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THE COMBINATORICS OF ASSOCIATED HERMITE POLYNOMIALS

DAN DRAKE

Abstract. We develop a combinatorial model of the associated Hermite polynomials and their
moments, and prove their orthogonality with a sign-reversing involution. We find combinatorial

interpretations of the moments as complete matchings, connected complete matchings, oscillating
tableaux, and rooted maps and show weight-preserving bijections between these objects. Several
identities, linearization formulas, the moment generating function, and a second combinatorial
model are also derived.

The associated Hermite polynomials are a sequence of orthogonal polynomials considered by
Askey and Wimp in [AW84], who analytically derived a number of results about these polynomials.
They are also treated in [Ism05, Section 5.6]. In section 1 we provide a combinatorial interpretation
of these polynomials, their moments, and describe an involution that proves the orthogonality
and L2 norms of the polynomials with respect to those moments. Then in section 2 we shall
describe several linearization formulas involving associated Hermite polynomials. We finish with
weight-preserving bijections between a number of classes of combinatorial objects whose generating
functions all yield the moments of the associated Hermites, and a second combinatorial model for
the polynomials.

We will assume that the reader is familiar with Viennot’s general combinatorial theory of
orthogonal polynomials [Vie83, Vie85] and with the combinatorics of Hermite polynomials; see
[AGV82, dSCV85, LY89] and also [Vie83, §II.6].

1. Definition and orthogonality

The associated Hermite polynomials may be defined by shifting the recurrence relation for the
usual Hermite polynomials, which is

Hn+1(x) = xHn(x) − nHn−1(x),

to

(1.1) Hn+1(x; c) = xHn(x; c) − (n − 1 + c)Hn−1(x; c),

with H0(x) = H0(x; c) = 1 and polynomials with negative indices equal to zero. Askey and Wimp

use a different normalization than we do; one obtains our normalization from plugging x/
√

2 and

c − 1 into their associated Hermites and dividing by
(√

2
)n

.
The usual Hermite polynomial Hn+1(x) is the generating function for incomplete matchings

of [n + 1], in which fixed points have weight x and edges have weight −1; that combinatorial
interpretation can be derived from the recurrence relation as follows: the vertex n+1 may be fixed
with weight x, times the weight of all matchings on [n]; or we may connect vertex n + 1 to any
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COMBINATORICS OF ASSOCIATED HERMITES 2

of the n vertices to its left, give the edge weight −1 and multiply by all matchings on the n − 1
remaining vertices.

For the associated Hermites, we’ll build the matchings recursively as described above and think
of the parameter c as meaning that one special choice for the edge from n + 1 will have weight −c.
Two natural choices are to make the special choice be the leftmost available vertex, or the right-
most available vertex. Choosing the rightmost available vertex happens to make the orthogonality
involution easy to prove, and yields the following result:

Theorem 1.1. The nth associated Hermite polynomial is the sum over weighted incomplete match-
ings of [n]:

(1.2) Hn(x; c) =
∑

matchings M of [n]

wt(M),

in which fixed points have weight x, edges that nest no fixed points or edges and have no left crossings
have weight −c, and all other edges have weight −1.

Proof. We build the matching from right to left, and if at some point we add an edge and do not
choose the rightmost available vertex, then that edge will nest a vertex, and when we come to that
vertex, we will either leave it fixed (resulting in a fixed point underneath that edge), connect to
another vertex underneath the edge (resulting in an edge nested by the original edge), or connect
to a vertex to the left of the edge, resulting in a left crossing for the original edge. Any of these
possibilities indicate that the rightmost vertex was not chosen, so edges for which none of those
happen must have weight −c. �

An example of such a weighted matching is shown in Figure 1.1.

x

−1 −1−c

Figure 1.1. A matching on 8 points using the rightmost-choice weighting. This
weighting is used throughout this paper.

With nothing more than this model, we can easily explain an “unexpected” limit that Askey and
Wimp derive [AW84, eq. (5.9)]. (In their paper, there is a small typo: it should be Hn(x

√
2c; c).)

Using our normalizations, the limit is

(1.3) lim
c→∞

c−n/2Hn(x
√

c; c) = Un(x),

where {Un(x)}n≥0 are the Chebyshev polynomials of the second kind, also known as Fibonacci
polynomials [Vie83, §II.1], [dSCV85]. Un(x) may be thought of as the generating function for
incomplete matchings on n vertices in which edges always connect adjacent vertices and have
weight −1, and fixed points have weight x.

Using that combinatorial interpretation for Un(x) and the above interpretation for Hn(x; c),
there is nothing unexpected about this limit: take Hn(x

√
c; c) and give each vertex, whether fixed or

incident to an edge, weight 1/
√

c, so that c−n/2Hn(x
√

c; c) is the generating function for incomplete
matchings with fixed points weighted x, and all edges weighted −1/c except those which nest no
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fixed points or edges, and have no left crossings—such edges have weight −1. As c goes to infinity,
we effectively restrict the generating function to matchings in which no edge has weight −1/c; i.e.,
every edge nests no fixed points or edges, and has no left crossings, so every edge must connect
adjacent vertices.

We want a linear functional Lc with respect to which the associated Hermite polynomials are
orthogonal. This linear functional is determined by its moments Lc(x

n), which according to Vi-
ennot’s general combinatorial theory of orthogonal polynomials, can be expressed as a sum over
weighted Dyck paths in which a northeast edge has weight 1 and a southeast edge leaving from
height j has weight j −1+ c. There are no Dyck paths of odd length, so the odd moments are zero.
The first few nonzero moments are

µ0 = 1, µ4 = 2c2 + c,

µ2 = c, µ6 = 5c3 + 7c2 + 3c.

Using the bijection from weighted Dyck paths to complete matchings from [Vie83, §II.6], we have
two combinatorial interpretations for the moments:

Theorem 1.2. The nth moment µn(c) of the associated Hermite polynomials is the generating
function for complete matchings of [n] weighted by either: (1) edges which are not nested by any
other edge have weight c, and all other edges have weight 1; or (2) edges with no right crossings
have weight c and all other edges have weight 1.

The two weightings correspond to giving weight c to the leftmost and rightmost choice, respec-
tively, in the matchings. These interpretations also explain why the odd moments are zero, since
there are no complete matchings on an odd number of vertices. For the proof of orthogonality, we
shall use the rightmost weighting; later we shall use the leftmost weighting. Figures 1.2 and 1.3
show a matching using the two weightings.

1

c
c

Figure 1.2. A complete matching on 6 points under the leftmost-choice weighting
for the moments, in which nonnested edges have weight c and others have weight 1.

1

c

c

Figure 1.3. The same complete matching under the rightmost-choice weighting,
in which edges with no right crossing have weight c and others have weight 1. This
is used in the orthogonality proof.
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1.1. Proof of orthogonality. We wish to prove the following theorem in a combinatorial manner:

Theorem 1.3. The associated Hermite polynomials Hn(x; c) are orthogonal with respect to the
linear functional Lc with the above moments. They satisfy

(1.4) Lc(Hn(x; c)Hm(x; c)) =

{

0 n 6= m,

(c)n n = m.

Here (a)n denotes the rising factorial a(a + 1) · · · (a + n − 1).

Proof. The proof proceeds very similarly to the proof of orthogonality for usual Hermite polynomi-
als. The product Hn(x; c)Hm(x; c) is the generating function for pairs of matchings with, say, black
edges, using the rightmost weighting. Applying Lc has the effect of putting a complete matching
with the rightmost weighting with, say, green edges on the fixed points. We will use the phrase
paired matching to refer to such an object, with black homogeneous edges and arbitrary green edges,
weighted as above. This is not standard terminology; it is only for our convenience.

Using Theorems 1.1 and 1.2, the left side of (1.4) is the generating function for paired matchings,
where black edges have weight −c if they nest no edges, have no green crossings and no left black
crossing; otherwise black edges have weight −1. Green edges have weight c if they have no right
green crossing and weight 1 otherwise. See Figure 1.4 for an example of such an object for n = 5
and m = 3.

−1

c

1−1

Figure 1.4. A paired matching for n = 5 and m = 3.

We need an involution that shows the generating function for paired matchings equals zero when
n 6= m, and equals (c)n otherwise. Assume that n ≥ m and put [n] to the left of [m]. The
involution is the very similar to that used in the combinatorial proof of orthogonality for usual
Hermite polynomials:

Find the leftmost homogeneous edge that nests no other edges and change its color.

For example, in Figure 1.4, one would change the color of the leftmost green edge that connects
vertices 2 and 4 to black. This operation is evidently an involution and will certainly change the
sign; we need to verify that the weight of no other edge is affected by this change, and that if we
change the color of an edge weighted ±c or ±1, the new edge has weight of ∓c or ∓1, respectively.

We begin with the following observation: the leftmost homogeneous edge in [n] that nests no
edges can have no left crossing. We must check the four possibilities of color and weight for the
edge whose color we flip:

• Edge is black, weight −1: the edge has no left crossing, and we’ve assumed the edge nests
no edges, so if it has weight −1 it must have a right crossing by a green edge—so as green,
it will have weight +1.

• Edge is black, weight −c: to get weight −c, the edge must in particular have no green
crossing, and therefore as green, it will have weight c.
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• Edge is green, weight 1: the edge must have a right crossing by a green edge, so as black it
will have weight −1.

• Edge is green, weight c: the edge nests no edges by assumption, and has no right green
crossing. By our observation above, it has no left crossings, hence will be eligible for weight
−c as a black edge.

Thus the weight of the edge is preserved and the sign is reversed. We leave it to the reader to
check that the weight and sign of no other edge is affected by this operation. It is only necessary
to consider an edge that has a left crossing by the edge whose color changes.

If n > m, there must be a homogeneous edge in [n]; in that case, the above involution has no
fixed points, and we have proved that Hn(x; c) is orthogonal to Hm(x; c).

Now we shall prove that the L2 norm of the associated Hermites is (c)n by interpreting the paired
matchings as something whose generating function is known to be (c)n: permutations weighted
by left-to-right maxima. See [dMV94, FS84] for proofs of this fact in the context of Laguerre
polynomials. (“Left-to-right maxima” is “éléments saillants inférieurs gauches” in French.) This
bijection naturally generalizes the usual combinatorial proof that the L2 norm of the Hermite
polynomials is n!.

First, apply the above involution to paired matchings with n = m; that involution will cancel all
matchings with a homogeneous edge. To set up the bijection, begin with a matching on [n] ⊔ [n]
with no homogeneous edges. Number the edges starting from the right as shown in Figure 1.5.
Think of the right side as the domain, and the left side as the range. A simple induction argument
demonstrates that edges that get weight c correspond exactly to digits in the permutation that are
left-to-right maxima.

1 4 3 2 12 43

Figure 1.5. The permutation 3142 as a matching. The right side is the domain,
the left the range. The digits 3 and 4 are left-to-right maxima in the permutation,
and indeed the green edges connecting to 3 and 4 on the left have weight c under
the associated Hermite moment weighting.

This bijection from the fixed points of the involution to permutations preserves weight, hence the
L2 norms of the associated Hermite polynomials are (c)n. This completes the proof of Theorem 1.3.

�

We also note that by [FS84, Lemma 2.1], the L2 norm can also be interpreted as the generating
function for permutations with cycles weighted by c.

2. Linearizations

In [Mar94, theorem 3.1], Markett shows that the linearization coefficients in

(2.1) HN (x; c)HM (x; c) =

min(N,M)
∑

j=0

f(N, M, j) HN+M−2j(x; c)
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are

(2.2) f(N, M, j) = (N + M − 2j + c)j 3F2

(

j − N j − M −j
j − N − M − c + 1 1

)

,

where the 3F2 notation indicates a hypergeometric function evaluated at x = 1. We can prove

Theorem 2.1. The linearization coefficients f(N, M, j) of equation (2.2) are polynomials in c with
nonnegative integer coefficients.

Proof. Take the rising factorial in front and reverse the order of multiplication: it becomes (−1)j(j−
N − M − c + 1)j . We have two k! factors in the denominator of the 3F2; combine them with the

(j − N)k and (j − M)k in the numerator to get (−1)k
(

N−j
k

)

and (−1)k
(

M−j
k

)

. The (−1)k factors

cancel. Finally rewrite (−j)k = (j − k + 1)k(−1)k.
Put (−1)j(j −N −M − c + 1)j inside the sum. There is a factor of (j −N −M − c + 1)k in the

denominator; those cancel and yield (−1)j(j −N −M − c + 1 + k)j−k in the numerator of the sum.
Reverse the order again and it turns into (−1)k(N + M − 2j + c)j−k. This (−1)k cancels with the
earlier one from the (−j)k.

The sum is now
∑

k≥0

(

N − j

k

)(

M − j

k

)

(j − k + 1)k(N + M − 2j + c)j−k.

This is clearly a polynomial in c with nonnegative coefficients. �

Note that when c = 1, the 3F2 of (2.2) sums by the Pfaff-Saalschütz identity to

(N + 1 − j)j(M + 1 − j)j

j!
,

and we recover the linearization coefficients for usual Hermite polynomials; the expression above,
after multiplying by (N + M − 2j)!, counts inhomogeneous matchings on [n] ⊔ [m] ⊔ [n + m − 2j],
as shown by de Sainte-Catherine and Viennot in [dSCV85].

A combinatorial interpretation of the coefficients (2.2) is quite desirable but none is known.
The best starting points seem to be [And75, Nan58, AB84]; the first two papers concern the usual
Pfaff-Saalschütz identity, the third features a combinatorial proof of the q-Pfaff-Saalschütz identity.
It seems very difficult to even prove, in analogy to the case for usual Hermite polynomials, that
Lc(HN (x; c)HM (x; c)HN+M−2j(x; c)) is the generating function for inhomogeneous matchings on
[N ] ⊔ [M ] ⊔ [N + M − 2j].

In fact, using the “nonnested” weighting for the moments, the generating function for inhomo-
geneous matchings doesn’t even equal the integral of three associated Hermites: Lc(H2(x; c)3) =
c3 + 4c2 + 3c, but the 8 inhomogeneous matchings on [2]⊔ [2]⊔ [2] have total weight 2c3 + 4c2 + 2c.

However, even if we use the “no left crossing” moments, it is known that no involution that
simply flips the color of an edge can work with this model of the polynomials. For example,
in Lc(H1(x; c)H2(x; c)H3(x; c)), the matching (1, 2)(3, 5)(4, 6) has a homogeneous edge—the one
connecting 4 and 6—which as a black edge has weight −1 and as a green edge has weight +c. That
matching has only one inhomogeneous edge, but changing its color does not preserve weight.

One might try different weightings for the polynomials and the moments. We could reverse the
matchings wth the rightmost-choice weighting and give edges with no left crossing weight c. For the
polynomials, one could build them from left to right or right to left, and have weight −c given to the
rightmost or leftmost choice. Between the two moment weightings and four polynomial weightings,
and counterexamples like the one above are known for all these combinations.
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The order in which the sets of vertices are arranged is also important. The integral Lc(H3(x; c) ·
H3(x; c) ·H4(x; c)) equals c(c+1)(c+2)(c+3)(c+8), but even if one considers only inhomogeneous
matchings, the three ways to arrange the sets of vertices yield three different generating functions
for inhomogeneous matchings with the rightmost-choice moment weighting:

[3] ⊔ [3] ⊔ [4] : c(c + 1)(c + 2)(c + 3)(c + 8)

[3] ⊔ [4] ⊔ [3] : c(c + 1)(c + 2)(c2 + 7c + 28)

[4] ⊔ [3] ⊔ [3] : c(c + 1)(c + 2)(c2 + 8c + 27).

The nonnested weighting for the moments also fails in all three of these cases: it gives 6c(c+1)2(c+
2)2 for [3] ⊔ [4] ⊔ [3] and 3c(c + 1)(c + 2)2(c + 3) for the other two. This leads us to conjecture the
following:

Conjecture 2.2. The integral Lc(HN (x; c)HM (x; c)HN+M−2j(x; c)) is the generating function for
inhomogeneous matchings on [N ] ⊔ [M ] ⊔ [N + M − 2j] in which the sets of vertices are arranged
in increasing order and the edges are weighted with the rightmost-choice moment weighting.

2.1. A mixed linearization formula. In this section we will prove

Theorem 2.3. If n ≥ m − 1, then

(2.3) Hn(x; c)Hm(x) =
∑

k

(

n − 1 + c

k

)(

m

k

)

k!Hn+m−2k(x; c),

where the sum runs from 0 to min(m, ⌊(n + m)/2⌋).

Proof. Fix n; we’ll induct on m. For m = 0 and m = 1 the formula is a tautology and the recurrence
relation, respectively. Assume that the formula works for some m ≤ n; multiply both sides of the
formula by x and use the recurrence:

Hn(x; c)(Hm+1(x) + mHm−1(x)) =

∑

k

(

n − 1 + c

k

)(

m

k

)

k!(Hn+m+1−2k(x; c) + (n + m − 2k − 1 + c)Hn+m−1−2k(x; c)).

If we move the mHn(x; c)Hm−1(x) term over and use the induction hypothesis, we find that the
coefficient of Hn+m+1−2k(x; c) on the left side is
(

n − 1 + c

k

)(

m

k

)

k!+(n+m−2k+1+c)

(

n − 1 + c

k − 1

)(

m

k − 1

)

(k−1)!−m

(

n − 1 + c

k − 1

)(

m − 1

k − 1

)

(k−1)!

which simplifies to
(

n − 1 + c

k

)(

m + 1

k

)

k!,

exactly the coefficient we want. �

One must be careful with that recurrence, though. If k gets too large the recurrence fails, because

xH−1(x; c) = H0(x; c) + (−2 + c)H−2(x; c)

is false. The induction argument works to go from m = n to m = n+1 because xH0 = H1 +(−1+
c)H−1, as long as one assumes polynomials with negative indices are zero.
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3. Associated Hermite moments and oscillating tableaux

In this section we will describe a statistic on oscillating tableaux, also known as up-down tableaux,
and a bijection between these tableaux and complete matchings which is weight-preserving when
using the weight for associated Hermite moments. Oscillating tableaux were described by Sundaram
[Sun90]; see section 5 of [CDD+07] for discussion of their origins and the bijection to complete
matchings, and [Kra06] for an extension of the results of Chen et al. to fillings of Ferrers diagrams.

Briefly, an oscillating tableau is a path in the Hasse diagram of the Young lattice in which at
each point one either moves up to a partition that covers the current partition, or moves down to
a partition covered by the current partition. For our purposes, the path will always begin and end
with the empty shape. The length of an oscillating tableau is the number of edges in the path.
Figure 3.2 has an example of an oscillating tableau of length 8.

In this section, we use Theorem 1.2’s “leftmost-available” weighting of complete matchings, in
which edges that are not nested by other edges have weight c, and all other edges have weight 1.

Roughly speaking, the bijection from complete matchings to oscillating tableaux works by RSK-
inserting numbers when edges start, and deleting them when edges end. More precisely, given a
complete matching, number the edges from right to left as in Figure 3.1. (Equivalently, write the
matching as a double occurrence word; see section 4.) We will map this matching to a sequence
of Ferrers shapes. Begin with the empty Ferrers shape and read the matching left to right. When
edge j starts, RSK-insert a j into the tableau; when edge j ends, delete the box containing j. When
done, erase the numbers in the Ferrers shapes. Figure 3.1 has an example.

There is a possible point of confusion here. A tableau in this context is a path in the Hasse
diagram of the Young lattice—a sequence of Ferrers shapes. A standard Young tableau is a path
that continually moves up, and therefore it is simple to record the path with a single Ferrers shape
filled with numbers that strictly increase in rows and columns. In Figure 3.1, the Ferrers shapes are
written as Young tableaux, which is only for our convenience. The actual image of the complete
matching is the same sequence without the numbers in the shapes. The reason for this is that RSK
is a bijection, and one can unbump numbers.

Figure 3.2 describes the inverse map from tableaux to matchings. We read the sequence of Ferrers
shapes from right to left. Because of how we number the edges, the first box must have a 1 in it.
In general, when the shape gets larger, we put the next-largest number into the new box, because
we’ve started a new edge. The third shape from the right is 1 2

3 , and the shape to its left must be
1
3 , because unbumping the 2 is the only way to produce the second shape. This oscillating tableau
corresponds to the matching 43412321, using the vertex-numbering scheme described above.

Let us weight oscillating tableaux with the following statistic: numbers that appear in the first
column only have weight c, and all other numbers have weight 1. That statistic is exactly what we
need to prove the following theorem.

Theorem 3.1. There is a weight-preserving bijection between oscillating tableaux of length 2n
weighted with the above statistic and complete matchings weighted with the leftmost-available asso-
ciated Hermite weighting.

We will use several preliminary results to prove this theorem.

Lemma 3.2. In an oscillating tableau, when a number is added to a shape, the corresponding edge is
nested by all edges whose corresponding number in the shape is smaller, and has a left crossing from
all edges whose corresponding number in the shape is bigger. Edges whose corresponding numbers
never appear together in a shape neither nest nor cross one another.
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2

4

3 2 3 2 1

122 344 3 1

∅ 2 2 4 ∅ ∅

Figure 3.1. A complete matching and the corresponding oscillating tableau. The
numbers in the Ferrers shapes are not, strictly speaking, part of the oscillating
tableau; they are only used in the bijection from the matching to the tableau.

∅ ∅

Figure 3.2. An oscillating tableau that corresponds to the complete matching (13)(26)(48)(57).

For example, when we move from 2 4 to 2 3
4 in Figure 3.1, edge 3 is nested by edge 2 and has a

left crossing from edge 4. The proof of this is left to the reader; it follows from the way the edges
are numbered and in what order we add numbers to the tableau.

The above lemma implies the following facts:

Proposition 3.3. In an oscillating tableau, edges that get nested by other edges are exactly those
whose number appears in the 2nd, 3rd, etc, column of a shape. Edges that have a right crossing are
exactly those whose number appears in the 2nd, 3rd, etc row of a shape.

Proof of Theorem 3.1. The bijection between complete matchings and oscillating tableaux clearly
preserves weight: edges that do not get nested by another edge must appear in the first column
only. Note also that we could have used the rightmost-available weighting from Theorem 1.2; in
that case, we would have needed to make our statistic “entries that appear in the first row and stay
there get weight c”. �

4. Associated Hermite moments, rooted maps, and connected matchings

In addition to the weight-preserving bijection between associated Hermite moments and os-
cillating tableaux of section 3, there is a weight-preserving bijection between associated Hermite
moments and rooted maps. See [Tut73, JV00] for introductions to maps, which may be thought of
as a graph along with an embedding into a surface. A rooted map is a map in which one edge has
been oriented. There is an axiomatic construction of maps that makes it natural to think of the
edges in a map as pairs of half-edges or edge ends and we will speak of edge ends in this section.

This connection is motivated by the normalizations used by [Mar94] and [AW84], both of which
use (rescaled versions of) Hn(x; c + 1). The first few moments for those polynomials are

µ0(c + 1) = 1, µ4(c + 1) = 2c2 + 5c + 3,

µ2(c + 1) = c + 1, µ6(c + 1) = 5c3 + 22c2 + 32c + 15.
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On the one hand, those moments are simply the moments we’ve been working with all along, except
that now edges with no right crossing (or nonnested edges, depending on which weighting one uses)
may have weight 1 or weight c. On the other hand, if those polynomials in c are generating functions
for some objects in which c, and not c + 1, is the weight, setting c to 1 gives us a count of how
many objects there are, which facilitates searching. Doing so yields

1, 1, 2, 10, 74, 706, 8162, 110410, 1708394, . . .

which is sequence A000698 in [Slo]. This sequence likely first appeared in [Tou52]; it counts con-
nected matchings (see below).

In Table 1 of [AB00, page 10], Arquès and Béraud count rooted maps by number of edges and
vertices; that table also describes associated Hermite moments: the entry in the nth row and mth
column is the number of rooted maps with n edges and m vertices, and is also the coefficient of cm−1

in µ2n(c+1). We will weight each vertex in such a map by c except the vertex at the head of the root
edge, and use the bijection between rooted maps in orientable surfaces and connected matchings
found in the work of Ossona de Mendez and Rosenstiehl [OdMR05, OdMR99]. A connected matching
on 2n vertices is one in which all vertices except 1 and 2n are nested by an edge. Equivalently,
one can write a matching as a double occurrence word in the letters 1, 2, . . . , n where each letter
appears exactly twice; then a matching is connected if the corresponding double occurrence word
cannot be written as the concatenation of two double occurrence words.

A double occurrence word corresponds to the vertex-numbering scheme used in section 3. We
shall weight connected matchings by giving weight c to all nonnested edges except the edge con-
taining vertex 1. Then we have

Theorem 4.1. The function given in [OdMR05] and [OdMR99] is a weight-preserving bijection
from rooted maps in orientable surfaces with k vertices and n edges to connected matchings on
2n + 2 vertices of weight ck−1.

Proof. The idea of the bijection is this: number the edges in the rooted map, add a new loop at
the vertex adjacent to the root, then build a double occurrence word by visiting each vertex and
adding the edge numbers adjacent to the vertex to the word.

The bijection is weight-preserving because when deciding the next vertex to visit, the algo-
rithm chooses the vertex in the rooted map corresponding to the leftmost unattached vertex in the
partially-constructed matching. As we add edge ends to the list, we will add a new edge to the
matching that contains that leftmost unattached vertex. No edge can then nest the newly created
edge, so every visit to a new vertex in the rooted map results in exactly one nonnested edge in the
matching. �

1

2
5

4

A B

α

3

C

Figure 4.1. A rooted map to which we’ll apply the bijection to connected match-
ings. Green vertices have weight c. We have already added the extra edge, labeled
α; the original root was the end of edge 1 incident with vertex A.

http://www.research.att.com/~njas/sequences/A000698
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Figure 4.1 shows an example of the bijection. We will color green the vertices of weight c in the
rooted map and the edges of weight c in the connected matching. We start at the head of edge α
and read counterclockwise around vertex A; our double occurrence word begins with

α 1 2 3 α.

We have visited both ends of α, so we move to the unvisited end of edge 1, go around vertex B and
add 4 4 5 2 5 1 to the word, which is now

α 1 2 3 α 4 4 5 2 5 1.

Now move to the unvisited end of edge 3 and do the same thing; we just append 3 to the word. We
end up with

α 1 2 3 α 4 4 5 2 5 1 3,

which is double-occurence word for the connected matching (1, 5)(2, 11)(3, 9)(4, 12)(6, 7)(8, 10)where
the edges (2, 11) and (4, 12) have weight c because edges 1 and 3 in the rooted map were the edges
along which we first visited vertices B and C, and 1 and 3 appeared in the double-occurrence word
n positions 2 and 11, and 4 and 12 respectively.

Now we need another weight-preserving bijection, this time from weighted connected matchings
to one of our original definitions for µn(c+1), the moments of associated Hermite polynomials. We
will demonstrate such a bijection to the moments weighted with the leftmost-available weighting
of Theorem 1.2, in which nonnested edges are may have weight 1 or c. Call the edge containing
vertex 1 the “fake edge”.

The bijection works as follows: If the fake edge has no crossings, remove it; the remaining
matching on 2n vertices, of weight 1, is the result of the bijection. Otherwise, swap the tails of
the fake edge and that edge crossing the fake edge which has the leftmost endpoint. That crossing
edge must have weight c; give the new edge, which is now nested by the fake edge, weight c also.
Continue this tail-swapping process with the fake edge until the fake edge has no crossings, then
remove it. An example is shown in Figure 4.2.

Figure 4.2. The steps of the tail-swapping bijection applied to the connected
matching corresponding to the rooted map in Figure 4.1; the result is a complete
matching (in the lower right) in which nonnested edges are eligible for weight c.

This map is a bijection because it can be reversed: given such a weighted matching on 2n
vertices, add a new edge that nests the entire matching, and swap tails with the green edges (those
of weight c) from right to left. Observe that the green edges in the connected matching—which are
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nonnested—will end up nonnested after the tail-swapping bijection, and vice versa, so this bijection
is weight-preserving. Note that in the example of Figure 4.2 and Table 1, the connected matching
corresponded to a complete matching which was also connected. Of course this does not always
happen: the connected matching (1, 5)(2, 4)(3, 8)(6, 7) corresponds to the unconnected complete
matching (1, 3)(2, 4)(5, 6) under this bijection.

Theorem 4.1 established that the generating functions for rooted maps and connected matchings
are the same; that theorem, together with the bijection between connected matchings and arbitrary
complete matchings, provides a proof of the following theorem.

Theorem 4.2. The generating functions for rooted maps with n edges, connected matchings on
2n + 2 vertices, and complete matchings on 2n vertices all equal the moment µ2n(c + 1) of the
associated Hermite polynomials.

4.1. The moment generating function. Let f(t; c) be the ordinary generating function for the
moments of the associated Hermite polynomials:

f(t; c) :=
∑

µn(c)tn.

With the results of this section, we see that a continued fraction for f(t; c) is implicit in [AB00,
Theorem 3]: their function M(y, z) counts rooted maps with the exponent of y counting the number
of vertices, and the exponent of z counting the number of edges. We know that µ2n(c + 1) is the
generating function for rooted maps with n edges, in which all vertices except one get weight c,
which means

(4.1) f(t; c + 1) =
M(c, t2)

c
=

1

1 − (c + 1)t2

1 −
(c + 2)t2

1 −
(c + 3)t2

1 − · · ·

.

This continued fraction can also be obtained with the method of [Vie83, p. V-4], where Viennot
shows a continued fraction expansion for the moment generating function for any set of orthogonal
polynomials where the recurrence coefficients are known.

In the last two sections, we’ve shown bijections between the moments of the associated Hermites,
connected matchings, rooted maps and oscillating tableaux. We summarize these correspondences
by going all the way from a rooted map, to a connected matching, to a regular complete matching,
to an oscillating tableau in Table 1.

4.2. A second model for associated Hermite polynomials. The above discussion of connected
matchings meshes nicely with a second combinatorial model of the associated Hermites, which is
motivated by identity (4.2) below. The key features of this second model are very similar to those
of the connected matching model for the moments: we are using c + 1 but there are no choices
for the weights of parts of the matching, and the resulting matching is connected. The identity is
found in Askey and Wimp [AW84, equation (4.18)] and we present a combinatorial proof.

Theorem 4.3. The associated Hermites may be written as a sum of usual Hermite polynomials:

(4.2) Hn(x; c + 1) =
∑

k≥0

(−1)k(c)k

(

n − k

k

)

Hn−2k(x).

We will need two lemmas to prove Theorem 4.3.
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Table 1. A rooted map, a connected matching, a complete matching, and an
oscillating tableau, all of weight c5, that correspond to each other using the weight-
preserving bijections of this paper. In the tableau, we have only colored the first
box that corresponds to a number which gets weight c.

Object What gets weight c

Vertices not adjacent
to head of root edge.

(1, 6)(2, 8)(3, 12)(4, 17)(5, 15)(7, 20)(9, 22)(10, 11)(13, 18)(14, 16)(19, 21)

Non-nested edges ex-
cept edge containing
vertex 1.

(1, 5)(2, 7)(3, 11)(4, 14)(6, 16)(8, 19)(9, 10)(12, 17)(13, 15)(18, 20)

Non-nested edges may
have weight 1 or c.

∅

∅

Numbers that appear
in first column may
have weight 1 or c.

Lemma 4.4. (−1)k(c)k is the generating function for complete matchings on 2k vertices, with the
c +1 associated Hermite polynomial weighting, such that all edges of weight −1 have a left crossing
by an edge of weight −c. Furthermore, in such matchings there are exactly k “slots” available
underneath the edges weighted −c where one could place the left endpoint of a new edge of weight
−1, and only one “slot” available for the left endpoint of a new edge of weight −c.

Figure 4.3 shows an example of such a configuration.

Proof. The proof goes by induction. The base cases are clear, and if true for some k, given any
configuration for that k, we can either:



COMBINATORICS OF ASSOCIATED HERMITES 14

−c

−c
−1

Figure 4.3. A matching on 6 vertices of the type described by Lemma 4.4. If
the new edge on the right is to have weight −1 and satisfy the conditions, it must
connect to a new vertex in one of the three available slots, indicated by the solid
arrows.

• add a new edge connecting vertices 2k + 1 and 2k + 2 which has weight −c, and hence we
multiply the generating function for 2k vertices by −c and add a new slot, or

• add a new edge from the rightmost vertex and put its left endpoint in any one of the k
“slots” underneath one of the −c edges. Such an edge must have weight −1, and there are
k ways to place this edge, hence we effectively multiply the generating function by k, and
since we put a new edge into one of the k slots, there are now k + 1 slots available below
edges weighted −c.

See Figure 4.3 for an example of case 2. Altogether we’ve multiplied (−1)k(c)k, the generating
function for 2k vertices, by −(c + k), so the lemma is true by induction. �

Lemma 4.5. For such a configuration on 2k vertices as described in Lemma 4.4, there are k + 1
places where the left endpoint of one or more green edges of weight 1 could be placed without affecting
the weight of the configuration.

Proof. Induction again. The green edges cannot cross the −c edges. For example, in Figure 4.3,
there are four places where one could place such an edge, indicated by the dotted arrows. �

Proof of Theorem 4.3. Since Hn(x; c) is an even or odd polynomial if n is even or odd, respectively,
we can certainly write

(4.3) Hn(x; c + 1) =
∑

k≥0

ankHn−2k(x)

for some coefficients ank. We show that those coefficients equal (−1)k(c)k

(

n−k
k

)

. Fix k between 0
and n/2, multiply both sides by Hn−2k(x), and apply the usual Hermite linear functional L1. On
the right side, we use orthogonality and equation (4.3) becomes

L1(Hn(x; c + 1)Hn−2k(x)) = ank(n − 2k)!.

Thinking of the left side as paired matchings on [n] and [n− 2k] with black edges of weight −1 and
−c as appropriate, and green edges all of weight 1, we may apply the following involution: find the
leftmost homogeneous edge of weight ±1 in [n] or [n − 2k] and flip its color, unless that edge has
a left crossing with an edge of weight −c. Swapping the colors on such edges does not preserve the
weight of the paired matching.

Lemma 4.4 tells us the generating function of the configurations of edges that remain in [n] after
applying the involution; Lemma 4.5 tells us that such configurations may be viewed as consisting
of k “chunks” of vertices. Placing the green edges into those chunks is equivalent to forming a weak
composition of k into n−2k+1 parts; there are

(

n−k
k

)

such compositions, and having chosen where
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−1 −1

+1 −c

x

Figure 4.4. A matching on 9 vertices that contributes cx to H7(x; c + 1) using
the combinatorial interpretation of Theorem 4.6. Note the “fake edge” of
weight +1.

the n− 2k edges in [n] start, we can choose their endpoints in [n− 2k] in (n− 2k)! ways. Together
we have

(−1)k(c)k

(

n − k

k

)

(n − 2k)! = L1(Hn(x; c)Hn−2k(x)) = ank(n − 2k)!

which proves the identity of Theorem 4.3. �

The above proof relies crucially on being able to give weight −1 or −c to edges; if we used
Hn(x; c), the above involution would not cancel as many edges, and we would need to replace
Lemma 4.4 with something more complicated in order to handle the (c − 1)k factor.

Our first model for the associated Hermite polynomials (Theorem 1.1) involved incomplete
matchings on n vertices; the above identity motivates the following model for Hn(x; c + 1) as
matchings on n + 2 vertices.

Theorem 4.6. The associated Hermite polynomial Hn(x; c + 1) is the generating function for
certain connected incomplete matchings on n + 2 vertices with the following weights:

• The edge containing vertex 1 has weight 1. Call this edge the “fake edge”.
• Fixed points have weight x.
• Non-nested edges (except the fake edge) have weight −c.
• Nested edges have weight −1.

In such matchings, fixed points must be nested by the fake edge. All edges other than the fake edge
must either cross or be nested by the fake edge.

An example of such a matching for H7(x; c + 1) is shown in Figure 4.4. It is clear that the
requirement for nesting and crossing the fake edge yields a connected matching. Note that the
connected matching moments of section 4 also have a fake edge.

First proof. Consider the kth term in the sum (4.2):

(−1)k(c)k

(

n − k

k

)

Hn−2k(x).

Begin with the fake edge and put k vertices to the right of it. Put the remaining n − k vertices
underneath the fake edge and choose k of them to connect with the edges that will come from the k
vertices on the right of the fake edge; that accounts for the binomial coefficient. On the remaining
n − 2k vertices underneath the fake edge, we put a regular Hermite-style matching; all the edges
will have weight −1 since they are nested by the fake edge.

The last thing to do is account for the k edges that come from the right of the fake edge and
show that they contribute (−1)k(c)k. According to Lemma 4.7, the generating function for such a
configuration with edges of weight +1 and +c is (c + 1)k−1, but in our subset, the leftmost edge
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also gets weight c, so the correct factor is (c + 1)k−1 · c = (c)k. Also, we must correct for the signs:
our edges have weight −1 and −c, so we multiply by (−1)k. �

Second proof. Verify that the generating function described in the theorem satisfies the three-term
recurrence for the associated Hermites (1.1). We proceed very much like the usual combinatorial
proof of the recurrence relation for Hermite polynomials: any such restricted matching on n + 3
vertices may be obtained by placing the fake edge and considering the rightmost vertex nested by
the fake edge. There are three possibilities: one, we can leave that vertex fixed, and fill in the
remaining n + 2 vertices with any restricted matching; two, we can add an edge from that vertex
to the very rightmost vertex, and fill in the remaining n + 1 vertices with any restricted matching;
three, we can attach that vertex to any vertex except the rightmost vertex and fill in the remaining
n+1 vertices as before. The first case contributes x times the generating function for n+2 vertices.
The second cases contributes −c times the generating function for n + 1 vertices, since that new
edge cannot be nested, and it will not nest any of the other edges. In the third case, there are n
vertices to choose from and all of them will result in a nested edge of weight −1, so we add −n times
the generating function for n + 1 vertices. This exposition is simply another way of stating (1.1):

Hn+1(x; c + 1) = xHn(x; c + 1) − (n + c)Hn−1(x; c + 1). �

The following lemma was used in the first proof of Theorem 4.6. It may be proved by induction,
similar to Lemma 4.4 and Theorem 1.3.

Lemma 4.7. The generating function for complete matchings on 2n vertices in which all edges go
from the “left n” vertices to the “right n” vertices , with all nonnested edges having weight c except
the edge containing the leftmost vertex, is (c + 1)n−1.

There is a weight-preserving bijection between such matchings and permutations π of [n] weighted
by cLRM(π)−1 where LRM(π) is the number of left-to-right-maxima of the permutation.

At this point, we have a combinatorial interpretation for both the associated Hermite polynomials
(Theorem 4.6) and their moments (Theorem 4.2) in terms of connected matchings with a fake edge;
the natural thing to do is combine these to get another proof of orthogonality. This will be quite
difficult because it is not at all obvious how to combine a pair of matchings for the polynomials
and a matching for the moments to get a paired matching; one would have two fake edges from
the polynomials and would need to somehow incorporate the fake edge from the moments into that
configuration. However, it is interesting to note that the above theorem tells us how we would
derive the L2 norm using such a setup: Hn(x; c)2 would be a pair of matchings on 2n + 4 vertices,
but because of the extra fake edge mentioned above, after canceling all homogeneous edges we
would effectively get complete matchings on 2n + 2 vertices in which all the edges go from the left
n + 1 vertices to the right n + 1. The generating function for such a configuration, according to
Lemma 4.7, is (c + 1)n, which agrees with the known L2 norm for the associated Hermites at c +1.

5. Unanswered questions and future directions

We have taken the basic combinatorial model in section 1 for associated Hermite polynomials and
their moments and gone in two directions: to oscillating tableaux, and to rooted maps. The appeal
of oscillating tableaux is in the recent flurry of work on k-crossings and k-nestings in matchings
and set partitions; see [CDD+07, Kra06, dM06, Kla06, KZ06, Jel07]. The moments of Charlier
polynomials are generating functions for set partitions and it seems likely that some of this work
could be used to treat the associated Charlier polynomials.
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Observe that in the connected matchings, the rooted maps, and in the second combinatorial
model for the associate Hermite polynomials of Theorem 4.6, each model has some sort of “fake
edge”. Combining the models for the moments and polynomials which both involve connected
matchings would be interesting, but this has not yet shown promise. A major problem is that
each incomplete matching for the polynomial is weighted by x to the number of fixed points—say
there are 2k fixed points—but the corresponding matchings are matchings on 2k + 2 vertices. It is
not clear how to combine these two objects in a geometric or graph-theoretical way that allows a
natural and easy proof of orthogonality.

Using rooted maps holds promise, though: Ossona de Mendez and Rosenstiehl have generalized
the bijection between connected matchings and rooted maps to a bijection between permutations
and hypermaps [OdMR04, OdMR99]. This suggests an intriguing connection to Laguerre polyno-
mials since hypermaps are built out of permutations in the same way that maps are built out of
complete matchings. The paper of Askey and Wimp [AW84] which inspired this work devotes much
more attention to the associated Laguerres than to Hermites—about two-thirds of the article. It is
natural, then, to work out a corresponding combinatorial treatment of those polynomials, especially
given the connections between rooted maps and hypermaps. There is also the work of Ismail et
al [ILV88] who work with the associated Laguerres as birth and death processes—there has been
work on birth and death processes and lattice paths [FG00] which suggests another avenue for a
combinatorial theory of those polynomials.
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