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Abstract

In 1989 Kalai stated the three conjectures A, B, C of increasing strength concerning face
numbers of centrally symmetric convex polytopes. The weakest conjecture, A, became known
as the “3d-conjecture”. It is well-known that the three conjectures hold in dimensions d ≤ 3.
We show that in dimension 4 only conjectures A and B are valid, while conjecture C fails.
Furthermore, we show that both conjectures B and C fail in all dimensions d ≥ 5.

1 Introduction

A convex d-polytope P is centrally symmetric, or cs for short, if P = −P . Concerning face
numbers, this implies that for 0 ≤ i ≤ d − 1 the number of i-faces fi(P ) is even and, since P is
full-dimensional, that min {f0(P ), fd−1(P )} ≥ 2d. Beyond this, only very little is known for the
general case. That is to say, the extra (structural) information of a central symmetry yields no
substantial additional constraints for the face numbers on the restricted class of polytopes.

Not uncommon to the f -vector business, the knowledge about face numbers is concentrated
on the class of centrally symmetric simplicial, or dually simple, polytopes. In 1982, Bárány
and Lovász [3] proved a lower bound on the number of vertices of simple cs polytopes with
prescribed number of facets, using a generalization of the Borsuk–Ulam theorem. Moreover,
they conjectured lower bounds for all face numbers of this class of polytopes with respect to
the number of facets. In 1987 Stanley [24] proved a conjecture of Björner concerning the h-
vectors of simplicial cs polytopes that implies the one by Bárány and Lovász. The proof uses
Stanley-Reisner rings and toric varieties plus a pinch of representation theory. The result of
Stanley [24] for cs polytopes was reproved in a more geometric setting by Novik [18] by using
“symmetric flips” in McMullen’s weight algebra [16]. For general polytopes, lower bounds on the
toric h-vector were recently obtained by A’Campo-Neuen [2] by using combinatorial intersection
cohomology. Unfortunately, the toric h-vector contains only limited information about the
face numbers of general (cs) polytopes and thus the applicability of the result is limited (see
Section 2.1).

In [14], Kalai stated three conjectures about the face numbers of general cs polytopes. Let P
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be a (cs) d-polytope with f -vector f(P ) = (f0, f1, . . . , fd−1). Define the function s(P ) by

s(P ) := 1 +
d−1
∑

i=0

fi(P ) = fP (1)

where fP (t) := fd−1(P ) + fd−2(P )t + · · · + f0(P )td−1 + td is the f -polynomial. Thus, s(P )
measures the total number of non-empty faces of P . Here is Kalai’s first conjecture from [14],
the “3d-conjecture”.

Conjecture A. Every centrally-symmetric d-polytope has at least 3d non-empty faces, i.e.
s(P ) ≥ 3d.

Is is easy to see that the bound is attained for the d-dimensional cube Cd and for its dual, the
d-dimensional crosspolytope C△

d . It takes a moment’s thought to see that in dimensions d ≥ 4
these are not the only polytopes with 3d non-empty faces. An important class that attains the
bound is the class of Hanner polytopes [11]. These are defined recursively: As a start, every
cs 1-dimensional polytope is a Hanner polytope. For dimensions d ≥ 2, a d-polytope H is a
Hanner polytope if it is the direct sum or the direct product of two (lower dimensional) Hanner
polytopes H ′ and H ′′.

The number of Hanner polytopes grows exponentially in the dimension d, with a Catalan-
type recursion. It is given by the number of two-terminal networks with d edges, n(d) =
1, 1, 2, 4, 8, 18, 40, 94, 224, 548, 1356, . . . , for d = 1, 2, . . . , as counted by Moon [17]; see also [22].

Conjecture B. For every centrally-symmetric d-polytope P there is a d-dimensional Hanner
polytope H such that fi(P ) ≥ fi(H) for all i = 0, . . . , d − 1.

For a d-polytope P and S = {i1, i2, . . . , ik} ⊆ [d] = {0, 1, . . . , d − 1} let fS(P ) ∈ Z2[d]
be the

number of chains of faces F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ P with dimFj = ij for all j = 1, . . . , k. Iden-

tifying R
2[d]

with its dual space via the standard inner product, we write α(P ) :=
∑

S αSfS(P )

for (αS)S⊆[d] ∈ R
2[d]

. The set

Pd =
{

(αS)S⊆[d] ∈ R
2[d]

: α(P ) =
∑

S

αSfS(P ) ≥ 0 for all d-polytopes P
}

is the polar to the set of flag-vectors of d-polytopes, that is, the cone of all linear functionals
that are non-negative on all flag-vectors of (not necessarily cs) d-polytopes.

Conjecture C. For every centrally-symmetric d-polytope P there is a d-dimensional Hanner
polytope H such that α(P ) ≥ α(H) for all α ∈ Pd.

It is easy to see that C ⇒ B ⇒ A: Define αi(P ) := fi(P ), then αi ∈ Pd and the validity of C

on the functionals αi implies B; the remaining implication follows since s(P ) is a non-negative
combination of the fi(P ).

In this paper we investigate the validity of these three conjectures in various dimensions. Our
main results are as follows.

Theorem 1.1. The conjectures A and B hold for centrally symmetric polytopes of dimension
d ≤ 4.

Theorem 1.2. Conjecture C is false in dimension d = 4.

Theorem 1.3. For all d ≥ 5 both conjectures B and C fail.
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The paper is organized as follows. In Section 2 we establish a lower bound on the flag-vector
functional gtor

2 on the class of cs 4-polytopes. Together with some combinatorial and geometric
reasoning this leads to a proof of Theorem 1.1. In Section 3, we exhibit a centrally symmetric
4-polytope and a flag vector functional that disprove conjecture C. In Section 4 we consider
centrally symmetric hypersimplices in odd dimensions; combined with basic properties of Hanner
polytopes, this gives a proof of Theorem 1.3. We close with two further interesting examples of
centrally symmetric polytopes in Section 5.

Acknowledgements. We are grateful to Gil Kalai for his inspiring conjectures, and for pointing
out the connection to symmetric stresses for Theorem 2.1.

2 Conjectures A and B in dimensions d ≤ 4

In this section we prove Theorem 1.1, that is, the conjectures A and B for polytopes in di-
mensions d ≤ 4. The work of Stanley [24] implies A and B for simplicial and thus also for
simple polytopes. Furthermore, if f0(P ) = 2d, then P is linearly isomorphic to a crosspolytope.
Therefore, we assume throughout this section that all cs d-polytopes P are neither simple nor
simplicial, and that fd−1(P ) ≥ f0(P ) ≥ 2d + 2.

The main work will be in dimension 4. The claims for dimensions one, two, and three are
vacuous, clear, and easy to prove, in that order. In particular, the case d = 3 can be obtained
from an easy f -vector calculation. But, to get in the right mood, let us sketch a geometric
argument. Let P be a cs 3-polytope. Since P is not simplicial, P has a non-triangle facet. Let
F be a facet of P with f0(F ) ≥ 4 vertices. Let F0 = P ∩H with H being the hyperplane parallel
to the affine hulls of F and of −F that contains the origin. Now, F0 is a cs 2-polytope and it is
clear that every face G of P that has a nontrivial intersection with H is neither a face of F nor
of −F . We get

s(P ) ≥ s(F ) + s(F0) + s(−F ) ≥ 3 · 32.

This type of argument fails in dimensions d ≥ 4. Applying small (symmetric) perturbations to
the vertices of a prism over an octahedron yields a cs 4-polytope with the following two types
of facets: prisms over a triangle and square pyramids. Every such facet has less than 33 faces,
which shows that less than a third of the alleged 81 faces are concentrated in any facet.

Let’s come back to dimension 4. The proof of the conjectures A and B splits into a combinatorial
part (f -vector yoga) and a geometric argument. We partition the class of cs 4-polytopes into
large and (few) small polytopes, where “large” means that

f0(P ) + f3(P ) ≥ 24. (1)

We will reconsider an argument of Kalai [13] that proves a lower bound theorem for polytopes
and, in combination with flag-vector identities, leads to a tight flag-vector inequality for cs 4-
polytopes. With this new tool, we prove that (1) implies conjectures A and B for dimension 4.

We show that the small cs 4-polytopes, i.e. those not satisfying (1), are twisted prisms, to be
introduced in Section 2.3, over 3-polytopes. We then establish basic properties of twisted prisms
that imply the validity of conjectures A and B for small cs 4-polytopes.
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2.1 Rigidity with symmetry and flag-vector inequalities

For a general simplicial d-polytope P the h-vector h(P ) is the ordered collection of the coefficients
of the polynomial hP (t) := fP (t − 1), the h-polynomial of P . Clearly, hP (t) encodes the same
information as the f -polynomial, but additionally hP (t) is a unimodal, palindromic polynomial
with non-negative, integral coefficients (see e.g. [28, Sect. 8.3]). This gives more insight in
the nature of face numbers of simplicial polytopes and, in a compressed form, this numerical
information is carried by its g-vector g(P ) with gi(P ) = hi(P ) − hi−1(P ) for i = 1, . . . , ⌊d

2⌋.
There are various interpretations for the h- and g-numbers and, via the g-Theorem, they carry
a complete characterization of the f -vectors of simplicial d-polytopes.

For general d-polytopes a much weaker invariant is given by the generalized or toric h-vector
htor(P ) introduced by Stanley [23]. In contrast to the ordinary h-vector, the toric h-numbers
htor

i (P ) are not determined by the f -vector: They are linear combinations of the face numbers
and of other entries of the flag-vector of P . For example,

gtor
2 = htor

2 − htor
1 = f1 + f02 − 3f2 − df0 +

(

d+1
2

)

.

The corresponding toric h-polynomial shares the same properties as its simplicial relative but,
unfortunately, carries quite incomplete information about the f -vector.

For example, in the case of P being a quasi-simplicial polytope, i.e. if every facet of P is
simplicial, the toric h-vector depends only on the f -numbers fi(P ) for 0 ≤ i ≤ ⌊d

2⌋ and, therefore,
does not carry enough information to determine a lower bound on s(P ) for d ≥ 5. However, the
information gained in dimension 4 will be a major step in the direction of a proof of Theorem
1.1. To be more precise, for the class of centrally symmetric d-polytopes there is a refinement
of the flag-vector inequality gtor

2 = htor
2 − htor

1 ≥ 0.

Theorem 2.1. Let P be a centrally symmetric d-polytope. Then

gtor
2 (P ) = f1(P ) + f02(P ) − 3f2(P ) − df0(P ) +

(

d+1
2

)

≥
(

d
2

)

− d.

With Euler’s equation and the Generalized Dehn-Sommerville equations [5] it is routine to derive
the following inequality for the class of cs 4-polytopes.

Corollary 2.2. If P is a centrally symmetric 4-polytope, then

f03(P ) ≥ 3f0(P ) + 3f3(P ) − 8. (2)

We will prove Theorem 2.1 using the theory of infinitesimally rigid frameworks. For information
about rigidity beyond our needs we refer the reader to Roth [20] for a very readable introduction
and to Whiteley [27] and Kalai [14] for rigidity in connection with polytopes.

Let d ≥ 1 and let G = (V,E) be an abstract simple undirected graph. The edge function
associated to G and d is the map

Φ : (Rd)V → R
E

(pv)v∈V 7→
(

‖pu − pv‖
2
)

uv∈E
,

which measures the (squared) lengths of the edges of G for any choice of coordinates p =
(pv)v∈V ∈ (Rd)V . The pair (G,p) is called a framework in R

d and the points of Φp := Φ−1(Φ(p))
give the possible frameworks in R

d with constant edge lengths Φ(p).
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Let v = |V | ≥ d + 1 and let p be a generic embedding. Then the set Φp ⊂ (Rd)V is a smooth
submanifold on which the group of Euclidean/rigid motions E(Rd) acts smoothly and faithfully.
Therefore the dimension of Φp is dimΦp ≥

(

d+1
2

)

and in case of equality the framework (G,p)
is infinitesimally rigid.

The rigidity matrix R = R(G,p) ∈ (Rd)E×V of (G,p) is the Jacobian matrix of Φ evaluated
at p. Invoking the Implicit Function Theorem, it is easy to see that (G,p) is infinitesimally
rigid if and only if rankR = dv −

(

d+1
2

)

. A stress on the framework (G,p) is an assignment
ω = (ωe)e∈E ∈ R

E of weights ωe ∈ R to the edges e ∈ E such that there is an equilibrium
∑

u:uv∈E ωuv(pv − pu) = 0 at every vertex v ∈ V . We denote by S(G,p) = {ω ∈ R
E : ωR = 0}

the kernel of R⊤, called the space of stresses on (G,p).

Theorem 2.3 (Whiteley [27, Thm. 8.6 with Thm. 2.9]). Let P ⊂ R
d be a d-polytope. Let

G = G(P ) = (V,E) be the graph obtained from a triangulation of the 2-skeleton of P without
new vertices and let p = p(P ) be the vertex coordinates. Then the resulting framework (G,p) is
infinitesimally rigid.

The above theorem makes no reference to the triangulation of the 2-skeleton. The important fact
to note is that the graph G of Theorem 2.3 will have exactly e := |E| = f1(P )+f02(P )−3f2(P )
edges: In addition to the f1(P ) edges of P , k − 3 edges are needed for every 2-face with k
vertices.

For the dimension of the space of stresses S(G,p) we get

0 ≤ dimS(G,p) = e − rankR

= e − dv +
(

d+1
2

)

= f1(P ) + f02(P ) − 3f2(P ) − df0(P ) +
(

d+1
2

)

= gtor
2 (P ).

Now let P be a centrally symmetric d-polytope, d ≥ 3. Let G = G(P ) = (V,E) be the graph in
Theorem 2.3 obtained from a triangulation that respects the central symmetry of the 2-skeleton
and let p = p(P ) be the vertex coordinates of P . The antipodal map x 7→ −x induces a free
action of the group Z2 on the graph G. We denote by V = V/Z2 and E = E/Z2 the respective
quotients and, after choosing representatives, we denote by V = V + ⊎ V − and E = E+ ⊎ E−

the decompositions of the set of vertices and edges according to the action. Since the action is
free we have |V | = |V ±| = v

2 and |E| = |E±| = e
2 .

Concerning the rigidity matrix, it is easy to see that

R =

(

V + V −

E+ R1 R2

E− −R2 −R1

)

∈ (Rd)V ×E

with labels above and to the left of the matrix. The embedding p = p(P ) respects the central
symmetry of G and we can augment the edge function by a second component that takes the
symmetry information into account:

Φsym : (Rd)V
+
× (Rd)V

−

→ R
E × (Rd)V

p = (pV + ,pV −) 7→ (Φ(p),pV + + pV −) .

Thus Φsym additionally measures the degree of asymmetry of the embedding. By the symmetry
of P , Φsym(p) = (Φ(p), 0) for p = p(P ). The preimage of this point under Φsym is Φsym

p ⊂ Φp, the

5



set of all centrally symmetric embeddings with edge lengths Φ(p). Any small (close to identity)
rigid motion that fixes the origin takes p ∈ Φsym

p to a distinct centrally symmetric realization
p′ ∈ Φsym

p . Thus the action of the subgroup O(Rd), the group of orthogonal transformations, on
Φsym

p locally gives a smooth embedding. It follows that dimΦsym
p ≥ dimO(Rd) =

(

d
2

)

and thus

rank Rsym ≤ dv −
(

d
2

)

, (3)

where we can compute the rank of Rsym, the Jacobian of Φsym at p, as

rank Rsym = rank





R1 R2

−R2 −R1

IV + IV −



 =
dv

2
+ rank (R1 − R2) . (4)

Proof of Theorem 2.1. Consider the space of symmetric stresses, that is, the linear subspace

Ssym(G,p) = {ω = (ωE+, ωE−) ∈ S(G,p) : ωE+ = ωE−} ∼= {ω ∈ R
E : ω (R1 − R2) = 0}.

From (3) and (4) it follows that

dimSsym(G,p) =
e

2
− rank (R1 − R2) ≥

e

2
−

dv

2
+

(

d

2

)

.

The theorem follows from noting that Ssym(G,p) ⊆ S(G,p) and therefore

e − dv +

(

d + 1

2

)

≥
1

2
(e − dv) +

(

d

2

)

.

Theorem 2.1 can also be deduced from the following result of A’Campo-Neuen [2]; see also [1].

Theorem 2.4 ([2, Theorem 2]). Let P be a centrally symmetric d-polytope and let htor
P (t) =

∑d
i=0 htor

i (P ) ti be its toric h-polynomial. Then the polynomial

htor
P (t) − htor

C
△

d

(t) = htor
P (t) − (1 + t)d ∈ Z[t]

is palindromic and unimodal with non-negative, even coefficients. In particular,

gtor
i (P ) = htor

i (P ) − htor
i−1(P ) ≥

(

d
i

)

−
(

d
i−1

)

for all 1 ≤ i ≤
⌊

d
2

⌋

.

The proof of Theorem 2.4 relies on the (heavy) machinery of combinatorial intersection co-
homology for fans. Theorem 2.1 concerns the special case of the coefficient of the quadratic
term. In light of McMullen’s weight algebra [16], it would be interesting to know whether/how
Theorem 2.4 can be deduced by considering (generalized) stresses. A connection between the
combinatorial intersection cohomology set-up for fans and rigidity was established by Braden [6,
Sect. 2.9].

2.2 Large centrally symmetric 4-polytopes

In order to prove conjectures A and B for large polytopes, we need one more ingredient.
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Proposition 2.5. Let P be a 4-polytope. Then

f03(P ) ≤ 4f2(P ) − 4f3(P )

= 4f1(P ) − 4f0(P ).
(5)

Equality holds if and only if P is center-boolean, i.e. if every facet is simple.

Proof. The inequality was first proved by Bayer [4]. Every facet F of P is a 3-polytope satisfying
3f0(F ) ≤ 2f1(F ). By summing up over all facets of P we get

3f03(P ) =
∑

F facet

3f0(F ) ≤
∑

F facet

2f1(F ) = 2f13(P ).

By one of the Generalized Dehn-Sommerville Equations [5] we have

f03 − f13 + f23 = 2f3,

which, together with f23 = 2f2 immediately implies the asserted inequality. Equality holds if
the above inequality for 3-polytopes holds with equality for all facets of P , which means that
all facets are simple 3-polytopes. The equality in the assertion is Euler’s equation.

Combining the inequalities (2) and (5), we obtain

f2 ≥ 1
4(3f0 + 7f3) − 2 = f3 + 3

4(f0 + f3) − 2

f1 ≥ 1
4(7f0 + 3f3) − 2 = f0 + 3

4(f0 + f3) − 2.
(6)

In terms of f0 and f3 this gives

s(P ) ≥ 14
4 (f0 + f3) − 3 ≥ 81

where the last inequality holds if P is large.

To prove conjecture B for large polytopes, we have to show that the f -vector of every large
polytope is component-wise larger than the f -vector of one of the following four Hanner poly-
topes:

(f0, f1, f2, f3)

C4 (16, 32, 24, 8)

C△
4 ( 8, 24, 32, 16)

bipC3 (10, 28, 30, 12)

prism C△
3 (12, 30, 28, 10)

It suffices to treat the case f0 + f3 = 24. Indeed, for f0 + f3 ≥ 26 and f3 ≥ f0 ≥ 10 we get
from (6) that

f1 ≥ f0 + 18 ≥ 28

f2 ≥ f3 + 18 ≥ 30

and thus f(bipC3) is componentwise smaller.

We claim that the same bounds hold for f0 + f3 = 24. Otherwise, if f1 ≤ 26 or f2 ≤ 28, then
by using (5) together with f0 ≥ 10 and f3 ≥ 12 we get in both cases that f03 ≤ 64. In fact,
we now get f03 = 64 from (2), which tells us that P is center boolean, i.e. every facet is simple.
Granted that every facet of P is simple and has at most 6 vertices, the possible facet types
are the 3-simplex ∆3 and the triangular prism prism∆2. Using the assumption that P is not
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simplicial, there is a facet F ∼= prism ∆2. The three quad faces of F give rise to three more
prism facets and, due to the number of vertices, no two of them are antipodes. For the same
reason, any two prism facets cannot intersect in a triangle face. In total, we note that P has
exactly eight prism facets and four tetrahedra. Since every antipodal pair of prism facets give
a partition of the vertices, it follows that every vertex is contained in a simplex and exactly 4
prism facets. Therefore, every vertex has degree ≥ 6 and thus 2f1 ≥ 6 · 12. By Euler’s equation,
the same holds for f2.

2.3 Twisted prisms and the small polytopes

The class of small cs 4-polytopes consists of all cs 4-polytopes P with 12 ≥ f3(P ) ≥ f0(P ) = 10.
Since P is not simplicial, P has a facet F that has 5 = d + 1 = f0(F ) vertices, and P =
conv (F ∪−F ). In particular, F is a 3-polytope with 3 + 2 vertices, which does not leave much
diversity in terms of combinatorial types. The facet F is combinatorially equivalent to

◮ a pyramid over a quadrilateral, or
◮ a bipyramid over a triangle.

Definition 2.6 (Twisted prism). Let Q ⊂ R
d−1 be a (d−1)-polytope. The centrally symmetric

d-polytope
P = tprismQ = conv (Q × {1} ∪ −Q × {−1}) ⊂ R

d

is called the twisted prism over the base Q.

The following basic properties of twisted prisms will be of good service.

Proposition 2.7. Let Q ⊂ R
d−1 be a (d − 1)-polytope and tprism Q the twisted prism over Q.

1. If T : R
d−1 → R

d−1 is a non-singular affine transformation, then tprism Q and tprism TQ are
affinely isomorphic.

2. If Q = pyr Q′ is a pyramid with base Q′, then tprismQ is combinatorially equivalent to
bip tprismQ′, a bipyramid over the twisted prism over Q′.

The second statement of Proposition 2.7 actually proves the conjectures A and B for half of the
small cs 4-polytopes: Let P = tprismQ and Q a pyramid over a quadrilateral. By the second
statement P is combinatorially equivalent to bipP ′, where P ′ is a cs 3-polytope. In terms of
f -polynomials, it is easy to show that for a bipyramid fbip Q(t) = (2 + t)fQ(t). Thus

s(P ) = fbip P ′(1) = 3fP ′(1) ≥ 34.

Since B is true in dimension 3 there is a 3-dimensional Hanner polytope H such that fi(P
′) ≥

fi(H) for i = 0, 1, 2. From the above identity of f -polynomials it follows that fi(bipP ′) ≥
fi(bip H) for 1 ≤ i ≤ 3, where bipH = I ⊕ H is a Hanner polytope.

The next lemma shows that the above class already contains all small polytopes, which finally
settles A and B for dimension 4.

Lemma 2.8. Let d ≥ 4 and let P = tprismF ⊂ R
d be a cs d-polytope with F combinatorially

equivalent to ∆i ⊕ ∆d−i−1 and 1 ≤ i ≤ d−1
2 . Then

fd−1(P ) ≥ 2(1 + (i + 1)(d − i)) ≥ 2(2d − 1).
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Proof. The facet F in P has (i + 1)(d − i) ridges and thus F and its neighbors account for
1 + (i + 1)(d − i) facets. The result now follows by considering −F as soon as we have checked
that no facet G shares a ridge with F and with −F . This, however, is impossible, since G
would have to have two vertex disjoint (d−2)-simplices as maximal faces and, therefore, at least
f0(G) ≥ 2d − 2 vertices. Thus 2d + 2 = f0(P ) ≥ f0(G) + f0(−G) ≥ 4d − 4.

Corollary 2.9. If P = tprismQ with Q ∼= bip∆2, then P is large.

3 Conjecture C in dimension 4

We will refute conjecture C strongly for dimension 4: We exhibit a flag-functional α ∈ P4 and
a cs 4-polytope P such that α(P ) < α(H) for every 4-dimensional Hanner polytope H.

Geometrically, this means that there is an oriented hyperplane in the vector space R
2[d]

that
has the flag vector (fS(P ))S on its negative side, but all the flag-vectors of Hanner polytopes on
its positive side, while some parallel hyperplane has the flag-vectors of all (not-necessarily cs)
4-polytopes on its positive side.

For this, consider the two functionals

ℓ1(P ) = f02(P ) − 3f2(P )

ℓ2(P ) = f13(P ) − 3f1(P )

= f02(P ) − 3f1(P ).

Let Fk(P ) be the number of 2-faces with exactly k vertices. Then f02(P ) =
∑

k≥3 k · Fk(P ).
Thus ℓ1(P ) =

∑

k≥4(k − 3) · Fk(P ), which is clearly non-negative for every 4-polytope. In case

of equality the polytope is 2-simplicial. For the second functional note that ℓ2(P ) = ℓ1(P
△) ≥ 0

and the bound is attained by the 2-simple polytopes. Thus, the functional

α(P ) :=
1

2
(ℓ1 + ℓ2) = f02 −

3

2
(f1 + f2)

is non-negative for all 4-polytopes; it vanishes exactly for 2-simple 2-simplicial polytopes. (See [19]
for examples of such polytopes.)

Consider the cs 4-polytope

P4 := [−1,+1]4 ∩ {x ∈ R
4 : −2 ≤ x1 + · · · + x4 ≤ 2}

which arises from the 4-cube C4 by chopping off the vertices ±1 by hyperplanes that pass
through the respective neighbors. It is straightforward to verify that the f -vector of P4 is

f(P4) = (10, 32, 36, 14).

Indeed, the only faces that go missing are the 2 · 4 edges incident to the two vertices; the
added faces are the faces of strictly positive dimension of the vertex figures at 1 and −1.
Concerning the number of vertex–2-face incidences: there are only triangles and quadrilaterals.
The number of triangles is twice the number of 2-faces and facets incident to any given vertex.
Thus, f02 = 3 · 20 + 4 · 12 = 108 and α(P4) = 6.
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Theorem 1.2 now follows from inspecting the following table, which lists in its first row the data
for P4, and then (extended) data for the 4-dimensional Hanner polytopes:

(f0, f1, f2 f3 ) f02 α

P4 (10, 32, 36 14 ) 108 6

C4 (16, 32, 24 8 ) 96 12

C△
4 ( 8, 24, 32 16 ) 96 12

bipC3 (10, 28, 30 12 ) 96 9

prism C△
3 (12, 30, 28 10 ) 96 9

4 The central hypersimplices ∆̃k = ∆(k, 2k)

For natural numbers d > k > 0, the (k, d)-hypersimplex is the (d − 1)-dimensional polytope

∆(k, d) = conv
{

x ∈ {0, 1}d : x1 + x2 + · · · + xd = k
}

⊂ R
d.

Hypersimplices were considered as (regular) polytopes in [7, §11.8] (see also [19, Sect. 3.3.2] and
[10, Exercise 4.8.16]), as well as in connection with algebraic geometry in [8], [9], and [25].

One rather simple observation is that ∆(k, d) and ∆(d − k, d) are affinely isomorphic under
the map x 7→ 1 − x. In particular, the hypersimplex ∆̃k := ∆(k, 2k) is a centrally symmetric
(2k − 1)-polytope with f0(∆̃k) =

(2k
k

)

vertices.

In a different, full-dimensional realization, the central hypersimplex is given by

∆̃k
∼= conv

{

x ∈ {+1,−1}2k−1 : −1 ≤ x1 + x2 + · · · + x2k−1 ≤ 1
}

.

From this realization it is easy to see that for k ≥ 2 the hypersimplex ∆̃k is a twisted prism
over ∆(k, 2k − 1) with f2k−2(∆̃k) = 4k = 2(2k − 1) + 2 facets: Since the above realization lives
in an odd-dimensional space, the sum of the coordinates for any vertex is either +1 or −1. The
points satisfying

∑

i xi = 1 form a face that is affinely isomorphic to ∆(k, 2k − 1). To verify the
number of facets, observe that ∆̃k is the intersection of the 2k-cube with a hyperplane that cuts
all its 4k facets.

We will show that in odd dimensions d = 2k − 1 ≥ 5 a d-dimensional Hanner polytope that
has no more facets than ∆̃k has way too many vertices for conjecture B. In even dimensions
d ≥ 6 Theorem 1.3 follows then by taking a prism over ∆̃k. The following proposition gathers
the information needed about Hanner polytopes.

Proposition 4.1. Let H be a d-dimensional Hanner polytope. Then

(a) fd−1(H) ≥ 2d.
(b) If fd−1(H) = 2d, then H is a d-cube.

(c) If fd−1(H) = 2d + 2, then H = Cd−3 × C△
3 .

Proof. Since all three claims are certainly true for Hanner polytopes of dimension d ≤ 3, let us
assume that d ≥ 4. By definition, H is the direct sum or product of two Hanner polytopes H ′

and H ′′ of dimensions i and d − i with 1 ≤ i ≤ d
2 .

If H = H ′ ⊕ H ′′, then, by induction on d, we get

fd−1(H) = fi−1(H
′) · fd−i−1(H

′′) ≥ 4i(d − i) ≥ 2d + 4.
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Therefore, we can assume that H = H ′×H ′′ and fd−1(H) = fi−1(H
′)+ fd−i−1(H

′′) ≥ 2d which
proves (a). The condition in (b) is satisfied if and only if it is satisfied for each of the two factors.
Therefore, by induction, both factors are cubes and so is their product.

Similarly, the condition in (c) is satisfied iff it is satified for one of the two factors. By using (a)
we see that the remaining factor is a cube, which proves (c).

Proof of Theorem 1.3. Let d = 2k − 1 ≥ 5 and let H be a d-dimensional Hanner polytope with
fi(H) ≤ fi(∆̃k) for all i = 0, . . . , d − 1. Since the hypersimplex ∆̃k has 2d + 2 facets, it follows

from Proposition 4.1 that H is either C2k−1 or C2k−4×C△
3 . In either case, the Hanner polytope

satisfies f0(H) ≥ 3 · 22k−3 >
(2k

k

)

, where the last inequality holds for k ≥ 3.

For even dimensions d = 2k consider prism ∆̃k = I × ∆̃k, which has 2(2k−1)+4 = 2d+2 facets.
Again by Proposition 4.1, a Hanner polytope H with componentwise smaller f -vector is of the
form I × H ′ and the result follows from the odd case.

5 Two more examples

We wish to discuss two examples of centrally symmetric polytopes that exhibit some remarkable
properties, two of which are being self-dual and being counter-examples to conjecture C. Both
polytopes are instances of Hansen polytopes [12], for which we sketch the construction.

Let G = (V,E) be a perfect graph on the vertex set V = {1, . . . , d − 1}, that is, a simple,
undirected graph without induced odd cycles of length ≥ 5 (cf. Schrijver [21, Chap. 65]). Let
Ind(G) ⊆ 2V be the independence complex of G. So Ind(G) is the simplicial complex on the
vertices V defined by the relation that S ⊆ V is contained in Ind(G) if and only if the vertex
induced subgraph G[S] has no edges. To every independent set S ∈ Ind(G) associate the
(characteristic) vector χ̃S ∈ {+1,−1}d−1 with (χ̃S)i = +1 if and only if i ∈ S. The collection of
vectors is a subset of the vertex set of the (d − 1)-cube. Let PInd(G) = conv {χ̃S : S ∈ Ind(G)} ⊂

[−1,+1]d−1 be the vertex induced subpolytope. The Hansen polytope H(G) associated to G is
the twisted prism over PInd(G). In particular, H(G) is a centrally symmetric d-polytope with
f0(H(G)) = 2 |Ind(G)| vertices. A graph G = (V,E) is self-complementary if G is isomorphic to
its complementary graph G = (V,

(

V
2

)

\E).

Proposition 5.1. If G = (V,E) is a self-complementary, perfect graph on d − 1 vertices, then
H(G) is a centrally symmetric, self-dual d-polytope.

Proof. By [12, Thm. 4], the polytope H(G)△ is isomorphic to H(G) = H(G).

Example 5.2. Let G4 the path on four vertices v1, v2, v3, v4. This is a self-complementary
perfect graph, so H(G4) is a 5-dimensional self-dual cs polytope. We compute its f -vector, and
compare it to the f -vectors of the 5-dimensional hypersimplex ∆̃3 and of the eight 5-dimensional
Hanner polytopes. This results in the following table (the four Hanner polytopes not listed are
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the duals of the ones given here, with the corresponding reversed f -vectors):

( f0, f1, f2, f3, f4 ) f0 + f4 s

H(G4) ( 16, 64, 98, 64, 16 ) 32 259

∆̃3 ( 20, 90, 120, 60, 12 ) 32 303

C△
5 ( 10, 40, 80, 80, 32 ) 42 243

bip bipC3 ( 12, 48, 86, 72, 24 ) 36 243

bip prismC△
3 ( 14, 54, 88, 66, 20 ) 34 243

prismC△
4 ( 16, 56, 88, 64, 18 ) 34 243

Thus H(G4) refutes conjecture B in dimension 5 strongly : its value for f0 + f4 is smaller than
for any Hanner polytope. Furthermore, H(G4) has a smaller face number sum s than the
hypersimplex, so in that sense it is even a better example to look at in view of conjecture A.

Example 5.3. Let G5 be the path on five vertices v1, v2, v3, v4, v5 (in this order), with an
additional edge connecting the second vertex v2 to the fourth vertex v4 on the path. This is
a self-complementary perfect graph, so we obtain a 6-dimensional self-dual cs polytope H(G5).
Again its f -vector can be computed and compared to those of the prism over the 5-dimensional
hypersimplex, I × ∆̃3, which we had used for Theorem 1.3 as well as the eighteen Hanner
polytopes in dimension 6 (again we do not list the duals explicitly):

( f0, f1, f2, f3, f4, f5 ) f0 + f5 s

H(G5) ( 24, 116, 232, 232, 116, 24 ) 48 745

prism ∆̃3 ( 40, 200, 330, 240, 84, 14 ) 54 908

C△
6 ( 12, 60, 160, 240, 192, 64 ) 76 729

bip bip bipC3 ( 14, 72, 182, 244, 168, 48 ) 62 729

bip bip prism C△
3 ( 16, 82, 196, 242, 152, 40 ) 56 729

bip prismC△
4 ( 18, 88, 200, 240, 146, 36 ) 54 729

bip bipC4 ( 20, 100, 216, 232, 128, 32 ) 52 729

prismC△
5 ( 20, 90, 200, 240, 144, 34 ) 54 729

bip prismbipC3 ( 22, 106, 220, 230, 122, 28 ) 50 729
prismbip bipC3 ( 24, 108, 220, 230, 120, 26 ) 50 729
C3 ⊕ C3 ( 16, 88, 204, 240, 144, 36 ) 52 729

Thus H(G5) is a self-dual cs polytope that also refutes conjecture B in dimension 6 strongly.
Moreover, also looking at the pair (f1, f4) suffices to derive a contradiction to conjecture B. In
these respects, H(G5) is the nicest and strongest counter-example that we currently have for
conjecture B in dimension 6.

Note that there are no self-complementary (perfect) graphs on 6 or on 7 vertices, since
(6
2

)

= 15

and
(7
2

)

= 21 are odd. Thus, we cannot derive self-dual polytopes in dimensions 7 or 8 from
Hansen’s construction.

The Hansen polytopes, derived from perfect graphs, are subject to further research. For example,
H(G4) and H(G5) are interesting examples in view of the Mahler conjecture, since they exhibit
only a small deviation from the Mahler volume of the d-cube, which is conjectured to be minimal
(see Kuperberg [15] and Tao [26]).
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The Hansen polytopes in turn are special cases of weak Hanner polytopes, as defined by Hansen
[12], which are twisted prisms over any of their facets. Greg Kuperberg has observed that all of
these are equivalent to ±1-polytopes.
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1985), vol. 144 of North-Holland Math. Stud., North-Holland, Amsterdam, 1987, pp. 199–226.

[18] I. Novik, The lower bound theorem for centrally symmetric simple polytopes, Mathematika, 46
(1999), pp. 231–240.

[19] A. Paffenholz and G. M. Ziegler, The Et-construction for lattices, spheres and polytopes,
Discrete & Comput. Geometry (Billera Festschrift), 32 (2004), pp. 601–624.

[20] B. Roth, Rigid and flexible frameworks, Amer. Math. Monthly, 88 (1981), pp. 6–21.

13

http://arxiv.org/abs/math/0610904v2


[21] A. Schrijver, Combinatorial optimization. Polyhedra and efficiency. Vol. B, vol. 24 of Algorithms
and Combinatorics, Springer-Verlag, Berlin, 2003. Matroids, trees, stable sets, Chapters 39–69.

[22] N. J. A. Sloane, Number of series-parallel networks with n unlabeled edges, multiple
edges not allowed. Sequence A058387, The On-Line Encyclopedia of Integer Sequences,
http://www.research.att.com/∼njas/sequences/A058387.

[23] R. Stanley, Generalized H-vectors, intersection cohomology of toric varieties, and related results,
in Commutative algebra and combinatorics (Kyoto, 1985), vol. 11 of Adv. Stud. Pure Math., North-
Holland, Amsterdam, 1987, pp. 187–213.

[24] R. Stanley, On the number of faces of centrally-symmetric simplicial polytopes, Graphs and Com-
binatorics, 3 (1987), pp. 55–66.
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