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COINCIDENCE ROTATIONS OF THE ROOT LATTICE A4

MICHAEL BAAKE, UWE GRIMM, MANUELA HEUER, AND PETER ZEINER

Abstract. The coincidence site lattices of the root lattice A4 are considered, and the sta-

tistics of the corresponding coincidence rotations according to their indices is expressed in

terms of a Dirichlet series generating function. This is possible via an embedding of A4 into

the icosian ring with its rich arithmetic structure, which recently [6] led to the classification

of the similar sublattices of A4.

Dedicated to Ludwig Danzer on the occasion of his 80th birthday

1. Introduction and general setting

Consider a lattice Γ in Euclidean d-space, i.e., a cocompact discrete subgroup of Rd. An

element R ∈ O(d, R) is called a (linear) coincidence isometry of Γ when Γ and RΓ are

commensurate, written as Γ ∼ RΓ , which means that they share a common sublattice. The

intersection Γ ∩RΓ is then called the coincidence site lattice (CSL) for the isometry R. When

this is the case, the corresponding coincidence index Σ(R) is defined as

Σ(R) = [Γ : (Γ ∩ RΓ )] ,

and it is set to ∞ otherwise. The index satisfies [Γ : (Γ ∩RΓ )] = [RΓ : (Γ ∩ RΓ )], as Γ and

RΓ possess fundamental domains of the same volume, compare [11] for general background

on lattice theory. Moreover,

OC(Γ ) := {R ∈ O(d, R) | Σ(R) < ∞}

is a group, and one also has Σ(R−1) = Σ(R), see [1] for a general survey and several typical

examples. The subgroup SOC(Γ ) consists of all rotations within OC(Γ ).

Coincidence site lattices play an important role in crystallography, in the description and

understanding of grain boundaries, compare [1] and references given there. In recent years,

they have also found applications in lattice discretisation problems [26]. From a more theo-

retical angle, they show up in various lattice and tiling problems, such as Danzer’s ‘Ein-Stein-

Tiling’ [14, 15, 2] or the analysis of the pinwheel tilings of the plane [20, 5]. Apart from that,

several attempts have been made to get further insight into the theory, see [4, 8, 28, 31] and

references given there for recent publications.

Another relevant object in this context, with R+ := {α ∈ R | α > 0}, is the set

OS(Γ ) := {R ∈ O(d, R) | αRΓ ⊂ Γ for some α ∈ R+} .
1
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It consists of all linear isometries that emerge from similarity mappings of Γ into itself, while

SOS(Γ ) is then the subset of rotations of that kind. A sublattice of Γ of the form αRΓ is

called a similar sublattice of Γ , or SSL for short.

Fact 1. If Γ ⊂ Rd is a lattice, OS(Γ ) and SOS(Γ ) are subgroups of O(d, R).

Proof. It suffices to verify the subgroup property for OS(Γ ). If R and S are isometries in

OS(Γ ), with attached positive numbers α and β say, then so is RS, because αβRSΓ =

αR(βSΓ ) ⊂ αRΓ ⊂ Γ .

Also, one has Γ ⊂ 1
α
R−1Γ , so that [ 1

α
R−1Γ : Γ ] = [Γ : αRΓ ] =: m ∈ N. By standard

lattice theory, compare [11], this means that m
α

R−1Γ ⊂ Γ , which shows that also R−1 is an

element of OS(Γ ). �

Let us start with a general observation on the connection between the similarities and the

coincidence isometries.

Lemma 1. If R is a coincidence isometry for the lattice Γ ⊂ Rd, there exists some α ∈ R+

so that αRΓ ⊂ Γ . In other words, OC(Γ ) is a subgroup of OS(Γ ).

Proof. R ∈ OC(Γ ) means Σ(R) = [Γ : (Γ ∩ RΓ )] = [RΓ : (Γ ∩ RΓ )] = n ∈ N. This implies

nRΓ ⊂ (Γ ∩ RΓ ) ⊂ Γ by standard lattice theory. �

The converse is not true in general, meaning that not all rotations and reflections from

similar sublattices will give rise to coincidence isometries. It is precisely one of our goals later

on to find the distinction for the case of the root lattice A4.

In view of Lemma 1, it is reasonable to define the denominator of a matrix R ∈ OS(Γ )

relative to the lattice Γ as

(1) denΓ (R) = min{α ∈ R+ | αRΓ ⊂ Γ} .

Clearly, as R is an isometry, one always has denΓ (R) ≥ 1, and from denΓ (R)RΓ ⊂ Γ one

concludes that
(
denΓ (R)

)d
must be an integer. Consequently, denΓ (R) is either a positive

integer or an irrational number, but still algebraic. Moreover, by standard arguments, one

has

(2) {α ∈ R+ | αRΓ ⊂ Γ} = denΓ (R) N .

This gives rise to the following refinement of Lemma 1.

Lemma 2. Let Γ ⊂ Rd be a lattice, with groups OS(Γ ) and OC(Γ ) as defined above. With

the denominator from (1), one has OC(Γ ) = {R ∈ OS(Γ ) | denΓ (R) ∈ N}.

Proof. If denΓ (R) ∈ N, one has denΓ (R)RΓ ⊂ (Γ ∩ RΓ ). Consequently, the lattices Γ and

RΓ are commensurate, so that the inclusion {R ∈ OS(Γ ) | denΓ (R) ∈ N} ⊂ OC(Γ ) is clear.

Conversely, if R ∈ OC(Γ ), Γ and RΓ are commensurate by definition. In particular, one

has Σ(R)RΓ ⊂ Γ , so that Σ(R) ∈ denΓ (R)N by Eq. (2). As Σ(R) ∈ N, this is only possible

if denΓ (R) ∈ Q . Since we also know from above that
(
denΓ (R)

)d ∈ N, we may now conclude

that denΓ (R) ∈ N, whence the claim follows. �

For later use, we state a factorisation property for coincidence indices from [10].
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Figure 1. Standard basis representation of the root lattice A4.

Lemma 3. Let Γ ⊂ Rd be a lattice and R1, R2 ∈ OC(Γ ). When Σ(R1) and Σ(R2) are rel-

atively prime, one has Σ(R1R2) = Σ(R1)Σ(R2). In general, one has the divisibility relation

Σ(R1R2) |Σ(R1)Σ(R2). �

When a lattice Γ is given, the set Σ(OC(Γ )) is called the simple coincidence spectrum. It

may or may not possess an algebraic structure. In nice situations, Σ(OC(Γ )) is a multiplica-

tive monoid within N. On top of the spectrum, one is also interested in the number f(m)

of different CSLs of a given index m. This arithmetic function is often encapsulated into a

Dirichlet series generating function,

(3) ΦΓ (s) :=

∞∑

m=1

f(m)

ms
,

which is a natural approach because it permits an Euler product decomposition when f is

multiplicative. Beyond three dimensions, this generating function seems difficult to determine,

and A4 is no exception. In this paper, we thus concentrate on the slightly simpler problem

to count the coincidence rotations of A4 of index m, which always come in multiples of 120,

the order of the rotation symmetry group of A4. The latter is the subgroup of SOC(A4) of

rotations with coincidence index Σ = 1. If 120frot(m) is the number of coincidence rotations

with index m, we define the corresponding generating function as

(4) Φ rot
Γ (s) :=

∞∑

m=1

frot(m)

ms
,

which will turn out to possess a nice Euler product expansion. Note that 0 ≤ f(m) ≤ frot(m)

and that f(m) 6= 0 if and only if frot(m) 6= 0. Asymptotic properties for m → ∞ can be

extracted from the generating functions via Delange’s theorem, see [7] and references therein

for details in this context.

2. The root lattice A4 and its arithmetic structure

The root lattice A4 is usually defined as a lattice in a 4-dimensional hyperplane of R5, via

the Dynkin diagram of Figure 1. Here, the ei denote the standard Euclidean basis vectors in

5-space. Though convenient for many purposes, this description does not seem to be optimal

for the geometric properties we are after. Since the similar sublattices of A4 were recently

classified [6] by a different 4-dimensional approach, using the arithmetic of the quaternion

algebra H(Q(
√

5 )), we use the same setting again in this paper.

From now on, we use the notation K = Q(
√

5 ) for brevity. The algebra H(K), which is a

skew field, is explicitly given as H(K) = K ⊕ iK ⊕ jK ⊕ kK, where the generating elements

satisfy Hamilton’s relations i2 = j2 = k2 = ijk = −1, see [22] for more. H(K) is equipped

with a conjugation .̄ which is the unique mapping that fixes the elements of the centre of the
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algebra K and reverses the sign on its complement. If we write q = (a, b, c, d) = a+ib+jc+kd,

this means q̄ = (a,−b,−c,−d).

The reduced norm and trace in H(K) are defined as usual [27, 21, 22] by

(5) nr(q) = qq̄ = |q|2 and tr(q) = q + q̄ ,

where we canonically identify an element α ∈ K with the quaternion (α, 0, 0, 0). For any

q ∈ H(K), |q| is its Euclidean length, which need not be an element of K. Nevertheless,

one has |rs| = |r||s| for arbitrary r, s ∈ H(K). Due to the geometric meaning, we use the

notations |q|2 and nr(q) in parallel. An element q ∈ H(K) is called integral when both nr(q)

and tr(q) are elements of o := Z[τ ], which is the ring of integers of the quadratic field K,

where τ = (1 +
√

5 )/2 is the golden ratio.

In this setting, we use the lattice

(6) L =
〈
(1, 0, 0, 0), 1

2(−1, 1, 1, 1), (0,−1, 0, 0), 1
2(0, 1, τ−1,−τ)

〉
Z

,

which is the root lattice A4 relative to the inner product tr(xȳ) = 2〈x|y〉, where 〈x|y〉 denotes

the standard Euclidean inner product, see [12, 6] for details. This way, L is located within

the icosian ring I,

(7) I =
〈
(1, 0, 0, 0), (0, 1, 0, 0), 1

2(1, 1, 1, 1), 1
2(1−τ, τ, 0, 1)

〉
o

,

which is a maximal order in H(K), compare [19, 21] and references given there. In particular,

all elements of I (and hence also those of L) are integral in H(K). In fact, one can use the

quadratic form defined by tr(xȳ) to define the dual of a full o-module Λ ⊂ H(K) as

(8) Λ∗ = {x ∈ H(K) | tr(xȳ) ∈ o for all y ∈ Λ} .

With this definition, one has the following important property of the icosian ring, compare

[24, 19, 12] for details.

Fact 2. The icosian ring is self-dual, i.e., one has I∗ = I. �

Since H(K) has class number 1, compare [24, 27], all ideals of I are principal. The detailed

arithmetic structure of I was the key to solving the related sublattice problem [6] for L.

What is more, one significantly profits from another map, called twist map in [6], which is an

involution of the second kind for H(K). If q = (a, b, c, d), it is defined by the mapping q 7→ q̃,

(9) q̃ = (a′, b′, d′, c′) ,

where ′ denotes algebraic conjugation in K, as defined by the mapping
√

5 7→ −
√

5. Note

the unusual combination of algebraic conjugation of all coordinates with a permutation of the

last two – which also explains the choice of the term ‘twist map’. The algebraic conjugation

in K is also needed to define the absolute norm on K, via

N(α) = |αα′| .
For the various properties of the twist map, we refer the reader to [6] and references therein.

The most important one in our present context is the relation between L and I.

Fact 3. Within H(K), one has Ĩ = I and L = {x ∈ I | x̃ = x}. �
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Another useful characterization is possible via the Q-linear mappings φ± : H(K) −→ H(K),

defined by φ±(x) = x ± x̃, which are connected via the relation

φ±(
√

5x) =
√

5φ∓(x)

and the obvious property ker(φ±) = im(φ∓).

Lemma 4. The lattice L from (6) satisfies L = {x + x̃ | x ∈ I} = φ+(I).

Proof. For any x ∈ I, we clearly have x + x̃ ∈ L by Fact 3. On the other hand, observing

τ ′ = 1 − τ , any x ∈ L permits the decomposition

x = (τ + τ ′)x = τ x + τ ′x̃ = τx + τ̃x .

Since x ∈ I and I is an o-module, we still have τx ∈ I, and the claim follows. �

Remark 1. For 0 6= q ∈ I, one has nr(q) ∈ o and nr(q) = qq̄ > 0. As also q̃ ∈ I, one finds

nr(q̃) ∈ o with nr(q̃) > 0 and nr(q̃) = nr(q)′, so that nr(q) is always a totally positive element

of o.

3. Coincidence site lattices via quaternions

It is clear that we can restrict ourselves to the investigation of rotations only, because

L = L, so any orientation reversing operation can be obtained from an orientation preserving

one after applying conjugation first.

Let us start by recalling a fundamental result from [6].

Fact 4. If q ∈ I, one has qLq̃ ⊂ L. Moreover, all similar sublattices of L are of the form qLq̃

with q ∈ I. �

For a given SSL of L, now written as qLq̃, the corresponding rotation is then given by the

mapping x 7→ 1
|qeq| qxq̃. It is clear that many different q result in the same rotation. In fact,

we can restrict q to suitable subsets of icosians without missing any rotation, which we shall

do later on.

Below, we need a refinement of Fact 4. Recall that a sublattice Λ of L is called L-primitive

when αΛ ⊂ L, with α ∈ Q , implies α ∈ N. Similarly, an element p ∈ I is called I-primitive

when αp ∈ I, this time with α ∈ K, is only possible with α ∈ o, see [6] for details, and for a

proof of the following result. For brevity, we simply use the term “primitive” in both cases,

as the meaning is clear from the context.

Proposition 1. A similar sublattice of L is primitive if and only if it is of the form qLq̃ with

q a primitive element of I. �

By Lemmas 1 and 2, we know how SOC(L) and SOS(L) are related in general. Here, Fact 4

tells us that any similarity rotation of L is of the form x 7→ 1
|qeq| qxq̃ with q ∈ I. Among these,

we have to identify the SOC(L) elements, which is possible as follows.

Corollary 1. Let 0 6= q ∈ I be an arbitrary icosian. The lattice 1
|qeq | qLq̃ is commensurate

with L if and only if |qq̃| ∈ N.
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Proof. When q = αr with 0 6= α ∈ o, one has |qq̃| = N(α)|rr̃| with N(α) ∈ N. If q is

primitive, the claim is clear by Lemma 2 because |qq̃| is then the denominator of the rotation

x 7→ 1
|qeq | qxq̃. Otherwise, q is an o-multiple of a primitive icosian, r say, and the claim follows

from the initial remark. �

Let us call an icosian q ∈ I admissible when |qq̃| ∈ N. As nr(q̃) = nr(q)′, the admissibility

of q implies that N
(
nr(q)

)
is a square in N.

Theorem 1. The CSLs of L are precisely the lattices of the form L ∩ 1
|qeq | qLq̃ with q ∈ I

primitive and admissible.

Proof. All CSLs can be obtained from a rotation, as L is invariant under the conjugation

x 7→ x̄. By Lemma 1, we need only consider rotations from OS(L), which, by Fact 4, are all

of the form x 7→ 1
|yey | yxỹ with y ∈ I. If y is not primitive, we can write it as y = αq with

α ∈ o and q ∈ I primitive. Since α is a central element, y and q define the same rotation. An

application of Corollary 1 now gives the claim. �

This is the first step to connect certain primitive right ideals qI of the icosian ring with

the CSLs of L. Before we continue in this direction, let us consider the relation with the

coincidence rotations.

Lemma 5. Let r, s ∈ I be primitive and admissible quaternions, with rI = sI. Then, one has

L ∩ rLr̃
|rr̃| = L ∩ sLs̃

|ss̃| .

Proof. When rI = sI, one has s = rε for some ε ∈ I×, where I× denotes the unit group of

I, see [21] for its structure. Since, by [6, Lemma 4], we then know that εLε̃ = L, one has

rLr̃ = sLs̃ in this case. As nr(εε̃ ) = N(nr(ε)) = 1, one also finds |ss̃| = |rr̃|. Consequently,
rLr̃
|rr̃| = sLs̃

|ss̃| , and the CSLs of L defined by r and s are equal. �

Remark 2. The converse statement to Lemma 5 is not true, as the equality of two CSLs

does not imply the corresponding rotations to be symmetry related. An example is provided

by r = (τ, 2τ, 0, 0) and s = (τ2, τ, τ, 1), which define the same CSL, though s−1r is not a unit

in I. The CSL is spanned by the basis {(1, 2, 0, 0), (2,−1, 0, 0), (3
2 , 1

2 , 1
2 , 1

2 ), (−1, 1
2 , τ−1

2 ,− τ
2 )}.

However, when two primitive quaternions r, s ∈ I define rotations that are related by a

rotation symmetry of A4, one has rI = sI as a direct consequence of [6, Lemma 4].

Although the primitive elements of I are important in this context, we need a variant for

our further discussion. Let q ∈ I be primitive and admissible. Since o is Dedekind, one has the

relation (xo)−1 = 1
x
o for any principal fractional ideal with nonzero x ∈ K, see [17, Ch. I.4]

for details. Then, the fractional ideal

(
nr(q)o ∩ nr(q̃ )o

)2(|qq̃|2o
)−1

=

(
lcm(nr(q),nr(q̃ ))

)2

|qq̃|2 o = βqo βq̃o

is a square as well, where βq := lcm(nr(q),nr(q̃ ))/nr(q) ∈ o is well-defined up to units of o, as

o is a principal ideal domain. Clearly, βqo and βq̃o are coprime by construction. Since their
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product is a square in o (up to units), we have βqo =
(
αqo

)2
for some αq ∈ o. Explicitly, we

may choose

(10) αq =

√
lcm(nr(q),nr(q̃ ))

nr(q)
=

√
lcm(nr(q),nr(q)′)

nr(q)
∈ o ,

where we assume a suitable standardisation for the lcm of two elements of o. Again, αq is

only defined up to units of o, which is tantamount to saying that we implicitly work with the

principal ideal αqo here. Moreover, we have the relation αq̃ = α̃q = α ′
q.

Let us call the icosian αqq the extension of the primitive admissible element q ∈ I, and

(αqq, α
′
q q̃ ) the corresponding extension pair. In view of the form of the rotation x 7→ 1

|qeq| qxq̃, it

is actually rather natural to replace q and q̃ by certain o-multiples, qα := αqq and q̃α = αq̃ q̃,

such that nr(qα) and nr(q̃α) have the same prime divisors in o. The introduction of the

extension pair restores some kind of symmetry of the expressions in relation to the two

quaternions involved, which will become evident in the general treatment of 4-space [10].

Clearly, since the extra factors are central, this modification does not change the rotation,

so that

(11)
qxq̃

|qq̃| =
qαxq̃α

|qαq̃α |
holds for all quaternions x. Note that the definition of the extension pair is unique up to

units of o, and that one has the relation

(12) nr(qα) = lcm
(
nr(q),nr(q̃ )

)
= nr(q̃α) = |qα q̃α| ∈ N ,

which will be crucial later on.

Lemma 6. For q ∈ I and γ ∈ K, one has q ∈ γI if and only if {tr(qȳ) | y ∈ I} ⊂ γo.

Proof. The statement is clear for γ = 0, so assume γ 6= 0. When q ∈ I, one has tr(qȳ) ∈ o for

all y ∈ I (as then qȳ ∈ I), whence q ∈ γI implies tr(qȳ) ∈ γo. Conversely, tr(qȳ) ∈ o for all

y ∈ 1
γ
I means q ∈

(
1
γ
I
)∗

= γI∗ = γI, by Fact 2, which implies the claim. �

Lemma 7. If q ∈ I is primitive, there is a quaternion z ∈ I with tr(qz̄) = 1. When, in

addition, q is also admissible, there exists a quaternion z ∈ I such that tr(qα z̄)+tr( ˜̄z q̃α) = 1,

where qα denotes the extension of q.

Proof. When q ∈ I, one has gcd{tr(qx̄)o | x ∈ I} = γo with γ ∈ o. If γ is not a unit in o, one

has q ∈ γI by Lemma 6, whence q cannot be primitive in this case. So, γ must be a unit,

hence γo = o. Then, by standard arguments based on the prime ideals, there are finitely

many icosians xi ∈ I, say ℓ of them (in fact, ℓ ≤ 4 suffices), such that

gcd{tr(qx̄i)o | 1 ≤ i ≤ ℓ} = tr(qx̄1)o + . . . + tr(qx̄ℓ)o = o .

This implies the existence of numbers βi ∈ o, with 1 ≤ i ≤ ℓ, such that z =
∑

i βixi satisfies

tr(qz̄) = 1.

For the second claim, assume that q is also admissible and denote its extension by qα. Let

z ∈ I be the icosian from the first part of the proof, so that tr(qz̄) = 1. Since qα = αqq with
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αq ∈ o, this implies tr(qαz̄) = αq and thus also

α ′
q = α̃q =

(
tr(qαz̄)

)f
= tr

(
q̃αz̄

)
= tr

(˜̄z q̃α

)
.

Since the ideals αqo and α ′
qo are relatively prime by construction, we have αqo + α ′

qo = o

and thus the existence of β, δ ∈ o with βαq + δα ′
q = 1. The icosians x = βz and y = δ ′z

then satisfy tr(qα x̄)+ tr(˜̄y q̃α) = 1 as well as tr( ˜̄x q̃α)+ tr(qα ȳ) = 1, where the second identity

follows from the first via (tr(uv̄))f = tr( ˜̄v ũ ).

Finally, observe that tr(uv̄) ∈ K for all u, v ∈ H(K), so that one also has the relation

(tr(uv̄))′ = tr(˜̄v ũ). Consequently, defining z = τ x + (1 − τ)y with the x, y from above, z is

an icosian that satisfies

tr(qα z̄) + tr(˜̄z q̃α) = τ
(
tr(qα x̄) + tr(˜̄y q̃α)

)
+ (1 − τ)

(
tr(qα ȳ) + tr(˜̄x q̃α)

)
= 1 ,

which establishes the second claim. �

For our further discussion, it is convenient to define the set

(13) L(q) = {qx + x̃q̃ | x ∈ I} = φ+(qI) ,

which is a sublattice of L, compare Lemma 4. Note that, due to Ĩ = I, one has L(q) = L̃(q).

Theorem 2. Let q ∈ I be admissible and primitive, and let qα = αqq be its extension. Then,

the CSL defined by q is given by

L ∩ 1

|qq̃| qLq̃ = L(qα) ,

with L(qα) defined as in Eq. (13).

Proof. To show the equality claimed, we have to establish two inclusions, where we may use

the fact that q and qα define the same rotation in 4-space, see Eq. (11).

First, since L(qα) ⊂ L is clear, we need to show that |qαq̃α|L(qα) ⊂ qαLq̃α. If x ∈ L(qα),

there is some y ∈ I with x = qαy + ỹq̃α. Consequently, observing the norm relations from

Eq. (12), we find

|qαq̃α|x = qαy q̃αq̃α + qαqαỹ q̃α = qα (yq̃α + qαỹ) q̃α ∈ qαL(qα)q̃α ⊂ qαLq̃α ,

which gives the first inclusion.

Conversely, when x ∈ L∩ 1
|qeq | qLq̃, Lemma 7 tells us that there exists an icosian z ∈ I such

that tr(qαz̄) + tr(˜̄z q̃α) = 1. At the same time, there is some y ∈ L so that x = qyq̃
|qq̃| = q

α
y eq

α

|q
α

eq
α
| .

Observing x = x̃ and the norm relations in Eq. (12), one finds

x = tr(qαz̄)x + x̃ tr(˜̄z q̃α) = (qαz̄ + z qα)x + x̃(˜̄z q̃α + q̃αz̃ ) = qα(z̄x + ỹ z̃ ) + (x̃˜̄z + zy)q̃α ,

which shows x to be an element of L(qα). �



COINCIDENCE ROTATIONS OF A4 9

4. Coincidence indices and generating functions

With the explicit identification of the CSL that emerges from the rotation defined by an

admissible primitive icosian q, one can then calculate the corresponding index. This is either

possible by a more direct (though somewhat tedious) calculation along the lines of reference

[8] or by relating Σ2 to the corresponding index of the coincidence site module of I, see [10]

for details. The result reads as follows.

Theorem 3. If q ∈ I is an admissible primitive icosian, the rotation x 7→ 1
|qeq|qxq̃ is a

coincidence isometry of L. Moreover, the corresponding coincidence index satisfies

(
Σ(q)

)2
= N

(
lcm(nr(q),nr(q)′)

)
= N

(
nr(qα)

)
,

which is a square in N. Equivalently, one has the formula

Σ(q) = nr(qα) = lcm(nr(q),nr(q)′) ,

which is then, with our above convention from Eq. (10), always an element of N. �

Due to the subtle aspects of the factorisations of icosians into irreducible elements, we have

not yet found a clear and systematic approach to the number f(m) of CSLs of A4 of index

m, though we will indicate later what the answer might look like. However, at this point, it

is possible to determine the number frot(m) for m a prime power.

Clearly, we have frot(1) = 1. When g(m) denotes the number of primitive SSLs of A4

of index m2, one can immediately extract some cases from the explicit results in [16, 6]. In

particular, one has frot(p
r) = g(p2r) both for p = 5 and for all rational primes p ≡ ±2 mod 5.

The remaining case with p ≡ ±1 mod 5, where p splits as p = ππ′ on the level of o, is slightly

more difficult, because one has to keep track of how the algebraically conjugate primes of o

are distributed between nr(q) and nr(q̃). Observe the relation

1 + p−2s

1 − p1−2s
= 1 +

∑

ℓ≥1

(pℓ + pℓ−1)p−2ℓs,

which, for p ≡ ±1 mod 5, happens to be the generating function for the primitive right

ideals qI of the icosian ring of p-power index such that nr(q) is a power of π (up to units).

Those with nr(q) a power of π′ produce an Euler factor of the same form. With this, one

can explicitly calculate frot(p
r) by collecting all contributions to the index Σ = pr according

to Theorem 3. This turns out to be completely analogous to the calculations for the centred

hypercubic lattice in 4-space presented1 in [1, 28], and the formula for f reads

(14) frot(p
r) =





6 · 52r−1, if p = 5 ,
p+1
p−1 pr−1(pr+1 + pr−1 − 2), if p ≡ ±1 (5) ,

p2r + p2r−2, if p ≡ ±2 (5) .

1Note that the arithmetic functions in [1, 28], in the case of 4 dimensions, also count the coincidence

rotations in multiples of the number of rotation symmetries, and not the CSLs themselves, hence giving the

generating function (4) rather than (3) in this case.
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Theorem 4. Let 120frot(m) be the number of coincidence rotations of A4 of index m. Then,

frot(m) is a multiplicative arithmetic function, with Dirichlet series generating function

Φ rot
A4

(s) =

∞∑

m=1

frot(m)

ms
=

ζK(s − 1)

1 + 5−s

ζ(s) ζ(s − 2)

ζ(2s) ζ(2s − 2)

=
1 + 51−s

1 − 52−s

∏

p≡±1 (5)

(1 + p−s) (1 + p1−s)

(1 − p1−s) (1 − p2−s)

∏

p≡±2 (5)

1 + p−s

1 − p2−s

= 1 +
5

2s
+

10

3s
+

20

4s
+

30

5s
+

50

6s
+

50

7s
+

80

8s
+

90

9s
+

150

10s
+

144

11s
+ . . .

(15)

where ζ(s) is Riemann’s zeta function and ζK(s) denotes the Dedekind zeta function of the

quadratic field K = Q(
√

5 ).

Proof. The multiplicativity of frot is inherited from the unique factorisation in I together with

the divisor properties of the coincidence index from Lemma 3. Consequently, Eq. (15) fixes

frot(m) for all m ∈ N via the identity frot(mn) = frot(m)frot(n) for integers m and n that

are relatively prime.

It is a routine exercise to calculate the Euler factors of the corresponding Dirichlet series

generating function and to express Φ rot
A4

in terms of the two zeta functions mentioned. �

Note that ζK(s) = ζ(s)L(s, χ), where L(s, χ) is the L-series of the primitive Dirichlet

character χ defined by

χ(n) =





0, n ≡ 0 (5) ,

1, n ≡ ±1 (5) ,

−1, n ≡ ±2 (5) .

Observe next that frot(m) > 0 for all m ∈ N, so that also the number f(m) of CSLs

must be positive (though we can still have 0 < f(m) < frot(m)). Moreover, each element of

OC(A4) can be written as a product of a rotation with a reflection that maps A4 onto itself.

Consequently, the simple coincidence spectrum Σ(OC(A4)) is the set of all positive integers.

Although multiple coincidences may produce further lattices, compare [4, 29, 9], the total

spectrum ΣA4
cannot be larger than the elementary one, so that the following consequence

is clear.

Corollary 2. The multiple coincidence spectra of the root lattice A4 coincide with the ele-

mentary one, and one has ΣA4
= Σ(OC(A4)) = Σ(SOC(A4)) = N, which is a monoid. �

The Dirichlet series Φ rot
A4

(s) is analytic in the open right half-plane {s = σ + it | σ > 3},
and has a simple pole at s = 3. The corresponding residue is given by

(16) ress=3 Φ rot
A4

(s) =
125

126

ζK(2) ζ(3)

ζ(4) ζ(6)
=

450
√

5

π6
ζ(3) ≃ 1.258 124 ,

which is based on the special values

ζ(4) =
π4

90
, ζ(6) =

π6

945
, ζK(2) =

2π4

75
√

5
,
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together with ζ(3) ≃ 1.202 057, compare [7] and references given there. The value of ζ(3) is

known to be irrational, but has to be calculated numerically.

With this information, we can extract the asymptotic behaviour of the counts frot(m) from

the generating function Φ rot
A4

(s) by Delange’s theorem, see [7, Appendix] for a formulation

tailored to this situation. One obtains, as x → ∞,

(17)
∑

m≤x

frot(m) ∼ ress=3 Φ rot
A4

(s)
x3

3
≃ 0.419 375x3 .

Clearly, this is also an upper bound for the asymptotic behaviour of the true CSL counts.

As mentioned earlier, one is primarily interested in the number f(m) of CSLs of index m,

which satisfies 0 < f(m) ≤ frot(m) for all m ∈ N in view of Corollary 2. Some preliminary

calculations show that also f(m) is multiplicative. In fact, one has f(pr) = frot(p
r) for all

primes p ≡ ±2 (5), and f(5r) = frot(5
r)/5 for r ≥ 1. For the remaining primes p ≡ ±1 (5),

one has f(p) = frot(p), but differences occur for all powers pr with r ≥ 2. This happens first

for m = 112 = 121 and is induced by the more complicated factorisation for these primes,

compare [3] for a similar phenomenon. Consequently, the modification for the prime 5 is

sufficient up to index m = 120. The Dirichlet series generating function thus starts as

ΦA4
(s) =

∞∑

m=1

f(m)

ms
= 1 +

5

2s
+

10

3s
+

20

4s
+

6

5s
+

50

6s
+

50

7s
+

80

8s
+

90

9s
+

30

10s
+

144

11s
+ . . .

At this stage, the general mechanism behind this is not completely unravelled, but we hope

to present it in greater generality in [10].

5. Related results and outlook

In one dimension, the CSL problem becomes trivial, so that Φ(s) ≡ 1 in this case. In two

dimensions, a rather general approach to lattices and modules is possible via classic algebraic

number theory, see [23, 4] and references therein, which includes the treatment of multiple

coincidences. For the root lattice A2, the CSL generating function reads

(18) ΦA2
(s) = Φ rot

A2
(s) =

∏

p≡1 (3)

1 + p−s

1 − p−s
=

1

1 + 3−s

ζ
Q (ξ3)(s)

ζ(2s)
,

where ξ3 is a primitive cube root of 1. Here, the equality is a consequence of the commutativity

of SOC(A2). The simple coincidence spectrum of this lattice is the multiplicative monoid of

integers that is generated by the rational primes p ≡ 1 mod 3.

In 3-space, various examples are derived in [1] and have recently been proved by quater-

nionic methods [8] similar to the ones used here. Among these cases is the root lattice A3,

which happens to be the face centred cubic lattice in 3-space, with generating function

(19) ΦA3
(s) = Φ rot

A3
(s) =

∏

p 6=2

1 + p−s

1 − p1−s
=

1 − 21−s

1 + 2−s

ζ(s) ζ(s − 1)

ζ(2s)
.

The equality of the two Dirichlet series to the left is non-trivial, and was proved in [8] with an

argument involving Eichler orders. The same formula also applies to the other cubic lattices

in 3-space [1, 9]. The simple coincidence spectrum is thus the set of odd integers, which is
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again a monoid. The multiple analogues have recently been derived in [29, 30], see also [4, 9]

for related results.

Several of these results are also included by now in [25]. In 4-space, various other lattices

and modules of interest exist, for which some results are given in [1, 28, 30], with more

structural proofs and generalisations being in preparation [10]. Beyond dimension 4, very

little is known [31, 32], though it should be possible to derive the simple coincidence spectra

for certain classes of lattices.
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