse it and then append a peak UD to it. Define the height of a step to be the number of
Us minus the number of Ds preceding it. Mark each D step in an occurrence of UDU . For each marked
step, if h is its height, move it to the right so that it immediately precedes the next D step with height
h − 1 (if h = 1, then move it to the end). This produces the original UDU -free Dyck path.

As an example of this bijection, consider the UDU -free path UŪUUDDŪUDD̄D̄DŪUDD̄. The
marked Ds and their matching Us are distinguished with a bar. The DDD-free Dyck path that we
obtain is UUD̄UUDDUD̄UDDUD̄ (the barred Ds are the steps that have been moved), and its reversal
is UDUUDUDUUDDUDD. Applying the inverse map moves the barred Ds back to their original
position.
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3.2. {2-1-3, 32-1}-avoiding permutations. It is known [8] that |Sn(2-1-3, 32-1)| = 2n−1. Here we use
rightward generating trees with two labels to recover this fact, and to refine it with two parameters: the
value of the last entry and the largest value of the bottom of a descent. Given any π ∈ Sn, define

h(π) =

{

0 if π = 12 · · ·n,

max{πi : i > 1, πi−1 > πi} otherwise.

To each {2-1-3, 32-1}-avoiding permutation π we assign the pair of labels (h, r) = (h(π), r(π)). Note
that since π avoids 32-1, then necessarily h ≤ r.

Lemma 3.3. The rightward generating tree for {2-1-3, 32-1}-avoiding permutations is specified by the

following succession rule on the labels:

(0, 1)
(h, r) −→ (h + 1, h + 1) (h + 2, h + 2) · · · (r, r) (h, r + 1).

Proof. When we append an entry i to a {2-1-3, 32-1}-avoiding permutation, the new permutation is 2-1-3-
avoiding if and only if i ≤ r(π)+1, and it is 32-1-avoiding if and only if i > h(π). The list of labels of the
children obtained by appending an i satisfying these two conditions is the right hand side of the rule. �

Let
N(t, u, v) =

∑

n≥1

∑

π∈Sn(2-1-3,32-1)
uh(π)vr(π) tn =

∑

h,r

Nh,r(t)u
hvr.

Proposition 3.4. The generating function for {2-1-3, 32-1}-avoiding permutations where u and v mark

the parameters h and r defined above is

N(t, u, v) =
tv(1 − t + tu − tuv)

(1 − tv)(1 − t − tuv)
.

Proof. By Lemma 3.3, the children of a node with labels (h, r) contribute uh+1vh+1 + uh+2vh+2 + · · · +
urvr + uhvr+1 to the next level. It follows that

N(t, u, v) = tv + t
∑

h,r

Nh,r(t)

[

(uv)r+1 − (uv)h+1

uv − 1
+ uhvr+1

]

= tv + tvN(t, u, v) +
tuv[N(t, 1, uv)− N(t, uv, 1)]

uv − 1
.(14)

Substituting u = 1 and v = 1 separately gives a system of two equations in N(t, 1, ∗) and N(t, ∗, 1)
that can be easily solved. �

The above result can indeed be obtained as well without using rightward generating trees. The recursive
structure of 2-1-3-avoiding permutations (i.e., they are of the form σ1τ , where σ and τ are 2-1-3-avoiding
and every entry in σ is larger than every entry in τ) can be used to obtain an equation satisfied by
N(t, u, v) and to deduce the above formula without much difficulty.

3.3. {2-1-3, 34-21}-avoiding permutations. The labels that will be convenient to use to describe the
rightward generating tree for this class are (s, r) = (s(π), r(π)), where

(15) s(π) =

{

0 if π = n(n − 1) · · · 21,

max{πi : πi < πi+1} otherwise,

and r(π) = πn as usual.

Lemma 3.5. The rightward generating tree for {2-1-3, 34-21}-avoiding permutations is specified by the

following succession rule on the labels:

(0, 1)

(s, r) −→
{

(s + 1, 1) (s + 1, 2) · · · (s + 1, s) (s, s + 1) (r, r + 1) if s < r,

(s + 1, r + 1) if s > r.
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Proof. First note that the 2-1-3-avoiding condition implies that the new entry appended to π has to be
at most r + 1. If s < r and πi is an entry to the right of s, then πi > s, otherwise sπir would be an
occurrence of 2-1-3. In fact, we also know that πi 6= s + 1, unless πi = r = s + 1, because otherwise the
entry following s + 1 would be greater than it, contradicting the definition of s. So, unless r = s + 1, the
entry s + 1 precedes s, so the appended entry cannot be greater than s + 1, otherwise it would create a
2-1-3. This explains the labels in the case s < r. If s > r, the appended entry has to be greater than r
for the new permutation to be 34-21-avoiding. �

Let

K(t, u, v) :=
∑

n≥1

∑

π∈Sn(2-1-3,34-21)
us(π)vr(π) tn =

∑

s,r

Ks,r(t)u
svr,

and let K<(t, u, v) and K>(t, u, v) be defined similarly, with the sum running only over permutations
with s(π) < r(π) and s(π) > r(π), respectively, so that K(t, u, v) = K<(t, u, v) + K>(t, u, v).

Proposition 3.6. The generating function for {2-1-3, 34-21}-avoiding permutations where u and v mark

the parameters s and r defined above is

(16) K(t, u, v) =
tv[1 − (1 + u + uv)t + (u2 + uv + u2v)t2]

(1 − t − tu)(1 − t − tuv)(1 − tuv)
.

Proof. By Lemma 3.5, the generating functions K< and K> satisfy

K<(t, u, v) = tv + t
∑

s<r

Ks,r(t)(u
svs+1 + urvr+1) = tv + tv[K<(t, uv, 1) + K<(t, 1, uv)],

K>(t, u, v) = t
∑

s<r

Ks,r(t)u
s+1(v + · · · + vs) + t

∑

s>r

Ks,r(t)u
s+1vr+1

=
tuv

v − 1
[K<(t, uv, 1) − K<(t, u, 1)] + tuvK>(t, u, v).

Substituting first u = 1 and then v = 1 in the first equation, we get two equations involving K<(t, 1, w)
and K<(t, w, 1) that can be easily solved to give

K<(t, u, v) =
tv

1 − t − tuv
.

The second equation then implies that

K>(t, u, v) =
u2vt3

(1 − t − tu)(1 − t − tuv)(1 − tuv)
,

and the proposition follows. �

Corollary 3.7. The number of {2-1-3, 34-21}-avoiding permutations of size n is (n − 1)2n−2 + 1.

Proof. Taking u = v = 1 in (16), we get that

K(t, 1, 1) =
t(1 − 3t + 3t2)

(1 − t)(1 − 2t)2
.

The coefficient of tn in the series expansion of this rational function is (n − 1)2n−2 + 1. �

It is not hard to show that Sn(2-1-3, 34-21) = Sn(2-1-3, 3-4-2-1) = Sn(1-3-2, 3-4-2-1). This last set of
permutations was enumerated by West [18], and Corollary 3.7 agrees with his result.
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3.4. {1-2-34, 2-1-3}-avoiding permutations. The generating function for these permutations appears
in [15]. In fact, it is easy to see that Sn(1-2-34, 2-1-3) = Sn(1-2-3-4, 2-1-3), and the latter set of permuta-
tions was studied in [18], where it is shown that they are counted by the Fibonacci numbers F2n−1. Here
we derive the generating function and obtain a refinement of it using a rightward generating tree with
two labels.

Let the labels of a permutation π be the pair (m, r) = (m(π), r(π)), where r(π) = πn and

m(π) =

{

n + 1 if π = n(n − 1) · · · 21,

min{πi : ∃j < i with πj < πi} otherwise.

Note that we always have m(π) ≤ r(π) unless r = 1, and that if m(π) = r(π), then π = n(n − 1) · · · 312,
so m = r = 2.

Lemma 3.8. The rightward generating tree for {1-2-34, 2-1-3}-avoiding permutations is specified by the

following succession rule on the labels:

(2, 1)

(m, r) −→











(m + 1, 1) (2, 2) if r = 1,

(3, 1) (2, 2) (2, 3) if m = r = 2,

(m + 1, 1) (2, 2) (m, m + 1) · · · (m, r) if m < r.

Proof. As usual, the appended entry has to be at most r + 1 for the permutation to avoid 2-1-3. In
the case that m < r, this entry cannot be greater than r in order to avoid 1-2-34. The labels are now
obtained by looking at how the parameter m changes after appending the new entry. �

Let H(t, u, v) :=
∑

n≥1

∑

π∈Sn(1-2-34,2-1-3) um(π)vr(π) tn, and let H1(t, u, v), H=(t, u, v), and H<(t, u, v)

be defined similarly, with the summation restricted to permutations with r(π) = 1, m(π) = r(π), and
m(π) < r(π), respectively, so that H(t, u, v) = H1(t, u, v) + H=(t, u, v) + H<(t, u, v).

Proposition 3.9. The generating function for {1-2-34, 2-1-3}-avoiding permutations where u and v mark

the parameters m and r defined above is

H(t, u, v) =
tu2v[1 + (v − 3)t + (1 + u − v − uv + v2)t2 + uv(1 − v)t3]

(1 − 3t + t2)(1 − tu)
.

Proof. From Lemma 3.8 we get the following functional equations defining H1, H=, and H<.

H1(t, u, v) = tu2v + tuvH(t, u, 1)(17)

H=(t, u, v) = tu2v2H(t, 1, 1)(18)

H<(t, u, v) = tvH=(t, u, v) +
tv

v − 1
[H<(t, u, v) − H<(t, uv, 1)](19)

Combining (18) and (19), introducing a variable w = uv, and defining H̃<(t, w, v) = H<(t, w
v , v), we get

(20)

(

1 − tv

v − 1

)

H̃<(t, w, v) = t2vw2H(t, 1, 1) − tv

v − 1
H̃<(t, w, 1).

The kernel is canceled with v = 1
1−t , giving an expression for H̃<(t, w, 1) in terms of H(t, 1, 1), which

plugged back into (20) yields

(21) H<(t, u, v) = H̃<(t, uv, v) =
t2u2v3

1 − t
H(t, 1, 1).

On the other hand, adding equations (17) and (18) and using that H1(t, u, v)+H=(t, u, v) = H(t, u, v)−
H<(t, u, v), we get

H<(t, u, v) = H(t, u, v) − tu2v − tuvH(t, u, 1)− tu2v2H(t, 1, 1),
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which combined with (21) gives a simple expression relating H(t, u, v), H(t, u, 1) and H(t, 1, 1). In this
expression, the substitution u = v = 1 gives

H(t, 1, 1) =
t(1 − t)

1 − 3t + t2
,

and the substitution v = 1 puts H(t, u, 1) in terms of H(t, 1, 1). All together produces the desired formula
for H(t, u, v). �

3.5. {12-34, 2-1-3}-avoiding permutations. It was proved in [15] that the generating function for per-

mutations avoiding {12-34, 2-1-3} is 1−2t−t2−
√

1−4t+2t2+t4

2t2 . Using the labels (ℓ, r) defined as in (5), we
can construct a generating tree with two labels for this class of permutations. The proof of the following
lemma is straightforward and analogous to that of Lemma 3.1.

Lemma 3.10. The rightward generating tree for {12-34, 2-1-3}-avoiding permutations is specified by the

following succession rule on the labels:

(2, 1)

(ℓ, r) −→











(ℓ + 1, 1) (ℓ + 1, 2) · · · (ℓ + 1, r) (r + 1, r + 1) if ℓ > r,

(ℓ + 1, 1) (ℓ + 1, 2) · · · (ℓ + 1, ℓ) (ℓ, ℓ + 1) if ℓ = r,

(ℓ + 1, 1) (ℓ + 1, 2) · · · (ℓ + 1, ℓ) (ℓ, ℓ + 1) (ℓ, ℓ + 2) · · · (ℓ, r) if ℓ < r.

Let F (t, u, v) :=
∑

n≥1

∑

π∈Sn(12-34,2-1-3) uℓ(π)vr(π) tn, and let F>(t, u, v), F=(t, u, v), and F<(t, u, v)

be defined similarly, with the summation restricted to permutations with ℓ(π) > r(π), ℓ(π) = r(π), and
ℓ(π) < r(π), respectively. By definition, F (t, u, v) = F>(t, u, v) + F=(t, u, v) + F<(t, u, v).

Proposition 3.11. The generating function for {12-34, 2-1-3}-avoiding permutations where u and v
mark the parameters ℓ and r defined above is

F (t, u, v) =
u2v[p1(t, u, v) + p2(t, u, v)

√
1 − 4t + 2t2 + t4]

2[(1 + tuv)2 − uv − t − uvt2][1 + (u + t)(tu − 1)]
,

where

p1(t, u, v) = (1 − u)v + (2 − u − 4v + 2uv + v
2 + 2u

2
v − uv

2)t + (−4 + u + 6v + uv − 3v
2
− 6u

2
v + 3u

2
v
2)t2

+(2 + u − 4v − 5uv + 3v
2 + 4u

2
v + 4uv

2
− 4u

2
v
2
− 2uv

3
− 2u

3
v
2 + 2u

2
v
3)t3

+(−u + v + 4uv − v
2
− 4uv

2
− u

2
v
2 + 2uv

3 + 2u
3
v
2
− 2u

3
v
3)t4 − uv(v − 1)(2uv − 1)t5,

p2(t, u, v) = (u − 1)v + [(u − 1)v(v − 2) − u]t + (u − v + v
2
− u

2
v
2)t2 + uv(1 − v)t3.

Note that this expression becomes much simpler if we ignore the parameter r, that is,

F (t, u, 1) =
u2(1 − 2tu − t2 −

√
1 − 4t + 2t2 + t4)

2[1 + (u + t)(tu − 1)]
,

and coincides with the result from [15] if we ignore both parameters:

F (t, 1, 1) =
1 − 2t − t2 −

√
1 − 4t + 2t2 + t4

2t2
.

Proof. From Lemma 3.10 we get the following functional equations defining F>, F=, and F<.

F>(t, u, v) = tu2v +
tuv

v − 1
[F>(t, u, v) − F>(t, u, 1)(22)

+ F=(t, u, v) − F=(t, u, 1) + F<(t, uv, 1) − F<(t, u, 1)],

F=(t, u, v) = tuvF>(t, 1, uv),(23)

F<(t, u, v) = tvF=(t, u, v) +
tv

v − 1
[F<(t, u, v) − F<(t, uv, 1)].(24)
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We can introduce a variable w = uv in (24), and apply the kernel method with v = 1
1−t to get that

F<(t, w, 1) =
t2wF>(t, 1, w)

1 − t
.

Using this expression together with (23) in (22), we get an equation that involves only F>:

(25)

(

1 − tuv

v − 1

)

F>(t, u, v) = tu2v − tuv

v − 1

[

F>(t, u, 1) +
tuv

1 − t
F>(t, 1, uv) − tu

1 − t
F>(t, 1, u)

]

.

Substituting u = 1, it becomes

(26)
(1 − v − t + 2tv − vt2 + v2t2)

(1 − v)(1 − t)
F>(t, 1, v) = tv +

tv

(1 − v)(1 − t)
F>(t, 1, 1).

We apply the kernel method again, this time with v = 1−2t+t2−
√

1−4t+2t2+t4

2t2 to cancel the left hand side
of (26), which yields

F>(t, 1, 1) =
1 − 3t + t2 + t3 + (t − 1)

√
1 − 4t + 2t2 + t4

2t2
.

Now we can use (26) to obtain a formula for F>(t, 1, v). Applying again the kernel method in (25), with
v = 1

1−tu , we get an expression for F>(t, u, 1) in terms of F>(t, 1, u) and F>(t, 1, u
1−tu ), and therefore

a formula for F>(t, u, 1). Substituting back into (25), we get a formula for F>(t, u, v). From this it is
straightforward to obtain formulas for F<(t, u, v) and F=(t, u, v) as well, and the result follows. �

3.6. {1-23, 3-12}-avoiding permutations. Generating trees with two labels can be used to obtain the
generating function for the number of {1-23, 3-12}-avoiding permutations. These permutations were
studied in [9], where it was shown that if we let bn = |Sn(1-23, 3-12)|, then these numbers satisfy the
recurrence bn+2 = bn+1 +

∑n
k=0

(

n
k

)

bk. Here we obtain an ordinary generating function without going
through the recurrence. The labels are particularly easy in this case because we can take one of them to
be just the length n of the permutation. The labels of π ∈ Sn are then (r, n), where r = πn as usual.
The advantage of having one of the labels be n is that we do not need an extra variable for this label in
the generating function, since it is already encoded in the exponent of the variable t.

Lemma 3.12. The rightward generating tree for {1-23, 3-12}-avoiding permutations is specified by the

following succession rule on the labels:

(1, 1)

(r, n) −→
{

(1, n + 1) (n + 1, n + 1) if r = 1,

(1, n + 1) (2, n + 1) · · · (r, n + 1) if r > 1.

Proof. The appended element cannot be larger than the rightmost entry of π, except where this entry is
1, in which case the appended element can be the new largest one. �

Let P (t, u) :=
∑

n≥1

∑

π∈Sn(1-23,3-12) ur(π) tn =
∑

r Pr(t)u
r.

Proposition 3.13. The generating function for {1-23, 3-12}-avoiding permutations is

P (t, 1) =
∑

k≥1

t2k−1(1 − (k − 1)t)

(1 − t)2(1 − 2t)2 · · · (1 − kt)2
.

Proof. From Lemma 3.12 we get

P (t, u) = tu +
tu

u − 1
(P (t, u) − uP1(t) − P (t, 1) + P1(t)) + tu(P1(t) + P1(tu)).(27)

Using that P1(t) = t + t P (t, 1) and collecting the terms with P (t, u), we get

(28)

(

1 − tu

u − 1

)

P (t, u) = tu + t2u2 + t2u2P (tu, 1) +

(

t2u +
tu(t − 1 − tu)

u − 1

)

P (t, 1).
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Substituting u = 1
1−t gives

P (t, 1) =
t

(1 − t)2

(

1 + tP (
t

1 − t
, 1)

)

,

and by iterated application of this formula,

P (t, 1) =
t

(1 − t)2

(

1 +
t2(1 − t)

(1 − 2t)2

(

1 +
t2(1 − 2t)

(1 − t)(1 − 3t)2

(

1 +
t2(1 − 3t)

(1 − 2t)(1 − 4t)2
(1 + · · · )

)))

=
t

(1 − t)2
+

t3

(1 − t)(1 − 2t)2
+

t5

(1 − t)2(1 − 2t)(1 − 3t)2
+

t7

(1 − t)2(1 − 2t)2(1 − 3t)(1 − 4t)2
+ · · · ,

which is the formula above. If we substitute this expression back into (28) we get the refined formula for
P (t, u). �

A very similar argument can be applied to 1-23-avoiding permutations, which are known to be enu-
merated by the Bell numbers [8]. Our approach in this case gives essentially the same functional equation
that is derived in [13] using what the authors call the scanning-elements algorithm.

Rightward generating trees and the kernel method can also be used to produce a functional equation
for the ordinary generating function of 123-avoiding permutations. We omit this result here because a
more direct way to enumerate these permutations was already given in [12].

4. Generating trees with three labels

In this section we include two instances of permutations avoiding generalized patterns where the
rightward generating tree can be described by a succession rule with three labels. One of these labels
is the length of the permutation, so that the functional equations that we obtain have three variables
instead of four. However, the fact that the variable t appears multiplied by another variable adds some
difficulty to the equations.

To the best of our knowledge, the two classes of restricted permutations considered in this section have
never been enumerated before.

4.1. {1-23, 3-12, 34-21}-avoiding permutations. Given a permutation π ∈ Sn, let s(π) be defined as
in (15). We associate to π the triple of labels (s, r, n) = (s(π), r(π), n).

Lemma 4.1. The rightward generating tree for {1-23, 3-12, 34-21}-avoiding permutations is specified by

the following succession rule on the labels:

(0, 1, 1)

(s, r, n) −→































(s + 1, 1, n + 1) (s + 1, 2, n + 1) · · · (s + 1, s, n + 1)

(s, s + 1, n + 1) (s, s + 2, n + 1) · · · (s, r, n + 1) if s < r 6= 1,

(0, 1, n + 1) (1, n + 1, n + 1) if (s, r) = (0, 1),

(s, n + 1, n + 1) if s > r = 1,

∅ if s > r > 1.

Proof. If r > 1, the appended entry has to be at most r for the new permutation to avoid 1-23. If s > r,
it has to be at least r + 1 for the new permutation to avoid 34-21. Finally, if r = 1, the appended entry
has to be n + 1 for the permutation to avoid 3-12, unless s = 0, which means that π is the decreasing
permutation. Combining these conditions we get the four possible cases and the new labels in each
case. �

The four cases in the succession rule above suggest dividing the set Θ of values that the pair (s, r)
can take into four disjoint sets: Θ1 = {(s, r) : s < r 6= 1}, Θ2 = {(0, 1)}, Θ3 = {(s, r) : s > r = 1},
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Θ4 = {(s, r) : s > r > 1}. For i = 1, 2, 3, 4, let

Ri(t, u, v) :=
∑

n≥1

∑

π∈Sn(1-23,3-12,34-21)
with (s(π),r(π))∈Θi

us(π)vr(π) tn,

and let R(t, u, v) = R1(t, u, v) + R2(t, u, v) + R3(t, u, v) + R4(t, u, v).

Proposition 4.2. The generating function for {1-23, 3-12, 34-21}-avoiding permutations where u marks

the parameter s defined above is

(29) 1 + R(t, u, 1) =
∑

k≥0

t2kuk(1 + ktu)

(1 − (k + 1)t)
∏k−1

j=1 (1 − jt)
.

Proof. Lemma 4.1 translates into the following equations for the generating functions Ri:

R1(t, u, v) = tuvR2(tv, 1, 1) + tvR3(tv, u, 1) +
tv

v − 1
[R1(t, u, v) − R1(t, uv, 1)],

R2(t, u, v) =
tv

1 − t
,

R3(t, u, v) = tuvR1(t, u, 1),(30)

R4(t, u, v) =
tuv

v − 1
[R1(t, uv, 1) − vR1(t, u, 1)].(31)

Combining them we get an equation involving only R1:

R1(t, u, v) =
t2uv2

1 − tv
+ t2uv2R1(tv, u, 1) +

tv

v − 1
[R1(t, u, v) − R1(t, uv, 1)].

If we collect on one side the terms with R1(t, u, v), the kernel of the equation is 1 − tv
v−1 . Introducing a

new variable w = uv and canceling the kernel with v = 1
1−t , we obtain an expression involving R1(t, w, 1)

and R1(
t

1−t , (1 − t)w, 1), which can be simplified to

R1(t, w, 1) = tw2

[

1

1 − 2t
+

1

1 − t
R1

(

t

1 − t
, (1 − t)w, 1

)]

.

By iterated application of this formula,

R1(t, u, 1) = t2u

(

1

1 − 2t
+

t2u

1 − t

(

1

1 − 3t
+

t2u

1 − 2t

(

1

1 − 4t
+

t2u

1 − 3t

(

1

1 − 5t
+ · · ·

))))

=
t2u

1 − 2t
+

(t2u)2

(1 − t)(1 − 3t)
+

(t2u)3

(1 − t)(1 − 2t)(1 − 4t)
+

(t2u)4

(1 − t)(1 − 2t)(1 − 3t)(1 − 5t)
+ · · ·

=
∑

k≥1

t2kuk

(1 − (k + 1)t)
∏k−1

j=1 (1 − jt)
.

Equation (30) gives now an expression for R3(t, u, 1), and (31) implies that

R4(t, u, v) =
∑

k≥1

t2k+1uk+1(v2 + v3 + · · · + vk)

(1 − (k + 1)t)
∏k−1

j=1 (1 − jt)
.

Adding up the four generating functions R(t, u, 1) = R1(t, u, 1) + R2(t, u, 1) + R3(t, u, 1) + R4(t, u, 1) we
get (29). �

The first coefficients of R(t, 1, 1), which are the values of |Sn({1-23, 3-12, 34-21})| for n = 1, 2, . . ., are
1, 2, 4, 8, 19, 47, 125, . . .. This sequence does not appear in [16] at the moment.
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4.2. {1-23, 34-21}-avoiding permutations. The derivation of the generating function for this class of
permutations is very similar to the previous subsection. The labels that we associate to a permutation
are again (s, r, n). The proof of the next lemma is analogous to that of Lemma 4.1.

Lemma 4.3. The rightward generating tree for {1-23, 34-21}-avoiding permutations is specified by the

following succession rule on the labels:

(0, 1, 1)

(s, r, n) −→







































(s + 1, 1, n + 1) (s + 1, 2, n + 1) · · · (s + 1, s, n + 1)

(s, s + 1, n + 1) (s, s + 2, n + 1) · · · (s, r, n + 1) if s < r 6= 1,

(0, 1, n + 1) (1, 2, n + 1) (1, 3, n + 1) · · · (1, n + 1, n + 1) if (s, r) = (0, 1),

(s + 1, 2, n + 1) (s + 1, 3, n + 1) · · · (s + 1, s, n + 1)

(s, s + 1, n + 1) (s, s + 2, n + 1) · · · (s, n + 1, n + 1) if s > r = 1,

∅ if s > r > 1.

Divide the set Θ of values that the pair (s, r) can take into four disjoint sets Θi, i = 1, 2, 3, 4 as before,
and let

Ti(t, u, v) :=
∑

n≥1

∑

π∈Sn(1-23,34-21)
with (s(π),r(π))∈Θi

us(π)vr(π) tn

and T (t, u, v) = T1(t, u, v) + T2(t, u, v) + T3(t, u, v) + T4(t, u, v).

Proposition 4.4. The generating function for {1-23, 34-21}-avoiding permutations where u marks the

parameter s defined above is

(32) T (t, u, 1) =
∑

k≥0

tk+1uk(1 + ktu)

(1 + tu)k(1 − kt)(1 − (k + 1)t)
.

Proof. The equations that follow from Lemma 4.3 are now

T1(t, u, v) =
tuv

v − 1
[T2(tv, 1, 1) − T2(t, 1, 1)] +

tv

v − 1
[vT3(tv, u, 1) − T3(t, uv, 1)]

+
tv

v − 1
[T1(t, u, v) − T1(t, uv, 1)],

T2(t, u, v) =
tv

1 − t
,

T3(t, u, v) = tuvT1(t, u, 1),(33)

T4(t, u, v) =
tuv

v − 1
[T1(t, uv, 1) + T3(t, uv, 1) − vT1(t, u, 1) − vT3(t, u, 1)].(34)

From them we can get an equation involving only T1:

T1(t, u, v) =
t2uv2

v − 1

(

v

1 − tv
− 1

1 − t

)

+
t2uv2

v − 1
[vT1(tv, u, 1)−T1(t, uv, 1)]+

tv

v − 1
[T1(t, u, v)−T1(t, uv, 1)].

Letting w = uv and canceling the kernel with v = 1
1−t , we get that

T1(t, w, 1) =
tw

(1 + tw)(1 − t)

[

t

1 − 2t
+ T1

(

t

1 − t
, (1 − t)w, 1

)]

.

Iterating this formula, we see that

T1(t, u, 1) =
∑

k≥1

tk+1uk

(1 + tu)k(1 − kt)(1 − (k + 1)t)
.

Using (33) and (34) we get expressions for T3(t, u, 1) and T4(t, u, v). Finally, the sum T (t, u, 1) =
T1(t, u, 1) + T2(t, u, 1) + T3(t, u, 1) + T4(t, u, 1) gives the formula (32). �
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The first coefficients of T (t, 1, 1) are 1, 2, 5, 14, 42, 138, 492, . . ., which teaches us not to judge a se-
quence by looking only at its first five terms. This sequence gives the number of {1-23, 34-21}-avoiding
permutations of size n = 1, 2, . . ., and does not currently appear in [16].

5. Concluding remarks

The main results in the paper have been obtained by constructing rightward generating trees with up
to three labels for several families of pattern-avoiding permutations, and solving the functional equations
for the generating functions that the succession rule produces. This is a useful method for enumerating
permutations avoiding generalized patterns. There is nothing special about the sets of patterns studied
in this paper, except that this method happens to work out nicely on them.

We expect that this technique of rightward generating trees with several labels, together with the
kernel method and other ad-hoc tools for solving the functional equations that are obtained, will lead to
many more enumerative results for classes of permutations avoiding generalized patterns.

Acknowledgements. I am grateful to Mireille Bousquet-Mélou for many helpful ideas that have made
this paper possible, and to two anonymous referees for useful suggestions to improve its presentation.
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E-08193 Bellaterra, Spain

E-mail address: sergi.elizalde@dartmouth.edu

http://arxiv.org/abs/math/0406381

	1. Introduction
	1.1. Generalized pattern avoidance
	1.2. Generating trees
	1.3. Organization of the paper

	2. Generating trees with one label
	2.1. {2-1-3,2-31}-avoiding permutations
	2.2. {2-1-3,2o-31}-avoiding permutations
	2.3. {2-1-3,2-3-41,3-2-41}-avoiding permutations

	3. Generating trees with two labels
	3.1. {2-1-3,12-3}-avoiding permutations
	3.2. {2-1-3,32-1}-avoiding permutations
	3.3. {2-1-3,34-21}-avoiding permutations
	3.4. {1-2-34,2-1-3}-avoiding permutations
	3.5. {12-34,2-1-3}-avoiding permutations
	3.6. {1-23,3-12}-avoiding permutations

	4. Generating trees with three labels
	4.1. {1-23,3-12,34-21}-avoiding permutations
	4.2. {1-23,34-21}-avoiding permutations

	5. Concluding remarks
	Acknowledgements

	References

