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Fibonacci-like sequences and shift spaces in symbolic dynamics
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We afford the problem of counting the blocks of a given length made with symbols drawn from
an alphabet and relate this number to Fibonacci-like recurrent relations. The recurrence polynomia
allows to calculate the limit ratio of two adjacent terms and this information is used to determine
the topological entropy of a discrete numbers of associate shift spaces. We then describe a scheme
to build a shift space with a pre-selected entropy.
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I. INTRODUCTION

Modern technology and, more in general, modern society, relay on computer systems in which information is
processed and represented in form of binary strings. The problem of transmission and storage of huge amount of data
in the form of binary series has become one of the main interest of information science and modern mathematics.
Usually these binary series are subjected to some logical constraint so that not all the binary sequences may be
allowed and there may be sets of forbidden ’words’. Practical examples of this situations are the memorization of
information onto magnetic supports such hard disks, where these sequences are stored in a series of tracks which must
have a ’preamble’ or a ’end’ identified by a well defined sequence of bits; sometimes it is convenient to fill the space
among two strings with a succession of zeroes; error detection and correction codes, both in the problem of storage
and transmission of information, require some sequences of bits to be forbidden. Another main field of research in
which bits sequences require to be subjected to some constraint are the problems connected to the security of data
stored and transmitted. When a computer system is protected through a password or when the data transmission
is performed through cryptography it may be of relevance to know how many different sequences, among the bit
sequences of a given length and subjected to constraints, may be generated. Another interesting discipline in which
this kind of problems are of relevance is the field of dynamical systems. Symbolic dynamics allows the representation
of the time evolution of a dynamical system through a discrete succession of two or more symbols in which all the
essential information about the dynamical system, and in general its physical properties, are preserved. One example
is the concept of entropy that, for a given symbolic representation of a dynamical system may be directly related to
the rate of growth of the number of different sequences with the length of the sequence.

In this paper we discuss some of these aspects using the language of shift spaces. In particular we show how many
of these problems may be expressed and solved in terms of Fibonacci-like recurrent relations in a simple, intuitive and
amenable way. Finally we relate the limit ratios of such sequences to the topological entropy of the corresponding
shift space and show how can be created a shift space with a predetermined entropy.

II. SHIFT SPACES AND FORBIDDEN BLOCKS

All of the above mentioned problems may be better expressed in a rigorous mathematical language through the
concept of shift space [1]. Even if the main interest of this paper regards binary sequences, some results are immediately
extendable to sequences of more than two symbols, thus we start our discussion recalling the concept of shift space
over a finite alphabet of k symbols.

Given a finite alphabet A = {a0, a1, . . . , ak−1} of k symbols and the set of integers Z the full shift is defined as the
set of bi-infinite sequences of AZ defined by:

AZ = {x = (xi)i∈Z : xi ∈ A for all i ∈ Z} (1)
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namely the set of all functions from Z to A. On this set a left shift is naturally defined as the function σ defined by

σ : AZ → AZ : σ(x)i = xi+1 for all i ∈ Z (2)

A finite sequence of (length-m) symbols drawn from A is called a block over A:

m − block = xi . . . xi+m, (3)

and its length is indicated by the norm |xi . . . xi+m| = m. An m-block made by repetition of a single symbol is
indicated am where a ∈ A is repeated m-times. A shift space X is a subset of the full shift in which not all the
sequences of k symbols are allowed. A shift space may be identified or defined in two main and equivalent ways. One
can give the set FX of all forbidden blocks in the sequences of symbols, or one can give what is called the language

of the shift space, namely the collection Bn(X) of all the allowed words of any length n. Here are some examples.
X is the set of all binary bi-infinite sequences where the block (11) is not allowed. This is called the golden mean

shift.
X is the set of all binary sequences such that each pair of ’ones’ is separated by an even number of ’zeroes’, thus

the collection of forbidden blocks takes the form: F = {102n+11 : n ≥ 0}.
Thus in any shift space that is not the full shift not all the sequences of symbols will appear. Consider as the

simplest case an alphabet of two symbols that we identify through the two bits ’one’ and ’zero’. If we refer to the
arguments introduced above we see how any of the problems discussed may be related to the identification of the
appropriate shift space. Furthermore it is easy to see that in the case of dynamical systems forbidden and allowed
blocks correspond to forbidden or allowed transitions among different physical states and to forbidden and allowed
physical behaviors. In particular one can calculate the topological entropy [2] of a shift space associated to a dynamical
system by counting the different allowed words of a given length and examining how this number grows when the
length tends to infinity [1]:

h = lim
n→∞

log(Bn(X))

n
(4)

In the next section we relate these numbers to different series of Fibonacci-like sequences.

III. THE NUMBER OF ALLOWED WORDS OF LENGTH n FOR DIFFERENT SHIFT SPACES

A. Golden mean shift and Fibonacci sequence

The Golden mean shift is a shift space defined by only one forbidden block:

F = {11} (5)

Examining all the sequences allowed one may check that they consist only of isolated ones separated apart by at least
one zero. One may think of this shift space as of all the sequences of bits stored onto an hard disk in which zeroes are
need for timing purposes, or of all the transmitted sequences of bits with Humming distance 1, or of one dynamical
system in which the trajectory must escape immediately form one of the two possible states in which it may exist and
so on.

Thus it is interesting, both for practical purposes and from a theoretical point of view, to calculate the number
#(n) of different strings of length n of such form. Here we show first by induction and next by a constructive scheme
that this number is exactly the nth Fibonacci number: #(n) = Fn where the relation Fn = Fn−1 + Fn−2 holds.

Lemma 1 Let #(n) be the number of different blocks of length n for the golden mean shift. Then #(n) = Fn

where Fn is the nth Fibonacci number.
Proof: For n = 1 is #(1) = 2 and for n = 2 is #(2) = 3, thus we deal with Fibonacci numbers with initial conditions

F0 = 1 and F1 = 2 (alternatively, we may choose to set #(n) = Fn+1 with initial conditions F0 = 1 and F1 = 1).
The first step is to check that #(3) = #(2) + #(1) = 5, and this is done immediately. Next, supposing that #(n)

= #(n− 1) + #(n− 2) is valid, we show that #(n + 1) = #(n) + #(n− 1) must be valid too. In fact, given a string
of n bits we may construct all the allowed strings of length n + 1 of the same type by adding the bit ’zero’ or the bit
’one’ at the end of each length-n allowed string. Adding a ’zero’ presents no problems. It may be added to any of the
#(n) strings obtaining #(n) strings of length n + 1 terminating by ’zero’. The bit ’one’ may be added only to strings
of length n terminating by ’zero’, since the couple (the block) (11) is not allowed. Thus adding ’one’ at the end we
obtain a number of strings of length n + 1 terminating by the two block word (01).
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TABLE I:

#(1) = 2 #(2) = 3 #(3) = 5 #(4) = 8

0 00 00 0 000 0
1 01 01 0 010 0

10 10 0 100 0
0 01 001 0
1 01 101 0

00 01
01 01
10 01

Now we may think of these strings as compound strings of initial n− 1 bits and of two final bits equal to (01). The
n− 1 bits part, since it is followed by ’zero’, has no other constraint than the forbidden block (11) and thus there are
#(n− 1) of such compound strings. Thus the ”adding one” process provides exactly #(n− 1) strings of length n + 1
ending by the word (01). The total number of allowed strings of length n + 1 is given by those obtained adding ’zero’
plus those obtained adding ’one’, namely we get:

#(n + 1) = #(n) + #(n − 1) (6)

after the hypothesis #(n) = #(n − 1) + #(n − 2).
All the reasoning will be even clearer when constructing from scratch the recursive relation. A look at table I shows

a constructive demonstration. In the columns from one to four are illustrated all the different configurations of an
n-block, n = 1, 2, 3, 4 for the golden mean shift. The construction process starts with columns one and two, where the
cases with n = 1, 2 are reported. Next we build all the 3-blocks starting from all the allowed blocks with n = 2. We
may obtain such blocks adding the bit ’one’ or the bit ’zero’ to all the #(2) = 3 strings with n = 2. The bit ’zero’ may
be added at the end of each string, giving the first #(2) = 3 blocks with n = 3 ending by ’zero’. The bit one, due to
the exclusion of the block (11), may be added only to the 2-blocks ending by ’zero’. Thus any string obtained in this
last way will have length n = 3 and will end with the block (01). Then we may think of all such strings as made by a
first part, of length 3 − |(01)| = 3 − 2 = 1, where all the possible configurations allowed for the golden mean shift are
present, and the last part made by the block (01). The number obtained in this way is of course #(3 − |(01)|) = 2.
The total number of newly generated strings will thus be #(2) + #(1). The same reasoning is applied when we want
to build all the allowed 4-blocks starting from all the allowed 3-blocks. In table I the strings are represented leaving a
space in the sequences in order to easily identify the strings obtained adding ’zero’ and those obtained adding ’one’.

B. T2-Shift and Lamé numbers.

In the golden mean shift each ’one’ is isolated and separated by at leas one ’zero’ from others. Here we examine a
shift space in which each ’one’ is again isolated but separated by at least two ’zeroes’ from others. We call it T2-shift
[3] and it is described through the following forbidden blocks:

FT2
= {011, 101, 110, 111} (7)

Again, these numbers may represent a scheme for storing bit sequences where at least two ’zeroes’ must separate
each single ’one’, like all the transmitted sequences of bits with Humming distance 2, or one dynamical system in
which the trajectory must escape immediately form one of the two possible states in which it may exists and presents
a latent time of at least two before returning into the same state, like a quantum system with a discrete set of states
each one with its own decay time and so on.

We calculate the number #(n) of different strings of length n of such form. This number is given by a recurrence
series similar to the Fibonacci numbers, where the relationship is: #(n) = Fn with Fn = Fn−1 +Fn−3. These numbers
constitute a series known as Lamé series [4] that is: 1, 2, 3, 4, 6, 9, 13, 19, 28. . . . .

We first construct a table II for this case and then provide a demonstration by induction. We start writing the first
three columns in which the allowed strings with n ranging from one to three are reported. Next we want to obtain all
the allowed strings with n = 4 and the constrain that each appearing ’one’ must be separated from others by at least
two ’zeroes’. Starting from all the 3-blocks we may add the bits 1 or 0 at the end. The adding ’zero’ step is allowed
for any 3-block and gives #(3) = 4 blocks of length n = 4 satisfying the constraints.
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TABLE II:

#(1) = 2 #(2) = 3 #(3) = 4 #(4) = 6 #(5) = 9

0 00 000 000 0 0000 0
1 01 010 010 0 0100 0

10 100 100 0 1000 0
001 001 0 0010 0

0 001 0001 0
1 001 1001 0

00 001
01 001
10 001

The digit one may be added only to the 3-blocks ending with at least two ’zeroes’, namely with the block (00), thus
providing 4-blocks ending by the block (001) where the preceding part is of length (4− |(001)|) = 4− 3 = 1, in which
each allowed configuration must be present.

The reasoning is perfectly similar to the previous section. Thus, when adding the digit ’one’, we obtain a number
#(4 − |(001)|) = #(4 − 3) = #(1) of different allowed strings. The total is #(4) = #(3) + #(1). The same happens
when we start from 4-blocks to build allowed 5-blocks, adding the digits ’zero’ and ’one’. Adding zero gives the new
#(4) strings ending by ’zero’ and adding ’one’ corresponds to add the block (001) to all the strings of length 5−3 = 2.
The new number is #(5) = #(4) + #(2) and the recurrence relationship is #(n) = #(n − 1) + #(n − 3). Thus we
have the following
Lemma 2 Let #(n) be the number of different blocks of length n for the T2 shift. Then #(n) = Fn where Fn is the
nth Lamé number and the recursive relationship #(n) = #(n − 1) + #(n − 3) holds.

Proof: It is #(1) = 2, #(2) = 3, #(3) = 4, thus we are using Lamé numbers with these initial conditions. We
already checked that #(5) = #(4) + #(2). Next, given #(n) = #(n−1) + #(n−3), to obtain the number of allowed
strings of length n + 1 we have to add a digit to the #(n) allowed strings with n digits. If the digit is 0 there are no
problems and we obtain new #(n) strings of length n+1. Adding the digit 1 we must eliminate all the strings ending
not by (00). Then all these blocks must terminate by the three digits block (001) and may be thought as made of
this last three digits and by a first n + 1− 3 digits part in which all the allowed #(n− 2) configurations which satisfy
the given constraints are allowed. Thus, under the hypothesis made, we obtain #(n + 1) = #(n) + #(n− 2) and the
recurrence relationship holds for any n.

C. Tm-Shifts with two symbols.

Let denote with Tm the shift spaces where A = {0,1} with the constrain that the allowed sequences are made of
isolated ’ones’ separated by at least m ’zeroes’. It is straightforward to generalize to such shift spaces the recurrence
relationship as:

#(n) = #(n − 1) + #(n − m) (8)

Lemma 3 Let #(n) be the number of different blocks of length n for the Tm shifts. Then #(n) = Fn where Fn is
the nth number of the recursive relationship Fn = Fn−1 + Fn−m with opportune initial conditions.

Proof: To obtain all the sequences of length n + 1 from the allowed n-blocks we may add ’zero’, getting new #(n)
allowed strings, or we may add ’one’. To add ’one’ we must take into account that it must be added only to those
strings ending by m ’zeroes’, obtaining (n + 1)-blocks ending with the block 0m1 that may be added to any one of
the #(n − m) allowed blocks of length n − m, and this gives new #(n − m) strings.

It is worth noting that in the limit n → ∞ all of these recurrence series may be solved using the correspondent
recurrence equation [5] to obtain the limit ratio Fn/Fn−1 = K so that the nth terms may be expressed as a limit
Fn ≃ F0 × Kn.

For the Fibonacci series this limit is the golden section φ = 1+
√

5

2
that may be obtained from the corresponding

polynomial recurrence equation:

λn = λn−1 + λn−2 ⇒ (9)

⇒ λ2 = λ + 1

as the greatest root.
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TABLE III:

m,k = 1,1 1,2 1,3 1,21 2,5

2 2 3 21 5
3 3 5 41 9
5 4 11 461 13
8 6 21 1281 33
13 9 43 10501 69
21 13 85 36121 121
34 19 171 246141 250
55 28 341 968561 526
...

...
...

...
...

Fn/Fn−1 → φ 2 2 5 2

For the other recurrence series it holds a similar rule so that the limit may be recovered as the greatest root of the
corresponding polynomial recurrence equation:

λm+1 = λm + 1 (10)

IV. MORE THAN TWO SYMBOLS AND DIFFERENT CONSTRAINTS.

Next we briefly examine some cases in which the alphabet contains more than two symbols or has different con-
straints.

A. k-symbols, same kind of constraints

Let A contain k symbols, that we assume to be {0, 1, . . . , k − 1}. We set as constraint the condition that each
symbol, except ’zero’, must appear isolated and separated by at least m ’zeroes’ from symbols other than ’zero’. We
indicate these shift spaces Tm,k.

Lemma 4 To these shift spaces are associated recurrence series (with opportune initial conditions) which give the
number of different allowed configurations ( #(n) ) for a string of length n according to the relationship:

#(n) = #(n − 1) + (k − 1) ∗ #(n − m − 1) (11)

Proof: To create the (n+1)-blocks we add one of the k symbols to the blocks of length n. ’Zero’ may be added to any
block giving #(n) new (n + 1)-blocks. For each of the k − 1 symbols different from ’zero’ we obtain strings of length
n+1 made of two parts: the first part has length n−m and is one of the #(n−m) allowed strings of that length; the
last part contains one of the k − 1 blocks of the form 0ma, where a is one of the k − 1 symbols different from ’zero’.
Thus there are a total of k − 1 possibilities of adding these final blocks in queue of any allowed (n − m)-block. The
total provides the number of length-(n + 1) allowed blocks as #(n + 1) = #(n) + (k − 1) ∗#(n−m) that is the same
as eq. (11). For k = 2 and m = 1 one recovers the Fibonacci series and for k = 2 and m = 2 the Lamé series.

All the recurrence series of such form have a limit ratio among two adjacent terms when n → ∞ and this limit is the
largest root (indicated by λ0 from now on) of the polynomia associated to the recurrence series, as can be obtained
with the same technique used for the Fibonacci series:

λn = λn−1 + (k − 1)λn−m−1 ⇒ (12)

⇒ λm+1 = λm + (k − 1)

This allows to select the values for the couple m, k such that the largest root has a prefixed value. Consider for
example the cases (a) m = 1, k = 3, (b) m = 1, k = 21, (c) m = 2, k = 5. In table III are listed these and some other
series for various initial conditions.

Let consider (a). The limit ratio among two adjacent terms tends to the value 2. In fact the equation (13) becomes
λ2 = λ1 + (3 − 1) with largest root λ0 = 2.

For example one can use m = 2 and set λ2 = λ1 + (k − 1). Then choosing a given value for λ0 one can solve for k
such that the limit ratio is that value of λ0 (with k natural number). The other examples are (b), such that the limit
ratio be 5, and (c), such that the limit ratio be again 2, but with different m. The formula (13) leaves ample freedom
for fixing the desired m and λ and solve for the correspondent k.
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B. Three symbols, different kind of constraints

Next we fix A = {0, 1, 2} and we allow for the symbols ’one’ and ’two’ to be next to each other, such that F =
{11, 22}. In this case, given all the strings of length n, we may obtain the strings of length n + 1 adding ’zero’, ’one’
or ’two’ in queue. Adding ’zero’ provides new #(n) strings. The situation for the digits ’one’ and ’two’ is symmetric,
thus we need only to consider one of the two. Let consider the addition of the digit ’one’. It may be added to all the
strings ending by ’zero’ or ending by ’two’, to get the final blocks (01) or (21). The final block (01) constitutes the last
part of a length-(n + 1) string in which the first part, of n− 1 digits, has no other constraints than those given by F .
There are #(n− 1) allowed such configurations. The symmetric holds when considering ’two’ as last digit, thus there
are another #(n− 1) allowed such configurations. If we consider the block (21) it may be the final part only of those
(n+1)-blocks in which the first n−1 block does not end by ’two’. If it ends by ’zero’, we get a final block of three digits
(021) and a first part of length n− 2 where there are #(n− 2) different allowed configurations. The symmetric holds
again for the digit ’two’, giving a three block (012) which provides itself other #(n − 2) allowed configurations. If it
ends by ’one’, we get a final block of three digits (121) that may be added in queue only to blocks ending not by ’one’.
The same symmetrically for the three digits (212). We obtain two branches of growing final block with alternating
sequence ...121212... and vice-versa, from which at each back-step depart 2 ∗ #(n − i) allowed configurations, for the
index i = 1, 2, . . . , n − 1. Then we get #(n + 1) = #(n) + 2#(n − 1) + 2#(n − 2) + . . . 2#(1) + 2 + 2 where the last
two numbers indicate respectively the strings 0121212...., 0212121.... and the two complementary strings 121212....,
212121...., all blocks of n + 1 digits. Then we have:

#(n) = #(n − 1) + 2

n−1∑

i=2

#(n − i) + 4. (13)

V. TOPOLOGICAL ENTROPY FOR Tm,k SHIFT SPACES

From the previous sections and from the equation (4) it is clear how one can proceed to select a Tm,k shift space
which possesses a desired value for the entropy. For the examined cases it is Bn(X) = #(n). To evaluate the limit
for n → ∞ it is convenient to express #(n) through the limit ratio Fn/Fn−1, so that

#(n) ≃ λn−1

0 × #(1) (14)

(15)

h = lim
n→∞

log(λn−1

0 × #(1))

n
= log(λ0)

Using the previous results, we take for example m = 1 and let k be arbitrary. The resulting equation for the largest
root λ0 is:

λ2 = λ + (k − 1) ⇒ (16)

⇒ λ0 =
1 +

√
4k − 3

2
(17)

and we get a discrete set of numerable topological entropies:

hT2,k
= log(

1 +
√

4k − 3

2
) (18)

The freedom we have in choosing the two integers k and m allows for a vast variety of Tm,k shift spaces with a
pre-selected associated entropy.

VI. CONCLUSIONS

We showed how the number of different allowed blocks of fixed length for a large class of shift spaces (Tm,k) may
be expressed in terms of recurrence relations, obtaining various series describing the growth of this number with the
length of the blocks. This information has been used to calculate different topological entropies from the limit ratio
of two adjacent terms of such series. A scheme to build a desired value for the entropy has been also illustrated. It
must be noted that the recurrence relations we obtained for particular shift spaces, and used to pre-select some values
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for hTm,k
, may have a larger applicability to problems arising in different contexts. In fact it is easy to check that

they may be equivalently used to count the number of different one-dimensional paths (if |A| = 2) where one must
step at least m times to the right before taking any step to the left for only once. Finally we believe that all these
results may be applied when devising complex algorithms for information storage and encryption, since the entropy
is directly related to the complexity of the system.
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