PRIMITIVE DIVISORS OF SOME LEHMER-PIERCE SEQUENCES

ANTHONY FLATTERS

Abstract

We study the primitive divisors of the terms of $\left(\Delta_{n}\right)_{n \geqslant 1}$, where $\Delta_{n}=N_{K / \mathbb{Q}}\left(u^{n}-1\right)$ for K a real quadratic field, and $u>1$ a unit element of its ring of integers. The methods used allow us to find the terms of the sequence that do not have a primitive prime divisor.

1. Introduction

Let $A=\left(a_{n}\right)_{n \geqslant 1}$ be an integer sequence. A prime p dividing a term a_{n} is called a primitive prime divisor (PPD for short) of a_{n} if p does not divide a_{m} for any $m<n$ with $a_{m} \neq 0$. Sequences whose terms all have primitive divisors beyond some point are of great interest in number theory.
Definition 1.1. Let $A=\left(a_{n}\right)_{n \geqslant 1}$ be an integer sequence. Define

$$
Z(A)=\max \left\{n: a_{n} \text { does not have a primitive prime divisor }\right\}
$$

if this set is finite, otherwise set $Z(A)=\infty$. The number $Z(A)$ is called the Zsigmondy Bound for the sequence A.

In [1], Bang considered the sequence $\left(a^{n}-1\right)_{n \geqslant 1}$, where $1<a \in \mathbb{Z}$ and showed that $Z\left(\left(a^{n}-1\right)_{n \geqslant 1}\right) \leqslant 6$. Zsigmondy in [16] proved the more general result that given any positive coprime integers a, b with $a>b$, the sequence $\left(a^{n}-b^{n}\right)_{n \geqslant 1}$ has a primitive prime divisor for all terms beyond the sixth. The sequence studied by Zsigmondy satisfies a binary linear recurrence relation, and much of the work in this area has concentrated on these types of sequences. In [3], Carmichael showed that for any real Lucas or Lehmer sequence $L, Z(L) \leqslant 12$. Carmichael's result was later completed by Bilu, Hanrot and Voutier, and in [2] they showed, using powerful methods from transcendence theory and computational number theory, that for any Lucas or Lehmer sequence $L^{\prime}, Z\left(L^{\prime}\right) \leqslant 30$. Moreover, they were able to explicitly describe all Lucas and Lehmer numbers without a primitive divisor and hence show that this bound is sharp.

Many arithmetic properties of linear recurrence sequences have analogues for elliptic recurrence sequences. In [14], it is shown that if E is an elliptic curve in Weierstrass form defined over \mathbb{Q}, and $P \in E(\mathbb{Q})$ is a non-torsion point, then the associated elliptic divisibility sequence (the denominators of the x-coordinates of $n P$) has a finite Zsigmondy bound. For elliptic curves in global minimal form, it seems likely that this bound is uniform, and the papers [6], 8] exhibit infinite families of elliptic curves with a uniform Zsigmondy bound.

The result of Zsigmondy can be generalised to a number field setting, where a, b are now algebraic integers of a number field K, so $a^{n}-b^{n}$ lies in the ring of integers R, of K. The principal ideal $\left(a^{n}-b^{n}\right)$ has a factorisation into a product of prime ideals of R, which is unique. Therefore, we can ask which terms of a sequence S of algebraic integers have a primitive prime ideal divisor (or PPID for short), i.e. for which n is there a prime ideal \mathfrak{p} which divides the nth term, but not any preceding term. We therefore define the Zsigmondy bound $Z_{I}(S)$, to be the maximal value of n for which the nth term of the sequence does not have a PPID.

In Schinzel's paper [13, he proved the following theorem;
Theorem 1.2 (Schinzel). Let A, B be coprime integers of an algebraic number field such that $\frac{A}{B}$ is not a root of unity. Then the expression $A^{n}-B^{n}$ has a PPID for all $n>n_{0}(d)$, where d is the degree of the extension $\mathbb{Q}\left(\frac{A}{B}\right) / \mathbb{Q}$.
So, for these sequences the Zsigmondy bound Z_{I} is finite and an easy corollary of Schinzel's theorem is the following.

Corollary 1.3. Let K be a real quadratic field, R its ring of integers, and let $\alpha \in R \backslash\{ \pm 1\}$ be a unit. Let f denote the minimum polynomial of α over \mathbb{Q} and define the integer sequence, $\Delta=\left(\Delta_{n}(f)\right)_{n \geqslant 1}$, by setting

$$
\Delta_{n}(f)=N_{K / \mathbb{Q}}\left(\alpha^{n}-1\right)
$$

Then there exists a positive integer C_{1}, so that for all units α of norm $1, Z(\Delta) \leqslant C_{1}$. There exists a positive integer C_{2} such that for all units α of norm $-1, \Delta_{n}(f)$ has a primitive prime divisor for any $n>C_{2}$ with $n \not \equiv 2(\bmod 4)$.

The sequence Δ, for a general algebraic integer α, was examined by Pierce in his paper [12], where he looked at what form the factors of $\Delta_{n}(f)$ take and what conditions are necessary for the congruence $f(x) \equiv 0(\bmod p)$, where p is a prime, to have a solution $x \in \mathbb{F}_{p}$. In [10], Lehmer developed a deeper insight into the factors of the terms $\Delta_{n}(f)$, and applied this information to show that certain $\Delta_{n}(f)$ were prime. Lehmer was interested in the growth rate of the sequence Δ, and he remarked that if none of the roots of f had absolute value 1 , then $\frac{\Delta_{n}(f)}{\Delta_{n-1}(f)}$ converges, and $M(f)$ was written for the limit. For his purposes, polynomials with small values of $M(f)$ were desirable; in [4] a heuristic argument is put forward that suggests the density of primes in Δ is proportional to $\frac{1}{M(f)}$. We therefore say that for α an algebraic integer, the sequence Δ, defined in Corollary 1.3, is called the Lehmer-Pierce sequence associated to α. The sequence Δ is also of interest in algebraic dynamics, since to f there is an associated matrix called the companion matrix and multiplication by this matrix induces an endomorphism $E: \mathbb{T}^{N} \longrightarrow \mathbb{T}^{N}$. When none of the roots of f have absolute value $1, E$ is an ergodic transformation with respect to Lebesgue measure, $\left|\Delta_{n}(f)\right|$ counts the number of points of period n under E, and the topological entropy of E is equal to $\log M(f)$. A much more detailed account of the connection between $M(f)$ and dynamical systems can be found in [5].

The sequence Δ also has some combinatorial applications. For example, when $u=1+\sqrt{2},\left|\Delta_{n}\right|$ counts the number of 2×2 tiles in all tilings of a $3 \times(n+1)$ rectangle with 1×1 and 2×2 square tiles; more details about this sequence are provided on Sloane's website [11, A095977]. Similarly, when $u=\frac{3+\sqrt{5}}{2}$, Δ_{n} appears in combinatorics - see [11, A004146]. In addition, certain quadratic Lehmer-Pierce sequences count the sizes of groups: the groups being $E\left(\mathbb{F}_{p^{n}}\right)$, where E is a given elliptic curve and p is a fixed prime.

In this article our aim is to find the numbers C_{1}, C_{2} from Corollary 1.3 associated to the sequence $\Delta=\left(\Delta_{n}\right)_{n \geqslant 1}=\left(N_{K / \mathbb{Q}}\left(u^{n}-1\right)\right)_{n \geqslant 1}$, where K is a real quadratic field and u is a fixed unit in its ring of integers.

Theorem 1.4. Let K be a quadratic field, $\alpha \neq \pm 1$ a positive quadratic unit, and let Δ be the LehmerPierce sequence associated to α. Then for each α of norm $1, \Delta$ has a primitive prime divisor for all terms beyond the twelfth. For each α of norm -1 , then for $n>24, \Delta_{n}$ fails to have a primitive prime divisor if and only if $n \equiv 2(\bmod 4)$.

It is easy to see that when u has norm $1, \Delta$ satisfies a ternary linear recurrence relation, and when u has norm -1 , a quaternary linear recurrence - see [7. In addition, it is remarked that it seems likely that when $u=2+\sqrt{3}, Z(\Delta)=6$, and in our later discussion we verify that this is indeed the case. To date, not much is known about primitive prime divisors of the terms Δ_{n} for arbitrary algebraic integers α, and it would be interesting to know which other Lehmer-Pierce sequences have the property that $Z(\Delta)$ is finite.

2. A Criterion for Primitive Divisor Failure

We begin with a proof of Corollary 1.3 as it will be instrumental in obtaining a condition that will need to be satisfied if Δ_{n} fails to have a PPD.

Proof of Corollary 1.3. Define $A_{n}=\alpha^{n}-1$ and $B_{n}=\beta^{n}-1$, where β is the algebraic conjugate of α. There are only two ways in which Δ_{n} could fail to have a primitive prime divisor, and they are the following:
(1) Both A_{n} and B_{n} fail to have PPIDs;
(2) Every PPID of A_{n} has already appeared before as a divisor of B_{m} for some $m<n$.

Suppose then that \mathfrak{p} is a PPID of A_{n} but that $\mathfrak{p} \mid B_{m}$ for some $m<n$. Then

$$
\left(\beta^{m}-1\right)=\mathfrak{p q}
$$

for some integral ideal \mathfrak{q}. Hence, multiplying through by $\left(\alpha^{m}\right)$,

$$
\left(\alpha^{m}\right)\left(\beta^{m}-1\right)=\mathfrak{p q} .
$$

If α has norm 1, this therefore implies that \mathfrak{p} divides A_{m}, which cannot be the case as \mathfrak{p} is a PPID of A_{n}. If α has norm -1 and m is even, then by the same method as above we can deduce that possibility 2 will not occur. If α has norm -1 and m is odd, a slightly different argument is needed. If possibility 2 occurs in this case, we have that $\mathfrak{p} \mid\left(\alpha^{m}+1\right)$. Therefore, $\alpha^{m} \equiv-1(\bmod \mathfrak{p})$ and so $\alpha^{2 m} \equiv 1(\bmod \mathfrak{p})$. Now as \mathfrak{p} is a primitive divisor of A_{n}, α has order n in the group $(R / \mathfrak{p})^{*}$. Therefore $n \mid 2 m$. Since $m<n$, this is enough to secure that $n=2 m$, and we conclude that possibility 2 can only hold in the case when n is twice an odd integer. If $n \equiv 2(\bmod 4)$, then $n=2 k$ for some odd integer k and in this case $\Delta_{n}=-\Delta_{k}^{2}$, so Δ_{n} can never have any primitive prime divisors. We have deduced that if Δ_{n} fails to have a PPD, then both A_{n} and B_{n} fail to have PPIDs except in the case where α has norm -1 and then all terms which satisfy property 2 , are those with $n \equiv 2(\bmod 4)$. The fact that Δ_{n} fails to have a primitive divisor beyond some point if $n \equiv 2(\bmod 4)$ was first pointed out by Györy.

Hence for units of norm $1, \Delta_{n}$ will only fail to have a PPD, when condition 1 holds. So by Theorem 1.2, this tells us that $Z_{I}\left(\left(A_{n}\right)_{n \geqslant 1}\right)<c_{1}$, and $Z_{I}\left(\left(B_{n}\right)_{n \geqslant 1}\right)<c_{2}$, where c_{1}, c_{2} are uniform constants, and so for all units α of norm $1, Z(\Delta)$ is uniformly bounded. If α has norm -1 , then Δ_{n} will fail to have a PPD when $n \equiv 2(\bmod 4)$ and when condition 1 holds. Applying Theorem 1.2 again gives the required result.

From now on, K denotes a real quadratic field we will write N for the field norm $N_{K / \mathbb{Q}}$.
Lemma 2.1. Let $u \in R \backslash\{ \pm 1\}$ be a quadratic unit of norm 1 . Then for any $n>6$, if Δ_{n} fails to have a primitive prime divisor we have

$$
\begin{equation*}
N\left(\phi_{n}(u)\right) \mid n^{2} \tag{1}
\end{equation*}
$$

where $\phi_{n}(x) \in \mathbb{Z}[x]$ denotes the nth cyclotomic polynomial. Moreover, if u has norm -1 then for any $n>6$ with $n \not \equiv 2(\bmod 4)$, if Δ_{n} fails to have a PPD then (11) holds.

Proof. Apply Lemma 4 of [13] to deduce that if \mathfrak{p} is not a PPID of A_{n} or B_{n}, then for $n>6$,

$$
\operatorname{ord}_{\mathfrak{p}}\left(\phi_{n}(u)\right) \leqslant \operatorname{ord}_{\mathfrak{p}}(n)
$$

and

$$
\operatorname{ord}_{\mathfrak{p}}\left(\phi_{n}(v)\right) \leqslant \operatorname{ord}_{\mathfrak{p}}(n)
$$

Adding these two inequalities together tells us that

$$
\operatorname{ord}_{\mathfrak{p}}\left(N\left(\phi_{n}(u)\right)\right) \leqslant \operatorname{ord}_{\mathfrak{p}}\left(n^{2}\right),
$$

and so we have proved the statement of the Lemma.
Using (11), we can express this result in a way that will allow us to obtain an upper bound on n such that Δ_{n} has no PPD.

Theorem 2.2. Let $1<u \in R$ be a unit, and $6<n \in \mathbb{N}$. If u has norm 1 and Δ_{n} has no primitive prime divisor, then

$$
\begin{equation*}
\log n-2 \log \log n-\frac{4}{\log n}<2.02819-\log \log u \tag{2}
\end{equation*}
$$

If u has norm $-1, n \not \equiv 2(\bmod 4)$, and Δ_{n} has no primitive prime divisor, then

$$
\begin{equation*}
\log n-2 \log \log n-\frac{4}{\log n}<2.71072-\log \log u \tag{3}
\end{equation*}
$$

Proof. Recall the factorisation of $x^{n}-1$ into a product of cyclotomic polynomials as follows

$$
x^{n}-1=\prod_{d \mid n} \phi_{d}(x)
$$

Hence we have the following factorisation of Δ_{n}

$$
\left|\Delta_{n}\right|=\prod_{d \mid n}\left|N\left(\phi_{d}(u)\right)\right|
$$

Taking logarithms now gives

$$
\log \left(\left|N\left(u^{n}-1\right)\right|\right)=\sum_{d \mid n} \log \left(\left|N\left(\phi_{d}(u)\right)\right|\right)
$$

Applying the Möbius Inversion Formula for arithmetical functions now yields

$$
\begin{equation*}
\log \left(\left|N\left(\phi_{n}(u)\right)\right|\right)=\sum_{d \mid n} \log \left(\left|N\left(u^{d}-1\right)\right|\right) \mu\left(\frac{n}{d}\right) \tag{4}
\end{equation*}
$$

Now using (4), we are going to estimate the size of $\left|N\left(\phi_{n}(u)\right)\right|$. If u is a unit of norm 1 , then

$$
\begin{aligned}
\log \left|N\left(u^{d}-1\right)\right| & =\log \left|u^{d}-1\right|+\log \left|v^{d}-1\right| \\
& =\log \left|u^{d}-1\right|+\log \left|\frac{1}{u^{d}}-1\right| \\
& =\log \left|u^{d}\right|+2 \log \left|1-\frac{1}{u^{d}}\right|
\end{aligned}
$$

Therefore, by (4) we have

$$
\begin{aligned}
\log \left(\left|N\left(\phi_{n}(u)\right)\right|\right) & =\sum_{d \mid n} \log \left|u^{d}\right| \mu\left(\frac{n}{d}\right)+2 \sum_{d \mid n} \log \left|1-\frac{1}{u^{d}}\right| \mu\left(\frac{n}{d}\right) \\
& =\phi(n) \log u+2 \sum_{d \mid n} \log \left|1-\frac{1}{u^{d}}\right| \mu\left(\frac{n}{d}\right)
\end{aligned}
$$

Define $S:=2 \sum_{d \mid n} \log \left|1-\frac{1}{u^{d}}\right| \mu\left(\frac{n}{d}\right)$. Using the Taylor expansion for $\log (1-x)$, we obtain that

$$
|S|=2\left|\sum_{m=1}^{\infty} \frac{1}{m} \sum_{d \mid n} \frac{1}{u^{m d}} \mu\left(\frac{n}{d}\right)\right|
$$

Hence,

$$
\begin{aligned}
|S| & <2 \sum_{m=1}^{\infty} \frac{1}{m} \sum_{d=1}^{\infty} \frac{1}{u^{m d}} \\
& =2 \sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{u^{-m}}{1-u^{-m}}\right)
\end{aligned}
$$

Since u has norm $1, u \geqslant \frac{3+\sqrt{5}}{2}$. In addition, $m \geqslant 1$ so

$$
\begin{equation*}
|S|<3.23607 \sum_{m=1}^{\infty} \frac{1}{m\left(\frac{3+\sqrt{5}}{2}\right)^{m}} \tag{5}
\end{equation*}
$$

The sum in (5) is equal to $-\log \left(1-\frac{2}{3+\sqrt{5}}\right)$, and so

$$
|S|<1.55724
$$

which therefore yields that

$$
\log \left(\left|N\left(\phi_{n}(u)\right)\right|\right)>\phi(n) \log u-1.55724
$$

Now we use the fact that if Δ_{n} has no PPDs, then $\left|N\left(\phi_{n}(u)\right)\right| \leqslant n^{2}$. Therefore, we have the following relation

$$
\begin{equation*}
u^{\phi(n)}<e^{1.55724} n^{2} \tag{6}
\end{equation*}
$$

Taking logarithms twice of both sides we obtain

$$
\log (\phi(n))+\log \log u<\log (1.55724+2 \log n)
$$

Since $n>6, \log n>1$, hence we have that

$$
\log n+\sum_{p \mid n} \log \left(1-\frac{1}{p}\right)<\log (3.55724)-\log \log u+\log \log n
$$

and therefore

$$
\log n<1.26899-\log \log u+\log \log n-\sum_{p \mid n} \log \left(1-\frac{1}{p}\right)
$$

Noting now that for all primes $p,-\log \left(1-\frac{1}{p}\right) \leqslant \frac{1}{p}+\frac{1}{p^{2}}$ yields that

$$
\log n<1.26899-\log \log u+\log \log n+\sum_{p \mid n} \frac{1}{p}+\sum_{p \mid n} \frac{1}{p^{2}}
$$

By Proposition 2.3.3, page 72 in [9], the last term in our previous inequality is at most $\log (\zeta(2))$, where $\zeta(s)$ denotes the Riemann-Zeta function. Therefore,

$$
\log n<1.76669-\log \log u+\log \log n+\sum_{p \leqslant n} \frac{1}{p}
$$

In [15], the following estimate is derived

$$
\sum_{p \leqslant n} \frac{1}{p}<\log \log n+B+\frac{4}{\log n}
$$

where B is a numerical constant whose value is approximately equal to 0.2614972128 . Inserting all this information into our inequality yields

$$
\log n-2 \log \log n-\frac{4}{\log n}<2.02819-\log \log u
$$

If u is a unit of norm -1 , then

$$
\log \left|N\left(u^{d}-1\right)\right|=\log \left|u^{d}\right|+\log \left|1-\frac{1}{u^{d}}\right|+\log \left|1-\frac{(-1)^{d}}{u^{d}}\right|
$$

Plugging this in to equation (4), we have

$$
\begin{aligned}
\log \left(\left|N\left(\phi_{n}(u)\right)\right|\right) & =\sum_{d \mid n} \log \left|u^{d}\right| \mu\left(\frac{n}{d}\right)+\sum_{d \mid n} \log \left|1-\frac{1}{u^{d}}\right| \mu\left(\frac{n}{d}\right)+\sum_{d \mid n} \log \left|1-\frac{(-1)^{d}}{u^{d}}\right| \mu\left(\frac{n}{d}\right) \\
& =\phi(n) \log u+\sum_{d \mid n} \log \left|1-\frac{1}{u^{d}}\right| \mu\left(\frac{n}{d}\right)+\sum_{d \mid n} \log \left|1-\frac{(-1)^{d}}{u^{d}}\right| \mu\left(\frac{n}{d}\right)
\end{aligned}
$$

Define $S_{1}=\sum_{d \mid n} \log \left|1-\frac{1}{u^{d}}\right| \mu\left(\frac{n}{d}\right)$ and $S_{2}=\sum_{d \mid n} \log \left|1-\frac{(-1)^{d}}{u^{d}}\right| \mu\left(\frac{n}{d}\right)$. Again, using the Taylor expansion for $\log (1-x)$, and estimating these sums in the same way we did for S, we get

$$
\begin{aligned}
\left|S_{i}\right| & \leqslant \sum_{m=1}^{\infty} \frac{1}{m} \sum_{d \mid n} \frac{1}{u^{m d}} \\
& <\sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{u^{-m}}{1-u^{-m}}\right)
\end{aligned}
$$

Noting that since u is a unit of norm $-1, u \geqslant \frac{1+\sqrt{5}}{2}$, we see that

$$
\left|S_{i}\right|<2.61804 \sum_{m=1}^{\infty} \frac{1}{m\left(\frac{1+\sqrt{5}}{2}\right)^{m}}
$$

Once again, this sum is equal to $-\log \left(1-\frac{2}{1+\sqrt{5}}\right)$, thus

$$
\left|S_{i}\right|<2.51966
$$

and so

$$
\log \left(\left|N\left(\phi_{n}(u)\right)\right|\right)>\phi(n) \log u-5.03933
$$

Exponentiating this relation, we arrive at

$$
\begin{equation*}
\left|N\left(\phi_{n}(u)\right)\right|>\frac{u^{\phi(n)}}{e^{5.03933}} \tag{7}
\end{equation*}
$$

Running through the same calculation as before gives us the desired inequality.

3. Main Results

3.1. Units of Norm 1. If $u>1$ is a unit of norm 1 , then $u \geqslant\left(\frac{1+\sqrt{5}}{2}\right)^{2}$. Inserting this into (2), we have that if Δ_{n} has no PPD, then

$$
\log n-2 \log \log n-\frac{4}{\log n}<2.06650
$$

It is now clear that n is bounded, since $g(x):=\log x-2 \log \log x-\frac{4}{\log x}$ is an increasing function on (e, ∞). Then, since $g(n)$ is bounded above, n is also and so using Maple 9.5 to solve $g(x)=2.06650$ we conclude that

$$
n \leqslant 604
$$

We can now improve this further because we know that inequality (6) must be satisfied in order that Δ_{n} has no PPD. We also know that $u \geqslant\left(\frac{1+\sqrt{5}}{2}\right)^{2}$. So we do a case by case check of the values of n between 7 and 604 for which

$$
\begin{equation*}
\left(\frac{1+\sqrt{5}}{2}\right)^{2 \phi(n)}-e^{1.55724} n^{2}<0 \tag{8}
\end{equation*}
$$

Instructing Maple 9.5 to compute the left hand side of the above inequality for each n in our range and observing when the quantity is negative yields that

$$
n \leqslant 30
$$

More precisely, inequality (8) only holds when $n=8,9,10,12,14,18,24$ or 30 . Now a bare hands approach is required to see if we can lower the bound.

If we choose u so that $u \geqslant C>\left(\frac{1+\sqrt{5}}{2}\right)^{2}$, the nature of the inequality in (6) will allow us to reduce the bound for n. Some experimenting shows that if we choose $C=6$, we can deduce that $n \leqslant 6$ using the same case checking procedure as before.

Therefore, our strategy will be to find all the units of norm 1 which are between 1 and 6 (of which there are finitely many) and using (11) to look at the terms of the sequence up to the 30th and deduce the Zsigmondy bound. For $u>6$, we know from our above comments that the Zsigmondy bound is at most 6 , and there is little more we can say on this point.

To find norm 1 units $1<u \leqslant 6$, we note that when $d \not \equiv 1(\bmod 4)$, u is of the shape $u=a+b \sqrt{d}$, where a, b are integers. Hence, the following inequality holds

$$
2.618<a+b \sqrt{d} \leqslant 6
$$

Taking reciprocals we have

$$
0.166<a-b \sqrt{d}<0.382
$$

and it is clear that

$$
2 \leqslant a \leqslant 3
$$

If $a=2$ and $N(u)=1$ then we have $b^{2} d=3$. The only solutions of this are when $b^{2}=1$ and $d=3$ thus giving us $u=2 \pm \sqrt{3}$. Hence, $u=2+\sqrt{3}$ is the only valid solution. Similarly if $a=3$ the only valid unit is $u=3+2 \sqrt{2}$.
We now come to the case where $d \equiv 1(\bmod 4)$. A similar analysis for $u=\frac{a+b \sqrt{d}}{2}$ yields

$$
3 \leqslant a \leqslant 6
$$

The only solutions to $N(u)=1$ with a in this range are $u=\frac{3 \pm \sqrt{5}}{2}$ and $u=\frac{5 \pm \sqrt{21}}{2}$, but again since $u>2.618$, we take the positive sign. Hence there are four units of norm 1 which are greater than 1 but less than 6 , namely $2+\sqrt{3}, 3+2 \sqrt{2}, \frac{3+\sqrt{5}}{2}, \frac{5+\sqrt{21}}{2}$.

We start with the case when $u=2+\sqrt{3}$, and we observe that for $7 \leqslant n \leqslant 30$ inequality (6) holds when $n=8,10,12$. We also note that condition (11) fails when $n=8,10,12$ so Δ_{8}, Δ_{10} and Δ_{12} all have PPDs, so we can restrict our attention to when $n \leqslant 6$. Here is a table illustrating the prime factors of Δ_{n} for n from 1 to 6 .

n	Δ_{n}	Prime factors of Δ_{n}
1	-2	2
2	-12	2,3
3	-50	2,5
4	-192	2,3
5	-722	2,19
6	-2700	$2,3,5$

Therefore, the 4 th and 6 th terms of this sequence are the only ones which do not have a PPD.
We now turn our attention to $u=3+2 \sqrt{2}$, where inequality (6) does not hold for any $n \geqslant 7$. So we can say immediately that $Z(\Delta) \leqslant 6$. We illustrate the prime factors of Δ_{n} in a table as previously.

n	Δ_{n}	Prime factors of Δ_{n}
1	-4	2
2	-32	2
3	-196	2,7
4	-1152	2,3
5	-6724	2,41
6	-39200	$2,5,7$

It is therefore clear that when $u=3+2 \sqrt{2}$ that all terms beyond the second have a PPD, so $Z(\Delta)=2$.
When $u=\frac{5+\sqrt{21}}{2}$, we have that the inequality (6) holds when $n=12$ and that (1) is false when $n=12$. So we only need check terms from the sixth downwards to see which ones, if any, have no PPDs. We again list these terms and their prime factors in the table below.

n	Δ_{n}	Prime factors of Δ_{n}
1	-3	3
2	-21	3,7
3	-108	2,3
4	-525	$3,5,7$
5	-2523	3,29
6	-12096	$2,3,7$

Hence, we deduce again that Δ_{n} has a PPD for all terms beyond the sixth, and Δ_{6} is the only term which fails to have a PPD.

Finally, when $u=\frac{3+\sqrt{5}}{2}$ we find inequality (6) holds when $n=8,9,10,12,14,18,24,30$. Our condition (11) does not hold when n is equal to $14,18,24$, or 30 . So we now need to check cases $n \leqslant 12$, to see which terms of Δ_{n} have primitive prime factors. These have all been listed in the table below.

n	Δ_{n}	Prime factors of Δ_{n}
1	-1	None
2	-5	5
3	-16	2
4	-45	3,5
5	-121	11
6	-320	2,5
7	-841	29
8	-2205	$3,5,7$
9	-5776	2,19
10	-15125	5,11
11	-39601	199
12	-103680	$2,3,5$

It is immediately clear that Δ_{n} has no PPDs precisely when $n=6,10,12$.
We have therefore proven the following theorem
Theorem 3.1. Let R be the ring of integers of the field $\mathbb{Q}(\sqrt{d})$, where d is a squarefree positive integer. Let $0<u \in R$ be a unit of norm 1. If $u<\frac{1}{6}$ or $u>6$, then $Z(\Delta) \leqslant 6$. For all other such units u, one of the following holds:

- $u=3+2 \sqrt{2}, 3-2 \sqrt{2}$, where $Z(\Delta)=2$.
- $u=2+\sqrt{3}, 2-\sqrt{3}$, where $Z(\Delta)=6$ and the only terms without a primitive prime divisor are Δ_{4} and Δ_{6}.
- $u=\frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}$, where $Z(\Delta)=12$ and the only terms without a primitive prime divisor are Δ_{6}, Δ_{10} and Δ_{12}.
- $u=\frac{5+\sqrt{21}}{2}, \frac{5-\sqrt{21}}{2}$, where $Z(\Delta)=6$ and the only term without a primitive prime divisor is Δ_{6}.
3.2. Units of Norm -1 . We now wish to establish a similar result when u is a unit of norm -1 . If u has norm -1 and $n=2 k$ where k is an odd integer, then (11) will not hold, but when n is of this form Δ_{n} does not have a PPD, so we just ignore these values of n. Define Δ^{\prime} to be the sequence obtained by removing from Δ, the terms Δ_{n} for which $n \equiv 2(\bmod 4)$.

If u is a quadratic unit of norm -1 , then $u>\frac{1+\sqrt{5}}{2}$ and so by substituting into (3) we obtain that

$$
g(n)<3.44217
$$

where $g(x)$ is as before. Solving this inequality again using Maple 9.5 yields that

$$
n \leqslant 3375
$$

Observing that if u is norm -1 , inequality (7) holds, so by Theorem 2.1 we have

$$
\begin{equation*}
u^{\phi(n)}<e^{5.03933} n^{2} \tag{9}
\end{equation*}
$$

Since $u \geqslant \frac{1+\sqrt{5}}{2}$, we are led to solve the following inequality

$$
\left(\frac{1+\sqrt{5}}{2}\right)^{\phi(n)}<e^{5.03933} n^{2}
$$

checking cases on Maple 9.5 for n between 7 and 3375 finds that this inequality is only true when

$$
n \leqslant 90
$$

Using the same trick as for norm 1, we observe that for $u>13$, inequality (9) implies that $n \leqslant 6$. We will therefore look at the cases $u>13$ and $u \leqslant 13$ separately. Finding the positive units of norm -1 that are between 1 and 13 is a finite problem and using the method from earlier we find that they are $1+\sqrt{2}, \frac{1+\sqrt{5}}{2}, 2+\sqrt{5}, \frac{11+5 \sqrt{5}}{2}, 3+\sqrt{10}, \frac{3+\sqrt{13}}{2}, 4+\sqrt{17}, 5+\sqrt{26}, \frac{5+\sqrt{29}}{2}, 6+\sqrt{37}, \frac{7+\sqrt{53}}{2}, \frac{9+\sqrt{85}}{2}$.

Now we need to look at the terms of the sequence for $1 \leqslant n \leqslant 90$ where $n \not \equiv 2(\bmod 4)$ to see which have no PPDs. Doing the individual case checks as in the norm 1 case we find that when
$u=1+\sqrt{2}$, inequality (9) holds when $n=7,8,9,10,11,12,14,15,16,18,20,21,22,24,26,28,30,36,42$. We are however ignoring the terms Δ_{n} for which $n \equiv 2(\bmod 4)$, so this leaves us to check the cases $n=7,8,9,11,12,15,16,20,21,24,28,36$. However (1) is violated, for all these values of n, therefore we conclude that $Z\left(\Delta^{\prime}\right) \leqslant 4$. Once again we check to see if Δ_{n} has a primitive divisor for the relevant values of n between 1 and 5 . Again we illustrate the factors of Δ_{n} in tabular form

n	Δ_{n}	Prime factors of Δ_{n}
1	-2	2
3	-14	2,7
4	-32	2
5	-82	2,41

It is at once clear that $\Delta_{4}=\Delta_{3}^{\prime}$ is the only term of Δ^{\prime} without a PPD.
For $u=\frac{1+\sqrt{5}}{2}$, relations (11) and (9) are enough to ensure that for $n>6, \Delta_{n}$ has a PPD unless $n=12,20,24$. So we now need to check all the terms up to the 24 th to see which ones have primitive prime divisors, and then we are done. Here is the table

n	Δ_{n}	Prime factors of Δ_{n}
1	-1	None
3	-4	2
4	-5	5
5	-11	11
7	-29	29
8	-45	3,5
9	-76	2,19
11	-199	199
12	-320	2,5
13	-521	521
15	-1364	$2,11,31$
16	-2205	$3,5,7$
17	-3571	3571
19	-9349	9349
20	-15125	5,11
21	-24476	$2,19,211$
23	-64079	139,461
24	-103680	$2,3,5$

We see that $\Delta_{12}=\Delta_{9}^{\prime}, \Delta_{20}=\Delta_{15}^{\prime}$ and $\Delta_{24}=\Delta_{18}^{\prime}$ are the only terms of Δ^{\prime} that fail to have a PPD.
For all of the other units $u \leqslant 13$, conditions (9) and (1) are enough to secure that $n<6$, and hence that $Z\left(\Delta^{\prime}\right) \leqslant 4$. Checking for primitive divisors of the remaining terms in exactly the same way as above, yields that all terms have a primitive prime divisor and so $Z\left(\Delta^{\prime}\right)=1$.

Our case checking is now complete and we have derived the following result.
Theorem 3.2. Let R be as in Theorem 3.1 and $1<u \in R$ be a unit of norm -1 . Then for all $u>13$, $Z\left(\Delta^{\prime}\right) \leqslant 4$. If $u \leqslant 13$, then one of the following is true:

- $u=1+\sqrt{2}$, where $Z\left(\Delta^{\prime}\right)=3$ and the only term without a primitive prime divisor is Δ_{3}^{\prime};
- $u=\frac{1+\sqrt{5}}{2}$, where $Z\left(\Delta^{\prime}\right)=18$ and the only terms without a primitive prime divisor are $\Delta_{9}^{\prime}, \Delta_{15}^{\prime}$ and Δ_{18}^{\prime};
- $Z\left(\Delta^{\prime}\right)=1$.

Combining the results of Theorems 3.1 and 3.2, gives us the statement of Theorem 1.4.

References

[1] A.S. Bang Taltheoretiske Undersølgelser Tidskrifft Math., 5 1886, 70-80 and 130-137.
[2] Y. Bilu, G. Hanrot and P. Voutier Existence of Primitive Divisors of Lucas and Lehmer Numbers J. Reine Angew. Math., 539 2001, 75-122, (with an appendix by M. Mignotte).
[3] R.D. Carmichael On the Numerical Factors of the Arithmetic Forms $\alpha^{n} \pm \beta^{n}$ Ann. Math., 15 1913/14, 30-48 and 49-70.
[4] M. Einsiedler, G.R. Everest and T. Ward Primes in Sequences Associated to Polynomials (After Lehmer) LMS J. Comput. Math., 3 2000, 125-139.
[5] G.R. Everest and T. Ward Heights of Polynomials and Entropy in Algebraic Dynamics Springer-Verlag, London, 1999.
[6] G.R. Everest, G. Mclaren and T. Ward Primitive Divisors of Elliptic Divisibility Sequences J. Number Theory, 118 2006, 71-89.
[7] G.R. Everest, S.A.R. Stevens, D. Tamsett and T. Ward Primes Generated by Recurrence Sequences Amer. Math. Monthly, 114 2007, 417-431.
[8] P. Ingram Elliptic Divisibility Sequences over Certain Curves J. Number Theory, 123 2007, $473-486$.
[9] G.J.O. Jameson The Prime Number Theorem LMS Student Texts, vol 53, Cambridge University Press, Cambridge, 2003.
[10] D.H. Lehmer Factorization of Certain Cyclotomic Functions Ann. Math., 34 1933, 461-479.
[11] N.J.A. Sloane Online Encyclopedia of Integer Sequences www.research.att.com/~njas/sequences
[12] T.A. Pierce The Numerical Factors of the Arithmetic Forms $\prod_{i=1}^{n}\left(1-\alpha_{i}^{m}\right)$ Ann. Math., 18 1916, 53-64.
[13] A. Schinzel, Primitive Divisors of the Expression $A^{n}-B^{n}$ in Algebraic Number Fields J. Reine Angew., 268/9 1974, 27-33.
[14] J.H. Silverman Wieferich's Criterion and the abc-conjecture J. Number Theory, 30 1988, 226-237.
[15] M.B. Villarino Mertens' Proof of Mertens' Theorem ArXiv:math. HO/0504289 3 3, 2005.
[16] K. Zsigmondy Zur Theorie der Potenzreste Monatsh. Math., 3 1892, 265-284.
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK
E-mail address: Anthony.Flatters@uea.ac.uk

