
ar
X

iv
:0

70
9.

05
13

v1
  [

m
at

h.
A

C
] 

 4
 S

ep
 2

00
7

QUATERNIONIC MATRICES: UNITARY SIMILARITY,

SIMULTANEOUS TRIANGULARIZATION AND SOME

TRACE IDENTITIES

DRAGOMIR Ž. D– OKOVIĆ AND BENJAMIN H. SMITH

Abstract. We construct six unitary trace invariants for 2 × 2
quaternionic matrices which separate the unitary similarity classes
of such matrices, and show that this set is minimal. We have dis-
covered a curious trace identity for two unit-speed one-parameter
subgroups of Sp(1). A modification gives an infinite family of trace
identities for quaternions as well as for 2×2 complex matrices. We
were not able to locate these identities in the literature.

We prove two quaternionic versions of a well known character-
ization of triangularizable subalgebras of matrix algebras over an
algebraically closed field. Finally we consider the problem of de-
scribing the semi-algebraic set of pairs (X, Y ) of quaternionic n×n

matrices which are simultaneously triangularizable. Even the case
n = 2, which we analyze in more detail, remains unsolved.

2000 Mathematics Subject Classification 15A33,15A18,16R30

1. Introduction

We denote by R, C, H the field of real numbers, complex numbers
and the division ring of real quaternions, respectively. Throughout
we use D to represent an element from the set {R, C, H} and Mn(D)
denotes the algebra of n×n matrices over D. Also, we let Un(D) resp.
Ln(D) denote the space of upper resp. lower triangular matrices in
Mn(D). In the case where D = H we will omit parentheses and write
Mn,Un,Ln.

The maximal compact subgroup of the general linear group GLn(D),
O(n) in the real case, U(n) in the complex case and Sp(n) in the quater-
nionic case, acts on Mn(D) by conjugation, i.e., (X, A) 7→ XAX−1, A ∈
Mn(D). It is an old problem to determine an explicit minimal set of
generators for the algebra of polynomial invariants for this action. Ex-
plicit results are known (in all three cases) for small values of n. Let us

Key words and phrases. Quaternionic matrices, unitary similarity, simultaneous
triangularization, trace identities, semi-algebraic sets.
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mention that the algebra of real polynomial Sp(n)-invariants is gener-
ated by the trace functions Tr (w(X, X∗)) where Tr : Mn → R is the
quaternionic trace (see next section for definition) and w is any word
in two letters.

The first question that we consider is that of separating the orbits of
the above action by means of a minimal set of polynomial invariants.
The real and complex cases have been studied extensively. For instance,
Pearcy shows in [12] that A, B ∈ M2(C) are unitarily similar if and only
if tr (X), tr (X2) and tr (XX∗) take the same values on A and B. He
also gives a list of nine words in X and X∗ whose traces distinguish
the unitary orbits in M3(C). This is reduced to a minimal set of seven
words by Sibirskĭı [16]. As far as we know, there are no such results in
the quaternionic case except for the case M1, which is trivial.

In section 3 we extend the first of Pearcy’s results to M2, i.e., the
2×2 quaternionic matrices. In this case we show that six words suffice
(see Theorem 3.5), and that our set of six words is minimal

In section 4 we consider two unit-speed one-parameter subgroups of
Sp(1), say

φp(s) = eps, φq(t) = eqt

where p and q are pure quaternions of norm 1. We prove (Theorem
4.1) that the real part of

k
∏

i=1

φp(si)φq(ti); si, ti ∈ R

remains the same when p and q are switched.
This fact remains true for arbitrary pure quaternions p and q pro-

vided we take k = 2 and set s1 = t1 and s2 = t2. From here we obtain
an infinite family of trace identities for quaternions (see Proposition
4.2 and it’s corollaries), which we were not able to find anywhere in
literature. For instance we show that

Tr (xmymxnyn) = Tr (ymxmynxn)

is valid for all quaternions x, y and nonnegative integers m, n. One can
easilly convert these identities into trace identities for M2(C).

Section 5 is about the simultaneous triangularization of subalgebras
of Mn. In [15] Radjavi and Rosenthal give several characterizations
of triangularizability of unital subalgebras of finite dimensional linear
operators over an algebraically closed field. By changing the equality
in part (iv) of [15, Theorem 1.5.4] to an inequality we are able to
extend that result to the quaternionic case (see Theorem 5.7). Next,
we observe a peculiar polynomial equation which is satisfied on any
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triangularizable subalgebra A ⊆ Mn, namely that Tr ([X, Y ]3) = 0,
and we investigate its significance. We introduce the concept of quasi-
triangularization (generalizing the triangularization) which refers to
the possibility of obtaining a simultaneous block upper triangular form
with the diagonal blocks restricted to M1 or M2(C). Based on our trace
identity for complex matrices given in section 4, we find that a unital
subalgebra A ⊆ Mn is quasi-triangularizable if and only if the identity
Tr ([X, Y ]3) = 0 is valid on A.

In section 6 we explore the semi-algebraic set Wn of pairs of quater-
nionic matrices which are simultaneously triangularizable. Hence Wn

is generated from Un × Un via the simultaneous conjugation action of
the group GLn(H). One can replace here GLn(H) by Sp(n) and deduce
that Wn is closed (in the Euclidean topology). For generic A ∈ Mn,
i.e., one with n distinct eigenvalues, we find that the fibre of the first
projection Wn → Mn is the union of n! real vector spaces, each of di-
mension 2n(n + 1), with a pairwise intersection a common subspace of
dimension ≥ 4n. We deduce that the dimension of Wn is 2n(3n + 1).
We also construct two infinite families of polynomial equations (and
some inequalities) which are satisfied on Wn.

The problem of pairwise triangularizability in M2 is of special inter-
est as the first nontrivial case of the above mentioned general problem.
Here, the set W2 can be defined geometrically as the set of quaternionic
matrix pairs which share a common eigenvector. In [6] Friedland de-
scribes exactly when this occurs in the complex case, see Theorem 7.1
below. In section 7, we look at his result and attempt to extend it to
the quaternionic case. We now give some details.

Let P2 be the algebra of real polynomial functions on M2 × M2,
and P ′

2 resp. P ′′
2 the subalgebra of GL2(H) resp. Sp(2)-invariants. Let

I2 ⊆ P2 be the ideal of functions that vanish on W2, and set I ′
2 = I2∩P ′

2

and I ′′
2 = I2 ∩P ′′

2 . The Zariski closure W2 of W2 is the set of common
zeros of I2, and the same is true for the ideal I ′′

2 of P ′′
2 . While the

codimension of W2 in M2 ×M2 is only 4, we can show that a minimal
set of generators of I ′

2 has cardinal ≥ 92. Let J ′
m ⊆ I ′

2 ⊆ P ′
2 be the

ideal of P ′
2 generated by all polynomials f ∈ I ′

2 of (total) degree ≤ m.
We have constructed a minimal set of generators of J ′

m for m ≤ 14 (see
Table 2 for the generators of J ′

9).
In the last section, 8, we state four open problems.
We thank the referee and R. Guralnick for their valuable comments

and suggestions.
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2. Preliminaries

Let H = {a + ib + jc + kd : a, b, c, d ∈ R} represent the skew-field
of real quaternions. We shall identify the field C with the subfield
{a + ib : a, b ∈ R} of H. For a quaternion q = a + ib + jc + kd we define
the norm, real part, pure part and conjugate of q in the usual fashion
as:

|q|2 := a2 + b2 + c2 + d2,

ℜ(q) := a,

ib + jc + kd and

q := a − ib − jc − kd,

respectively. The adjoint of a matrix A ∈ Mn is given by A∗ = A
T
,

which is also known as the conjugate-transpose of A. With this, we
can define the (compact) symplectic group, Sp(n), as the collection of
quaternionic unitary matrices, namely

Sp(n) := {U ∈ Mn : U∗U = In},
where In is the identity matrix see e.g. [2]. Consider the equivalence
relation ∼ defined on Mn by the conjugation action of Sp(n). To be
precise, we have:

A ∼ B ↔ ∃U ∈ Sp(n), A = UBU−1.

This shall be referred to as Sp(n)-equivalence. We will speak of indi-
vidual Sp(n)-equivalence class for a given matrix A ∈ Mn and thus,
denote this orbit by OA = {UAU−1 : U ∈ Sp(n)}. It is well known
that Mn can be embedded nicely into M2n(C). For this purpose, given
A ∈ Mn we write A = A1 + jA2 with A1, A2 ∈ Mn(C). Then

χn : Mn → M2n(C), χn(A) =

[

A1 −A2

A2 A1

]

,

is an injective homomorphism of R-algebras. From this, the quater-
nionic matrices inherit various analogous properties regarding invert-
ibility, triangularizability, canonical forms, decomposition, determi-
nants, numerical range and more. See [18] for detailed results on
quaternionic linear algebra.

Given A ∈ Mn, there exists P ∈ GLn(H) such that PAP−1 ∈ Un

with successive diagonal entries λ1, . . . , λn ∈ C and imaginary parts
ℑ(λi) ≥ 0. The sequence (λ1, . . . , λn) is unique up to permutation and
we refer to λ1, . . . , λn as the eigenvalues of A. We shall use the word
“eigenvalues”, in the context of quaternionic matrices, exclusively in
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this sense. Note that the eigenvalues of the complex matrix χn(A) are
λ1, . . . , λn and λ̄1, . . . , λ̄n (counting multiplicities).

We seek to classify exactly when two 2×2 quaternionic matrices are
Sp(2)-equivalent using polynomial functions which remain constant on
the equivalence classes. It is known that the algebra of polynomial
invariants for complex matrices under the action of conjugation by
unitary group is generated by a finite number of particular known trace
functions on Mn(C) for n = 2, 3, 4. Since M2 embeds into M4(C) as
seen by χ2, it is only natural to assume a classification of this type can
be extended in some way to the quaternionic case. That is, we should
be capable of defining explicitly which functions separate orbits.

First, we will need to introduce the notion of trace for quaternions
and matrices of such which will be preserved by χn above. For the
general definition of the reduced trace and the reduced norm for central
simple algebras we refer the reader to [13, 7].

Definition 2.1. The quaternionic trace of A = [aij] ∈ Mn is,

Tr (A) :=
n
∑

i=1

(aii + āii) = 2ℜ
(

n
∑

i=1

aii

)

.

In particular, when n = 1 we have

Tr (q) = q + q̄ = 2ℜ(q)

It is important to notice the clear distinction between the usual trace,
tr , on a matrix algebra over a field and the quaternionic analog pre-
sented above. For instance, we have tr In = n while Tr In = 2n. Some
properties which follow directly from our definition as well as the sim-
ple fact that ℜ(pq) = ℜ(qp) for all quaternions p, q are as follows:

Let A, B ∈ Mn, P ∈ GLn(H), U ∈ Sp(n) and w be any word on two
letters, then

(1) Tr (A) = tr χn(A)
(2) Tr (A + B) = Tr (A) + Tr (B)
(3) Tr (λA) = λTr (A), λ ∈ R

(4) Tr (AB) = Tr (BA)
(5) Tr (w(PAP−1, PBP−1)) = Tr (w(A, B))
(6) Tr (w(UAU∗, UA∗U∗)) = Tr (w(A, A∗))

Observe, properties (2),(3) and (6) tell us that the quaternionic trace
of any R-linear combination of any words on {A, A∗} is invariant under
the action of Sp(n).
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3. Sp(2)-equivalence of matrices

For our purposes it is essential to introduce the following six trace
polynomials on M2

(p1, p2, p3, p4, p5, p6) := Tr (A, A2, A3, A4, AA∗, A2A∗2).

We proceed in showing that these form a minimal set of Sp(2)-invariants
that separate orbits in M2.

Let us first describe a simple canonical form for 2 × 2 quaternionic
matrices under Sp(2)-equivalence.

Definition 3.1. Denote by K the set of all matrices of the form

A =

[

α z
0 β

]

such that α, β ∈ C; ℑ(α),ℑ(β) > 0; z = z1 + jz3; z1, z3 > 0; and if α,
or β is real then z3 = 0.

Notice that K is a semi-algebraic set of dimension 6. Eventually,
we will see K intersects each Sp(2)-equivalence class at either one or
two points. The following result shows that K meets every orbit OA at
least once.

Lemma 3.2. Every 2 × 2 quaternionic matrix is Sp(2)-equivalent to
some matrix A ∈ K.

Proof. First, by the generalization of Schur’s theorem for quaternionic
matrices found in [18] any matrix in M2 is Sp(2)-equivalent to a matrix
of the form

[

α z
0 β

]

,

with α, β ∈ C; and ℑ(α),ℑ(β) > 0. If we write z = c1 + jc2; c1, c2 ∈ C,
we can reduce our matrix as follows,

[

u 0
0 v

] [

α c1 + jc2

0 β

] [

u−1 0
0 v−1

]

=

[

α |c1| + j|c2|
0 β

]

.

It suffices to choose unit complex numbers u and v such that uc1v
−1 =

|c1| and ūc2v
−1 = |c2|, which is always possible. If, say, β is real then

we can set u = 1 and choose a unit quaternion v such that zv−1 is real
nonnegative. �

Now we provide a technical result which simplifies the form of p6

when restricted to K. This will be useful for later computations.



QUATERNIONIC MATRICES 7

Lemma 3.3. Let A =

[

α z
0 β

]

be as in Definition 3.1. In particular

z = z1 + jz3 with z1, z3 > 0. Then,

1

2
p6(A) = |α|4 + |β|4 + |α + β̄|2|z|2 + z2

1(α − ᾱ)(β̄ − β).

Proof. We have

p6(A) = Tr (A2A∗2) = 2
(

|α|4 + |β|4 + (|α|2 + |β|2)|z|2 + 2ℜ(αzβ̄z̄)
)

and

zβ̄z̄ = (β̄z2
1 + βz2

3) + jz1z3(β + β̄).

Notice that the second term above is a pure quaternion even upon
multiplication by α and so has zero real part. So

2ℜ(αzβ̄z̄) = z2
1(αβ̄ + ᾱβ) + z2

3(αβ + ᾱβ̄)

= |z|2(αβ + ᾱβ̄) + z2
1(αβ̄ + ᾱβ − αβ + ᾱβ̄)

= |z|2(αβ + ᾱβ̄) + z2
1(α − ᾱ)(β̄ − β).

�

With this formulation in place, we can classify Sp(2)-equivalence
between matrices which lie in K. In fact we shall prove that an orbit
OA meets K in two points when A has distinct eigenvalues and in a
single point otherwise.

Theorem 3.4. If A =

[

α z
0 β

]

and B =

[

γ w
0 δ

]

belong to K, then

A ∼ B ⇐⇒ z = w & {α, β} = {γ, δ}.
Proof. When A ∼ B we get from pk(A) = pk(B), k ∈ {1, 2, 3, 4}, that
the sets of eigenvalues, {α, β, ᾱ, β̄} and {γ, δ, γ̄, δ̄}, for χ2(A), χ2(B)
are the same. So we get that {α, β} = {γ, δ} as well. Also, from
p5(A) = p5(B) which is |α|2 + |β|2 + |z|2 = |γ|2 + |δ|2 + |w|2, we can
see that |z|2 = |w|2. Recall that z = z1 + jz3 and w = w1 + jw3,
where z1, z3, w1, w3 are real and nonnegative. Now, p6(A) = p6(B) and
Lemma 3.3 above show that z2

1 = w2
1, and since both z1 and w1 are

nonnegative we have z1 = w1. It follows that also z = w.
To prove the converse, we may assume that A 6= B. Thus δ = α, γ =

β and α 6= β. So, we know A is Sp(2)-equivalent to a matrix A′ =
[

β w′

0 α

]

∈ K, since Schur’s theorem allows us to place the eigenvalues

in any order along the diagonal. Hence, by the first part of the proof
and the hypothesis we have w′ = z = w and so A ∼ A′ = B. �



8 D.Ž. D– OKOVIĆ AND B. SMITH

With Lemma 3.2 along with Theorem 3.4, we have reached the
promised canonical form for 2 × 2 quaternionic matrices under Sp(2)-
equivalence. It is unique up to permutation of the diagonal entries.

Now we may begin looking to find polynomial invariants which sep-
arate the Sp(2)-equivalence classes. Also, it is ideal for computational
purposes to obtain the least number of these polynomials which do the
job.

Theorem 3.5. Two matrices A, B ∈ M2 are Sp(2)-equivalent if and
only if the following six equations hold:

Tr
(

Ai
)

= Tr
(

Bi
)

, i ∈ {1, 2, 3, 4};
Tr (AA∗) = Tr (BB∗) ;

Tr
(

A2A∗2

)

= Tr
(

B2B∗2

)

,

i.e., pk(A) = pk(B) for 1 ≤ k ≤ 6. Moreover, this is a minimal set of
invariants with the mentioned property.

Proof. First, if A ∼ B, our trace equations are trivially satisfied as
Tr w(A, A∗) = Tr w(B, B∗) for all words w on two letters.

Conversely, suppose the given set of traces match for A and B. By
Lemma 3.2 we may assume that

A =

[

α z
0 β

]

, B =

[

γ w
0 δ

]

∈ K.

We know the first four invariants of A, B uniquely determine the sets
{α, β}, {γ, δ} respectively and since these invariants are the same, we
have that these sets are equal. It remains to show that z = w which
can be done using p5 and p6. We have from p5(A) = p5(B) that

|α|2 + |β|2 + |z|2 = |γ|2 + |δ|2 + |w|2.
As {α, β} = {γ, δ}, we have |z| = |w|. Similarly, from p6(A) = p6(B)
and Lemma 3.3 we get

|α|4 + |β|4 + |α + β̄|2|z|2 + z2
1(α − ᾱ)(β̄ − β)

= |γ|4 + |δ|4 + |γ + δ̄|2|z|2 + w2
1(γ − γ̄)(δ̄ − δ),

and so z2
1 = w2

1. From our description of K we know z1, w1 ≥ 0. This
implies that z1 = w1 and thus, z = w. Now, it follows from Theorem
3.4 that A ∼ B.

Finally, to prove minimality, we provide pairs of matrices, each of
which agree on all but one invariant from our list. In Table 1 the
matrices in the k-th row have distinct values of pk only.



QUATERNIONIC MATRICES 9

Table 1: Examples for minimality

1.

[ √
3 − i 0

0 −
√

3 + i

] [

−
√

3 + i 0

0 −
√

3 − i

]

2.

[

2 + i 1
0 −2 − i

] [

1 + 2i −1
0 −1 − 2i

]

3.

[

−1 + 2i 0
0 1

] [

−1 0
0 1 + 2i

]

4.

[

0
√

6 + j

0
√

2i

] [

i
√

3 + 2j

0 −i

]

5.

[

0 0
0 0

] [

0 1
0 0

]

6.

[

i 1
0 i

] [

i j

0 i

]

Thus, we have shown that our set of invariants is minimal. �

Let us point out that the complex analog of this theorem is not valid.
The reason is that, in the complex case, the polynomial invariants do
not separate the orbits.

4. Some trace identities for quaternions

It is well known that every one parameter subgroup of Sp(1) has the
form

φp(s) = esp :=
∑

i≥0

1

i!
sipi, s ∈ R,

for a unique pure quaternion p. Note that φλp(s) = φp(λs) for all real
λ and

(4.1) uφp(s)u
−1 = φupu−1(s)

for any nonzero quaternion u.

Theorem 4.1. If p and q are pure unit quaternions, then

(4.2) Tr

(

k
∏

i=1

φp(si)φq(ti)

)

= Tr

(

k
∏

i=1

φq(si)φp(ti)

)

.

is valid for any real numbers s1, . . . , sk and t1, . . . , tk.
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Proof. Since |p| = |q| = 1 there exists a 180◦-rotation, in the 3-dimen-
sional space of pure quaternions, which interchanges p and q. Conse-
quently, there exists a pure unit quaternion u such that upu−1 = q and
uqu−1 = p (if p + q 6= 0 one can choose u in the direction of p + q, and
otherwise just to be orthogonal to p.) It suffices now to observe that
conjugation by u interchanges the two products in (4.2). �

The identity (4.2) is not valid for arbitrary pure quaternions p and
q. Let us look at the special cases where

(4.3) s1 = t1, s2 = t2, . . . , sk = tk.

Proposition 4.2. Let p and q be arbitrary pure quaternions, then

(a) For every s, t ∈ R, we have

Tr (φp(s)φq(s)φp(t)φq(t)) = Tr (φq(s)φp(s)φq(t)φp(t));

(b) When at least two of r, s, t ∈ R are equal, we have

Tr (φp(r)φq(r)φp(s)φq(s)φp(t)φq(t))

= Tr (φq(r)φp(r)φq(s)φp(s)φq(t)φp(t)).

Proof. Let us prove (a). We can write p = λp0 and q = µq0, where
p0 and q0 are pure unit quaternions and λ, µ ≥ 0. From (4.1) we may
assume that p0 = i and q0 = i cos ρ + j sin ρ. Then we have

φp(s) = φλp0
(s) = φp0

(λs) = cos λs + i sin λs,

φq(s) = cos µs + (i cos ρ + j sin ρ) sin µs.

Next we get that

φp(s)φq(s) = cos λs cos µs − sin λs sinµs cos ρ

+ i(cos λs sin µs cos ρ + sin λs cosµs)

+ j cos λs sin µs sin ρ

+ k sin λs sin µs sin ρ.

From here, we compute the product φp(s1)φq(s1)φp(s2)φq(s2) and verify
(we did it using Maple) that its real part remains the same when p and
q are switched. Hence, proving part (a).

The proof of the part (b) is similar and we omit the details. �

A discrete version of the last proposition can be extended to arbitrary
quaternions x, y by considering their polar decompositions. Thus, we
have the following corollary.
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Corollary 4.3. Let m, n, r be nonnegative integers. Then

Tr (xmymxnyn) = Tr (ymxmynxn)

is valid for all x, y ∈ H. If m, n, r are not distinct, then

Tr (xmymxnynxryr) = Tr (ymxmynxnyrxr)

is also valid.

As a result of this identity for quaternions we obtain another impor-
tant corollary about M2(C). Take note the trace below is the standard
trace, as denoted by the lowercase tr.

Corollary 4.4. Let m, n, r be nonnegative integers. Then

tr (xmymxnyn) = tr (ymxmynxn)

is valid for all x, y ∈ M2(C). If m, n, r are not distinct , then

tr (xmymxnynxryr) = tr (ymxmynxnyrxr)

is also valid.

Proof. We have a direct decomposition M2(C) = χ1(H)⊕ iχ1(H). Since
the left hand side is a complex analytic polynomial (in 8 indetermi-
nates) which we know from Corollary 4.3 vanishes on χ1(H), it fol-
lows that this polynomial must be identically zero and our identity
holds. �

The referee supplied a simple proof of these two corollaries for any
algebra with trace. For simplicity we sketch his argument in the setting
of Corollary 4.3. By expanding products, one can easily check that the
identity

Tr ((a+bx)(c+dy)(e+fx)(g+hy)) = Tr ((c+dy)(a+bx)(g+hy)(e+fx))

holds for all real scalars a, b, c, d, e, f, g, h and quaternions x, y. This
implies the first identity since xm = u + vx etc for some real scalars
u, v. The second identity can be deduced from the first by using the
fact that the elements of H are quadratic over R.

For convenience we shall use the standard notation for the commu-
tator. That is [A, B] := AB − BA. Notice that

Tr
(

[A, B]3
)

= 3Tr (A2B2AB − B2A2BA)(4.4)

= −3Tr
(

AB2A[A, B]
)

,

as this will be useful for further results.
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5. Triangularizable subalgebras of Mn

A set S ⊆ Mn(D) is triangularizable if there is a P ∈ GLn(D) such
that PSP−1 ⊆ Un(D). In the recent book [15] one can find several
characterizations of triangularizable complex subalgebras of Mn(C).
Some of these results can be easily transferred to the quaternionic case
while others are no longer valid. In particular, it is trivial to see that
the next proposition does not hold for the quaternionic case. First, we
introduce the notion of permutable functions.

Definition 5.1. Let S ⊆ Mn(D) be a collection of matrices. For a
function f on Mn(D), taking values in the center of D, we say f is
permutable on S if

f(A1A2 . . . Ak) = f(Aσ(1)Aσ(2) . . . Aσ(k))

for all A1, A2, . . . , Ak ∈ S and all permutations σ of {1, 2, . . . , k}.
One can find in [14] the following characterization of triangularizable

subalgebras of Mn(C). See [8] for generalization to other fields.

Proposition 5.2. Let A ⊆ Mn(C) be a unital complex subalgebra.
Then A is triangularizable if and only if trace is permutable on A.

The analogous assertion for (real) subalgebras of Mn is invalid be-
cause Tr is not permutable on Un. This is due to the lack of commu-
tativity of H.

To prove our result giving a characterization of triangularizable sub-
algebras of Mn we shall use the concept of quaternionic representations
of real algebras.

Definition 5.3. Let A be an associative unital R-algebra. A quater-
nionic representation of A is a R-algebra homomorphism

ρ : A → EndH(V),

where V is a right quaternionic vector space. We also say that V is a
quaternionic (left) A-module. We say that ρ is irreducible if V is non-
zero and has no proper non-zero A-invariant quaternionic subspaces.

Let us briefly outline the basic facts regarding quaternionic represen-
tations of finite-dimensional unital R-algebras A. If R is the radical
of A, then A/R ∼= A1 × · · · × As, where each Ai is a simple algebra.
Thus, each Ak is isomorphic to one of the algebras Mr(R), Mr(C) or
Mr(H), for some integer r ≥ 1. In each of these three cases, the right
quaternionic space Hr (column vectors) is an irreducible quaternionic
Ak-module, and also an irreducible quaternionic A-module. In this way
we obtain all irreducible quaternionic A-modules (up to isomorphism).



QUATERNIONIC MATRICES 13

Moreover, the A-modules arising for different values of k are pairwise
non-isomorphic.

Remark 5.4. Let us also mention another useful fact: There exists a
subalgebra B ⊆ A such that A = R⊕ B see [13, Wedderburn–Malcev
Theorem, p.209].

The following proposition plays a crucial role in the sequel.

Proposition 5.5. Let A ⊆ Mn be a unital subalgebra and ρ : A → Mr

an irreducible quaternionic representation. Let p(x, y) be a polynomial,
in two non-commuting variables x and y, with real coefficients. If the
inequality

Tr (p(x, y)) ≤ 0

is satisfied for all x, y ∈ A, then it is also satisfied for all x, y ∈ ρ(A).
The same assertion remains valid if the inequality sign is replaced by
equality.

Proof. If R is the radical of A, then A/R ∼= A1 × · · · × As, where
each Ai is a simple algebra. Let Wk be the unique (up to isomor-
phism) irreducible quaternionic module of Ak. Then W1, . . . , Ws are
representatives of the isomorphism classes of irreducible quaternionic
A-modules and let ρ1, . . . , ρs be their corresponding representations.
Let 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vm = Hn be a Jordan–Hölder series of Hn

(viewed as a quaternionic A-module). Denote by nk the number of
indices i ∈ {1, 2, . . . , m} such that Vi/Vi−1

∼= Wk. As H
n is a faithful

A-module, we have nk ≥ 1 for each k. For any x, y ∈ A, we have

Tr (p(x, y)) =

s
∑

i=1

niTr (p(ρi(x), ρi(y))).

By the above remark, for a fixed k ∈ {1, 2, . . . , s} and any xk, yk ∈
ρk(A) there exist x, y ∈ A such that ρk(x) = xk, ρk(y) = yk, while
ρl(x) = ρl(y) = 0 for l 6= k. For such x, y we have

Tr (p(x, y)) = nkTr (p(xk, yk)).

As nk ≥ 1 and Tr (p(x, y)) ≤ 0, we conclude that Tr (p(xk, yk)) ≤ 0.
Since the representation ρ is equivalent to some ρk, The first assertion
is proved.

The second assertion is a consequence of the first. �

We shall also need the following easy lemma.

Lemma 5.6. Let A = Mr(D) where D ∈ {R, C, H}.
(1) If Tr ([A, B]2) ≤ 0 holds for all A, B ∈ A then r = 1.
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(2) Tr ([A, B]3) = 0 holds true in A if and only if either r = 1 or
r = 2 and D ∈ {R, C}.

Proof. To prove (1), suppose r = 2 then the matrix pair

A =

[

1 0
0 0

]

, B =

[

0 1
−1 0

]

has Tr ([A, B]2) = 4 > 0. If r ≥ 3, we may extend the matrices A, B
with rows and columns of zeros to see that inequality does not hold.
Hence, we must have that r = 1.

Next we prove (2). If r = 1 or r = 2 and D ∈ {R, C} then Corollaries
4.3 and 4.4 give Tr ([A, B]3) = 0 on A.

To prove the converse, we proceed by contradiction. If r = 2 and
D = H then

A =

[

0 1
0 j

]

, B =

[

0 1
i 0

]

satisfy Tr ([A, B]3) = −4 6= 0. Similarly, for r ≥ 3 we see our equality
is invalid even for D = R : Observe that

A =





0 0 0
0 1 0
1 0 0



 , B =





1 1 0
0 0 1
0 0 0





have Tr ([A, B]3) = −6 6= 0. Thus, by our argument in part (1) we are
done. �

The following theorem is a quaternionic version of Theorem 1.5.4
from [15]. The only change in the wording appears in part (4) where
we have replaced their equality with an inequality.

Theorem 5.7. For a unital subalgebra A ⊆ Mn, the following are
equivalent:

(1) A is triangularizable.
(2) If A, B ∈ A are nilpotent then so is A + B.
(3) If at least one of A, B ∈ A is nilpotent then so is AB.
(4) Tr ([A, B]2) ≤ 0 for all A, B ∈ A.

Proof. First, if we assume (1) holds then it is trivial to see that (2),(3),
and (4) are all satisfied.

Conversely, suppose at least one of (2),(3) or (4) holds. As in the
proof of Proposition 5.5, choose a Jordan–Hölder series 0 = V1 ⊂ V2 ⊂
· · · ⊂ Vm = Hn for the quaternionic A-module Hn. Let nk be the
quaternionic dimension of the quotient Wk = Vk/Vk−1. It suffices to
show that each nk = 1.
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There is a Q ∈ GLn(H) such that QAQ−1 consists of block upper
triangular matrices with successive diagonal blocks square of size nk,
k = 1, . . . , m. For any X ∈ A let ρk(X) denote the k-th diagonal
block of size nk of the matrix QXQ−1. Each ρk(A) is a simple real
algebra isomorphic to Mnk

(Dk) with Dk ∈ {R, C, H}. By Noether–
Skolem Theorem we may assume that Q is chosen so that each ρk(A) =
Mnk

(Dk).
If (2) or (3) holds then nk = 1 because otherwise the pair of nilpotent

matrices [ 0 1
0 0 ] , [ 0 0

1 0 ] will add and multiply to a matrix which is not
nilpotent. If (4) holds, then Lemma 5.6 gives that nk = 1. �

Remark 5.8. The equivalence of (1),(2) and (3) was also mentioned by
Kermani at the recent ILAS Conference [10].

Our next objective is to characterize subalgebras of Mn that satisfy
the identity Tr ([X, Y ]3) = 0. For that purpose we need the concept of
quasi-triangularizability which we now define

Let us define a {1, 2}-sequence as a sequence σ = (σ1, σ2, . . . , σm) of
integers from {1,2}. We say that m is its length and |σ| := σ1+· · ·+σm

is its size. Assuming that |σ| = n, we denote by Mσ the subalgebra of
Mn consisting of all block triangular matrices

A =









A11 A12 · · · A1,m−1 A1m

0 A22 A2,m−1 A2m

...
0 0 0 Amm









with the diagonal blocks Aii ∈ Mσi
subject to the additional condi-

tion that Aii ∈ M2(C) whenever σi = 2, and all Ai,j, i < j, arbitrary
quaternionic matrices of appropriate sizes.

We can now define the quasi-triangularizable sets of quaternionic
matrices.

Definition 5.9. A collection S of n×n quaternionic matrices is quasi-
triangularizable (denoted by q.t.) if PSP−1 ⊆ Mσ for some P ∈
GLn(H) and some {1, 2}-sequence σ of size n. (If all σi can be taken
to be 1, then S is triangularizable.)

Theorem 5.10. A unital subalgebra A ⊆ Mn is q.t. if and only if
Tr ([A, B]3) = 0 for all A, B ∈ A.

Proof. If A ⊆ Mn is q.t., then for A, B ∈ A there is a P ∈ GLn(H)
and a {1,2}-sequence σ with |σ| = n such that PAP−1 ⊆ Mσ. For
A, B ∈ A with diagonal blocks, denoted A1, . . . , Ak and B1, . . . , Bk for
PAP−1, PBP−1 respectively, we see that all satisfy the trace identity
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proven in Corollary 4.4. In particular the identity holds for integers
(m, n) = (2, 1). By Lemma 5.6 and the identity (4.4), we have

Tr ([A, B]3) =
k
∑

i=1

Tr ([Ai, Bi]
3) = 0.

Conversely, suppose that any A, B ∈ A satisfy the given identity. If
R is the radical of A then we know that A/R = A1 × · · · × As where
the Ai’s are simple R-algebras. That is, for each i ∈ {1, . . . , s} we have
that Ai

∼= Mr(Di), for some positive integer r and Di ∈ {R, C, H}.
Proposition 5.5 guarantees that our trace identity remains true on each
Ai. Thus, Lemma 5.6 implies that the possibilities for ri and Di can
be reduced to exactly one of ri = 1 and Di ∈ {R, C, H} or ri = 2 and
Di ∈ {R, C}.

Next, as in the proof of Proposition 5.5, we choose a Jordan–Hölder
series 0 = V0 ⊂ V1 ⊂ . . . ⊂ Vm = Hn for the quaternionic A-module Hn.
From the fact just proved above it follows that each irreducible quotient
Vi/Vi−1 has quaternionic dimension σi = 1 or 2. Consequently, there
exists Q ∈ GLn(H) such that QAQ−1 is contained in the subalgebra of
Mn consisting of the block upper triangular matrices whose successive
diagonal blocks have sizes given by the {1,2}-sequence σ = (σ1, . . . , σm)
of size n. For any X ∈ A let ρi(X) denote the i-th diagonal block of
the matrix QXQ−1.

Assume that σi = 2. Then ρi(A) is a unital subalgebra of M2 isomor-
phic to M2(R) or M2(C). By Noether–Skolem theorem see [13, p.230],
there exists a matrix Pi ∈ GL2(H) such that the subalgebra Piρi(A)P−1

i

is exactly equal to M2(R) or M2(C), respectively. If σi = 1 we just set
Pi = [1]. Let P ∈ GLn(H) be the block diagonal matrix with succes-
sive diagonal blocks P1, . . . , Pm. Then we have PQAQ−1P−1 ⊆ Mσ.
Therefore, A is quasi-triangularizable. �

The referee remarks that the theory of polynomial identities (see e.g.
[4]) is relevant for the last theorem. The algebras H, M2(R) and M2(C)
all satisfy the same polynomial identities over R because they are all
central simple of dimension 4 over their respective centers, which need
not be R. Thus a unital subalgebra A is quasi-triangularizable if and
only if A/R satisfies all the polynomial identities of M2(R).

6. Simultaneously triangularizable matrix pairs

The pairs of matrices over a field that are Simultaneously triangular-
izable have been studied for a long time, see e.g the book [15] and its
references. Most of the known results deal with the problem of charac-
terizing such matrix pairs. On the other hand the set of all such matrix
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pairs does not have a simple description, apart from a particular case
which will be mentioned in the next section. In this section we make
several observations concerning this problem for quaternionic matrices.

Let us start with the definition.

Definition 6.1. We denote by Wn, the set of all matrix pairs (A, B) ∈
Mn × Mn such that A and B are simultaneously triangularizable.

The problem of describing Wn is apparently very hard (see next
section for the case n = 2). An easy observation is that this set is
semi-algebraic. Indeed, the group Gn := GLn(H) is a real algebraic
group and the map

(6.1) Gn × Un × Un → Mn × Mn

which sends (g, x, y) to (gxg−1, gyg−1) is regular. Now observe that
Wn is the set theoretic image of this map, and it is well known that
the image of a regular map is a semi-algebraic set.

We proceed to show that Wn is a closed set. We claim that the image
of Sp(n) × Un × Un under the map (6.1) is the whole set Wn. Indeed,
let (x, y) ∈ Wn and choose g ∈ Gn and a, b ∈ Un such that x = gag−1

and y = gbg−1. Let us write g = ut where u ∈ Sp(n) and t ∈ Gn ∩ Un.
Then we have x = ucu−1, y = udu−1 with c = tat−1 and d = tbt−1 in
Un. This proves our claim.

Since Sp(n) is a compact group and Un ×Un is a closed set, we infer
that Wn is closed in the ordinary (Euclidean) topology. Apparently,
this is not true for the Zariski topology (see Problem 8.3).

Let Pn denote the algebra of real polynomial functions on Mn ×Mn.
Denote by P ′

n the subalgebra of Gn-invariant functions, i.e., functions
f ∈ Pn such that

f(gxg−1, gyg−1) = f(x, y); ∀g ∈ Gn; ∀x, y ∈ Mn.

Similarly, let P ′′
n denote the subalgebra of P ′′

n consisting of Sp(n)-
invariant functions,

Since Wn is Gn-invariant, its Zariski closure Wn is also Gn-invariant.
Let In ⊆ Pn be the ideal consisting of all functions f ∈ Pn that vanish
on Wn, and set I ′

n = In ∩ P ′
n and I ′′

n = In ∩ P ′′
n . By the definition of

Wn we have

Wn = {(x, y) ∈ Mn × Mn : f(x, y) = 0, ∀f ∈ In}.
By using the fact that Sp(n) is a compact group, one can easily show
that also

Wn = {(x, y) ∈ Mn × Mn : f(x, y) = 0, ∀f ∈ I ′
n}.
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The algebra Pn is bigraded: We assign to the 4n2 coordinate func-
tions of the matrix x the bidegree (1,0), and to the coordinate functions
of y the bidegree (0,1). The subalgebras P ′

n and P ′′
n inherit the bigra-

dation from Pn. The ideals In, I ′
n and I ′′

n are also bigraded.
We shall now exhibit two infinite families of concrete polynomials

that belong to I ′
n. Let us first state an obvious result about matrices

with purely imaginary eigenvalues.

Lemma 6.2. If all eigenvalues of A ∈ Mn are purely imaginary, then
Tr (A2k−1) = 0, Tr (A4k−2) ≤ 0 and Tr (A4k) ≥ 0 for all integers k ≥ 1.

It is clear that, for (X, Y ) ∈ Wn, all eigenvalues of [X, Y ] are purely
imaginary. Hence, we obtain as a simple corollary from above our first
family of polynomial equations (and inequalities) that are satisfied on
Wn.

Corollary 6.3. If (X, Y ) ∈ Wn then

Tr ([X, Y ]2k−1) = 0, Tr ([X, Y ]4k−2) ≤ 0, Tr ([X, Y ]4k) ≥ 0

are valid for all integers k ≥ 1.

We can use the results of section 4 to obtain our second family.

Corollary 6.4. If (X, Y ) ∈ Wn then

Tr (XkY kXmY m − Y kXkY mXm) = 0

for all integers k, m ≥ 1.

To get more insight into the structure of the set Wn, we shall analyze
the generic fibres of the first projection map π1 : Wn → Mn. As any
matrix A ∈ Mn is triangularizable, π1 is surjective. We denote by FA

the fibre of π1 over A, i.e.,

FA = π−1
1 (A) = {(A, B) : (A, B) ∈ Wn}.

We say that a matrix A ∈ Mn is generic if it has n distinct eigen-
values. The set of all generic matrices is an open dense subset of Mn.
We shall now describe the generic fibres of π1, i.e., the fibres FA with
A generic.

For convenience, let us identify the symmetric group Sn with the
group of n × n permutation matrices.

Proposition 6.5. For generic A ∈ Mn, the fibre FA is the union of
n! real vector spaces, each of dimension 2n(n + 1). Any two of these
spaces intersect in a common vector subspace of dimension ≥ 4n.
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Proof. Let λ1, . . . , λn be the distinct eigenvalues of A. If P ∈ Gn then

FPAP−1 = π−1
1 (PAP−1) = Pπ−1

1 (A)P−1 = PFAP−1.

Hence, without any loss of generality, we may assume that A is a
diagonal matrix A = diag(λ1, . . . , λn). Then it suffices to prove that

FA =
⋃

P∈Sn

FA,P

where

FA,P = {A} × PUnP−1.

Let P ∈ Sn. Since P−1FA,PP = {P−1AP} ×Un ⊆ Un ×Un, we have
FA,P ⊆ Wn. It follows that FA,P ⊆ FA for all P ∈ Sn.

Conversely, let (A, B) ∈ FA. Choose Q ∈ Gn such that

(QAQ−1, QBQ−1) ∈ Un × Un.

Since QAQ−1 has n distinct eigenvalues λ1, . . . , λn and QAQ−1 ∈ Un,
there is an invertible upper triangular matrix R such that RQAQ−1R−1

is a diagonal matrix with diagonal entries λ1, . . . , λn in some order.
Hence, RQAQ−1R−1 = P−1AP for some P ∈ Sn.

It follows that S := PRQ commutes with A and so S is a diagonal
matrix. Now RQBQ−1R−1 ∈ Un implies that B ∈ S−1PUnP

−1S =
PUnP

−1, i.e., (A, B) ∈ FA,P . This concludes the proof of the first
assertion.

The second assertion follows from the assertion that, for each P ∈ Sn,
PUnP

−1, P ∈ Sn, contains the space of diagonal matrices. �

We show next that Wn is the image of a smooth map defined on
a suitable vector bundle. The group Tn = Gn ∩ Un acts on Un × Un

by simultaneous conjugation (t, x, y) 7→ (txt−1, tyt−1), where t ∈ Tn

and x, y ∈ Un. There is also the right action of Tn on Gn by right
multiplication. By using these two actions one can construct a vector
bundle

Gn ×Tn
(Un × Un)

with base the homogeneous space Gn/Tn and fibre Un × Un. For more
details about this construction we refer the reader to [1, p.46].

The map (6.1) induces a smooth map from the above vector bundle
to Mn × Mn. Since Wn is the image of this induced map, we have

dimWn ≤ dim (Gn ×Tn
(Un × Un)) = 4n2 + 2n(n + 1) = 2n(3n + 1).

We shall see next that the equality sign holds here.

Corollary 6.6. dimWn = 2n(3n + 1).
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Proof. Since the generic matrices form an open submanifold of Mn and
each generic fibre has dimension 2n(n + 1), we conclude that

dimWn ≥ 4n2 + 2n(n + 1) = 2n(3n + 1).

Hence, equality holds. �

We conclude that Wn has codimension 2n(n−1) in Mn×Mn. Conse-
quently, I ′

n must have at last 2n(n− 1) generators. In the next section
we shall see that this bound is too low when n = 2.

7. Matrix pairs in M2 with a common eigenvector

In this section we shall consider the special case n = 2. The set W2

can be described also as the set of all ordered pairs A, B ∈ M2 such
that A and B share a common eigenvector. For complex matrices, this
special case has been fully resolved (see e.g. [11, 9, 6]). Let us recall
the result.

Theorem 7.1. For a pair of matrices A, B ∈ M2(C) the following are
equivalent:

(a) A and B are simultaneously triangularizable,
(b) [A, B]2 = 0,
(c) tr ([A, B]2) = 0,
(d) tr (A2B2 − (AB)2) = 0,
(e) (2tr (A2) − (tr (A))2(2tr (B2) − (tr (B))2) =

(2tr (AB) − tr (A)tr (B))2.

Clearly, this result is much stronger than what Proposition 5.2 gives
in this case.

We continue with an easy lemma of independent interest.

Lemma 7.2. Both eigenvalues of the matrix A ∈ M2 are purely imag-
inary if and only if

(1) Tr (A) = Tr (A3) = 0,
(2) Tr (A2) ≤ 0 and
(3) 2Tr (A4) ≤ (Tr (A2))2 ≤ 4Tr (A4).

Proof. Necessity of (1) and (2) follows directly from Lemma 6.2. For
(3), we may assume A =

[

iα ∗
0 iβ

]

with α, β ≥ 0. Then Tr A2 = −2(α2 +
β2) and Tr A4 = 2(α4 + β4). It is clear from this that (3) is satisfied.

Suppose now that the conditions (1-3) hold and let λ1, λ2 be the
eigenvalues of A. If

f(z) = z4 − e1z
3 + e2z

2 − e3z + e4,
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is the characteristic polynomial for χ2(A) then e1, e2, e3, e4 are elemen-
tary symmetric functions of the eigenvalues λ1, λ2, λ̄1, λ̄2 of χ2(A). By
(1) and Newton’s identities, we have

e1 = e3 = 0, e2 = −1

2
Tr A2, e4 =

1

8

(

(Tr A2)2 − 2Tr A4
)

.

So we have that

f(z) = z4 − 1

2
(Tr A2)z2 +

1

8

(

(Tr A2)2 − 2Tr A4
)

.

The inequalities of the lemma show that this quadratic polynomial in
z2 has two real roots, both ≤ 0. Hence the eigenvalues are indeed
purely imaginary. �

As in the previous section, we obtain the following corollary.

Corollary 7.3. Let (A, B) ∈ W2 and let A ⊆ M2 be the unital subal-
gebra generated by A and B. Then for all X, Y ∈ A we have

(1) Tr ([X, Y ]3) = 0,
(2) Tr ([X, Y ]2) ≤ 0, and
(3) 2Tr ([X, Y ]4) ≤ (Tr ([X, Y ]2))2 ≤ 4Tr ([X, Y ]4).

Proof. It suffices to observe that A×A ⊆ W2. �

It is known that the algebra P ′
2 (see the previous section for the

definition) has a minimal set of bihomogeneous generators (MSG) of
cardinality 32 (see [5, 3]). In the remainder of this section we shall
summarize the results that we obtained while trying to construct an
MSG of the ideal I ′

2 ⊆ P ′
2. In our computations we used the generators

constructed in [3].
Let I ′

2(k, l) denote the subspace of I ′
2 consisting of homogeneous

functions of bidegree (k, l) and let dk,l be its dimension. Let I ′
2(s) be

the sum of the I ′
2(k, s − k) for k = 0, 1, . . . , s and set ds = dim I ′

2(s).
Since W2 is invariant under the switching map (x, y) 7→ (y, x), we have
dl,k = dk,l for all k and l. We have computed the dimensions dk,l for
k + l ≤ 15, as seen in Figure 1.
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Figure 1. The dimensions dk,l; k, l ≥ 0; k + l ≤ 15.

The sequence, seen isolated in Figure 1,

(dk,3)k≥0 = 0, 0, 0, 1, 2, 48, 13, 20, 30, 42, 57, 76, . . .

is apparently the same as the sequence A061866 in the On-Line En-
cyclopedia of Integer Sequences [17]. The latter sequence (ak)k≥0 has
the following definition: The integer ak is the number of integer triples
(x, y, z) such that 1 ≤ x < y < z ≤ k and x + y + z ≡ 0 (mod 3). The
middle “vertical” sequence

(dk,k)k≥0 = 0, 0, 0, 1, 6, 37, 180, 698, . . .

is not recorded in this encyclopedia.
In principle one can construct an MSG of I ′

2 by the following routine
procedure. Denote by J ′

m the ideal of P ′
2 generated by the subspaces

I ′
2(k) for k ≤ m. Define the subspaces J ′

m(k, l) and J ′
m(s) similarly

to I ′
2(k, l) and I ′

2(s). Clearly we have that 0 = J ′
0 ⊆ J ′

1 ⊆ · · · and
J ′

m ⊆ I ′
2 for all m. Since dm = 0 for m < 6, we also have J ′

m = 0
for m < 6. Since d6 = d3,3 = 1, J ′

6 is generated by a single polynomial
f1 ∈ J ′

2(3, 3), see Table 2 and formula (4.4). Since dimJ ′
6(3, 4) =
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dimJ ′
6(4, 3) = 1, while d3,4 = d4,3 = 2, the ideal J ′

7 is generated by f1

and two new generators: f2 ∈ I ′
2(3, 4) and f3 ∈ I ′

2(4, 3). Similarly, J ′
8

is generated by f1, f2, f3 and four new generators:

f4 ∈ I ′
2(3, 5); f5, f6 ∈ I ′

2(4, 4); f7 ∈ I ′
2(5, 3).

An MSG for J ′
9 consists of f1, . . . , f7, and ten new generators:

f8, f9 ∈ I ′
2(3, 6); f10, f11, f12 ∈ I ′

2(4, 5);

f13, f14, f15 ∈ I ′
2(5, 4); f16, f17 ∈ I ′

2(6, 3).

To obtain an MSG for J ′
10, one has to add to this MSG of J ′

9 addi-
tional 19 generators f18, . . . , f36. For J ′

11 we need additional 22 gener-
ators.

By Hilbert’s Basis Theorem we know that this procedure must ter-
minate and so J ′

m = I ′
2 holds for sufficiently large m. However we do

not know the value of m. Our computations suggest that J ′
13 = I ′

2.
We were able to find the first 92 generators using this procedure and

hence, compute the ideal J ′
m for m ≤ 14. In Table 2, we give our

minimal set of generators for J ′
9.

Table 2: An MSG of the ideal J ′
9

f1 = Tr (xy2x[x, y]) f2 = Tr (xy3x[x, y])
f3 = Tr (yx3y[x, y]) f4 = Tr (y2x2y2[x, y])
f5 = Tr (xy3x[x2, y]) f6 = Tr ([x, y] [[x2, y], [x, y2]])
f7 = Tr (x2y2x2[x, y]) f8 = Tr (yxy3xy[x, y])

f9 = Tr ([[x, y], y]3) f10 = Tr (y2x3y2[x, y])

f11 = Tr ([x, y][x, y2][x2, y2]) f12 = Tr ([[x, y], x] [[x, y], y]2)
f13 = Tr (x2y3x2[x, y]) f14 = Tr ([x, y][x2, y][x2, y2])

f15 = Tr ([[x, y], y] [[x, y], x]2) f16 = Tr (xyx3yx[x, y])

f17 = Tr ([[x, y], x]3)

By using our MSG for J ′
11, we can show that an MSG for J ′

12 requires
additional 28 generators and J ′

13 requires 6. We find it surprising that
an MSG of I ′

2 is so large (it has at least 92 generators). The number of
generators of the given bidegree (bidegree multiplicity) contained in an
MSG of I ′

2 is shown in Figure 2 for all bidegrees (k, l) with k + l ≤ 14.
The top entry corresponds to the generator f1 of bidegree (3,3)
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Figure 2. Bidegree multiplicities of an MSG of I ′
2.

Let us now describe one of the methods that we used to compute
these generators, along with an example. We begin with the trace
functions that we know vanish on W2 (see Corollaries 6.3, and 6.4
for available families). Notice that all these traces have bidegree of
the form (k, k) and thus do not provide us with all the generators. We
make the simple observation that W2 is invariant under the substitution
(x, y) 7→ (x + α, y + β) where α, β ∈ R.

Consider the partial derivation operators ∂
∂x

and ∂
∂y

on the poly-

nomial algebra in two noncommuting indeterminates x and y. For
instance

∂

∂x
(xyxy2) = yxy2 + xy3.

For a given noncommutative polynomial p(x, y), with Tr (p(x, y)) in
I ′

2(k, l), we obtain that

0 = Tr (p(x + α, y + β)) = Tr

(

k,l
∑

i,j=0

pi,j(x, y)αk−iβl−j

)

which implies that Tr (pi,j(x, y)) ∈ I ′
2(i, j) for all i, j.

We claim that if Tr (p(x, y)) ∈ I ′
2 then also

Tr

(

∂

∂x
p(x, y)

)

, Tr

(

∂

∂y
p(x, y)

)

∈ I ′
2.

This follows from our observation above, along with the fact that
∂
∂x

p(x, y) is equal to the coefficient of α in the expansion of p(x+α, y),
and similarily for the other derivitave.

With this, we give explicit computation of f13.
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Example 7.4. Consider p(x, y) = x3y3x2y2 − y3x3y2x2. By Corollary
4.3 we have that Tr (p(x, y)) ∈ I ′

2(5, 5). Then, we can find an element
from I ′

2(5, 4) by computing

∂

∂y
p(x, y) = 3x3y2x2y2 + 2x3y3x2y − 3y2x3y2x2 − 2y3x3yx2,

and observing that the trace of this element is equal to

−2Tr
(

x2y3x2[x, y]
)

.

Thus, we obtain the generator f13 ∈ I ′
2(5, 4).

We have verified using Maple that the Jacobian matrix of the gen-
erators f1, f2, f3, f6 generically has rank 4. This shows that these gen-
erators are algebraically independent and agrees with the fact that W2

has codimension 4.

8. Some open problems

We conclude with the list of four open problems related to the topics
discussed in this paper. The first problem, suggested by Lemma 6.2, is
about complex numbers.

Problem 8.1. Let λ1, . . . , λn ∈ C and set τk := ℜ(λk
1 + · · · + λk

n)
for k = 1, 2, 3, . . . . Characterize the sequences (λ1, . . . , λn) for which
τ2k−1 = 0, τ4k−2 ≤ 0 and τ4k ≥ 0 for all integers k ≥ 1.

We warn the reader that the conditions imposed on the τk’s do not
imply that all λi’s are purely imaginary. Replacing some of the numbers
λi with λ̄i does not affect the conditions of the problem. Hence, without
any loss of generality one may assume that all ℑ(λi) ≥ 0.

The problem we discussed in sections 6 and 7 remains open.

Problem 8.2. Find a finite set of polynomial equations and inequali-
ties that define W2 as a semi-algebraic set.

Problem 8.3. Describe the Zariski closure W2 and compute an MSG
for the ideals I2, I ′

2 and I ′′
2 . In particular, is it true that the pair

[ 1 0
0 0 ] , [ 0 1

1 0 ] belongs to W2?

Note that this pair does not belong to W2. We have verified that all
92 generators of J ′

14 vanish on it.
Finally, Figure 1 suggests the following problem.

Problem 8.4. (a) Prove that the sequence (dk,3)k≥0 is identical to the
sequence A061866. Also construct a bijection from the set of integer
triples (x, y, z), used in the definition of A061866, to a suitable basis
of I ′

2(k, 3).
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(b) Identify the sequence (dk,k)k≥0. For instance, find the generating
function or an explicit formula for the dk,k.

References

[1] G. Bredon, Introduction to Compact Transformation Groups, Academic Press,
New York, 1972.

[2] C. Chevalley, Theory of Lie Groups, Princeton University Press, Princeton,
1946.
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