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ABSTRACT. In this paper we establish some new congruences involving

central binomial coefficients as well as Catalan numbers. Let p be a prime

a
and let a be any positive integer. We determine ZZZBI (k2+kd) mod p? for

d=0,...,p% and Eiigl k2-l-€6) mod p3 for § = 0,1. We also show that

1 P a_1
— > Cpansk =1-3(n+1) (p 3 ) (mod p?)
=0

"ok

for every n = 0,1,2,..., where C,, is the Catalan number (Q;n)/(m + 1),
and () is the Legendre symbol.

1. INTRODUCTION

Forn e N={0,1,2,...}, the nth Catalan number is given by

1 2n 2n 2n
C, = - . .
n+1\n n n+1
Key words and phrases. Binomial coefficients, Catalan numbers, congruences.
2010 Mathematics Subject Classification. Primary 11B65; Secondary 05A10, 11AQ7.
The initial draft of this paper was written in 2007 and posted as arXiv:0709.1665.
The first author is the corresponding author, and he is supported by the National

Natural Science Foundation (grant 10871087) and the Overseas Cooperation Fund
(grant 10928101) of China.

1


http://arxiv.org/abs/0709.1665v9

2 ZHI-WEI SUN AND ROBERTO TAURASO

Here is an alternate definition:

Co=1 and Cpy1=)» CpCrgx (n=0,1,2,...).
k=0

The Catalan numbers play important roles in combinatorics; they arise
naturally in many enumeration problems (see, e.g., [St, pp. 219-229]). For
example, C), is the number of binary parenthesizations of a string of n+ 1
letters, and it is also the number of ways to triangulate a convex (n+2)-gon
into n triangles by n — 1 diagonals that do not intersect in their interiors.

In 2006 H. Pan and Z. W. Sun [PS] employed a useful identity to deduce
many congruences on Catalan numbers, in particular they determined the
partial sum Zz;é C;, modulo a prime p in terms of the Legendre symbol
(3)- Foranya € Z, (§) € {0, £1} satisfies the congruence a = (%) (mod 3).

In this paper we establish some further congruences involving Catalan
numbers and related central binomial coefficients.

For an assertion A, we adopt Iverson’s notation:

1 if A holds,
[A] = .
0 otherwise.

For d € N we set

Note that
5
So=851=0, So=1, S3=——, 5426’ Sy = —, Sg= ——.

Here is our first theorem.

Theorem 1.1. Let p be a prime, and let d € {0,... ,p*} witha € ZT =
{1,2,3,...}. Set

F(d) Z% <”}:Z:‘01 (kad) - <p3_ d)) (1.1)

+ (=1)Pp*Sq — plp = 3] <§) -

Then
Fd)=pp=2& 31 (-1)*+d] (mod p2) (1.2)

and
F(p® — d) = F(d) (mod p?). (1.3)
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Remark 1.1. Let p be any prime, and let a € Z* and § € {0,1}. (1.3) in
the case d = ¢ yields the congruence

H(Z () - (%)
P (-1 <pa — 5k

=20p[p = —1)P1pe
plp=3]+ (1) 'p ; - ;

)(mOdpg)' (1.4)

Corollary 1.1. Let p be any prime and leta € Z*. Ford € {0,1,...,p%},
we have

= (T5) <o =31 () + 280 ot 7). (1)

k=0
Also,
p*—1 @
a 3(E)—1
ZCk=1—3<p 3 1)5 (5 (mod p?) (1.6)
k=0
and

"1 1 ()

Z kCy = ( ) —plp=3] = T?’ (mod p?). (1.7)
Proof. (1.5) holds since 2F(d) = 0 (mod p?). As Cy = (Qk) — (szl) and
kCy = (,ffl), (1.6) and (1.7) follow from (1.5) with d =0,1. O

Remark 1.2. Let p be a prime and let a € ZT. For d =0,1,...,p% (1.5)

implies that
p*—1
2\ _ [p*—d
S (ira) = (757) o

k=0
which was proved by Pan and Sun [PS, Theorem 1.2] in the case a = 1
via a sophisticated combinatorial identity. (1.5) in the case d = 0,1 yields

that o
2 <2kk) - <%) (mod 77) (18)

and
pk:: <k2f1) = <pa3_ 1) — plp = 3] (mod p?). (1.9)
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(1.8) in the case a = 1 implies the following observation of A. Adamchuk
[A] (who told the second author that he could not find a proof): If p > 3

then
p+(25)

2
Z < k) =0 (mod p?).
k
k=1
(Recall the Wolstenholme congruence %(2;’) = (2;’__11) = 1 (mod p?) for

p > 3 (see, e.g., [HT]).) Recently, (1.8) in the case a = 2 was posed by
D. Callan as a problem in [C]; in fact, (1.8) in the case a € {2, 3,4} was
also observed by A. Adamchuk [A] slightly earlier who could not provide
a proof.

Now we state our second theorem.

Theorem 1.2. Let p be a prime. Let d € {0,1,...,p*} witha € Z™, and
let m,n € N with m > n. Then

n(;t)l paz_l (;:i; ikd) —(n+1) (pa; d) — (m—n) (g)

n k=0

=((m—n)*+ (m+1)(n+2))p*Sq — [p = 3] (g) p(n+1)(m+n+1)

+p=2&31d— (—1)*pm(n+ 1) (mod p?).
(1.10)
In particular,

p*—1 a a __
o X (o) (5) e (75
" =0 P (1.11)

=50+ )3+ 250~ = Hp(n+1) (§ ) (mod 7).

Corollary 1.2. Let p be a prime and let a,n € N with a > 0. Then

i @1
o > Cponsr=1-3(n+1) (p 3 ) (mod p?) (1.12)
" k=0

and
1 -
C Z kCpantr + [p = 3]p(n +1)
" k=0 (1.13)

=(1-p")n+Bpn+1)(n+1) (pag_ 1) (mod p?).

—

Remark 1.3. Note that (1.12) and (1.13) are extensions of (1.6) and (1.7).
(1.6) and (1.8) in the case a = 1 suggest the following open problem.
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Problem 1.1. Are there any composite numbers n % 0 (mod 3) such that

= ()

k=0

(g) (mod n?) ?

Are there any composite numbers n #Z 0 (mod 3) satisfying

n—1
ZCkzl—?)(n;l) (mod n?) ?
k=0

Remark 1.4. 1t seems that the answers to Problem 1.1 are negative. We
have confirmed this for n < 10* via Maple.

We are going to do some preparations in the next section. We will show
Theorem 1.1 in Sections 3, and prove Theorem 1.2 and Corollary 1.2 in
Section 4.

2. SOME LEMMAS
As usual, for a prime p and an integer m, we define
ord,(m) =sup{a € N: p* | m}

(and thus ord,(0) = +00). A congruence modulo +oo refers to the corre-
sponding equality.

Lemma 2.1. Let p be any prime, and let a € Z* and m,n € N with
m >=n. Then

<pam) / (m) =1+ [p = 2]pn(m — n) (mod p**ordr(m), (2.1)

pn n

Proof. (2.1) holds trivially when n is 0 or m.
Below we assume 0 < n < m. Observe that

pin— n—1 .
p m—J p*m — p*i p*(m —n)
( ) 1 gp“n—p“i < 1l <1+ prn —j )

pon — j

Jj=0 0<j<p?n
Pt
Thus
(I;i’:) =14 (m—n) Z P - =1+ (m—n) Z p_a
() o<y PV =] c—
\Ja<+l? n 0<z§+p n
J P
n—1p®—1 p®—1 pa
=1+ ( —nzz q—l—k: (m_ng?
q=0 k=1 k=1

=1+ [p = 2]p(m — n)n (mod p?FTorde(m=n)y
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since
p*—1 P ‘-1 a p*—1 pa pa
2 Z < ) = — =0 (mod p*)
k=1 k k=1 k k=1 kopt—k
and )
201 20—l 201
2a 2(1—1 2a
— - = — = 2¢
Z k ; k 0 (mod 2%)
k=1 j=1 k=1
2tk
Similarly,
pm m\ pm m
pn n)  \p(m—n) m-—n

=1+ [p = 2pn(m — n) (mod p**rords(m)y,

We are done. [

Remark 2.1. By a deep result of Jacobsthal (see, e.g., [Gr]), if p > 3 is a

prime and m > n > 0 are integers, then (’;’7’:) = (") (1 + p*mn(m — n)v)

for some p-adic integer v. However, the proof of Jacobsthal’s result is
complicated and not easily found in modern literature.

Lemma 2.2. Let p be a prime and let a € Zt. Then
10 20\ S 2k
2 ()2 ()

:(Qppaa__ll) —1=p[p=2]+p*[p = 3] (mod p*).

Proof. Clearly
2k 2k (2k1) 1242
k k+1) \k+1) 2\k+1
for all £ € N. Thus

'S ()% () - () -2 ()

k=1

and hence

! 12" 2 — 1
k , A B S ¢
k=1 k=1 T p P

DN =
gy
/‘\
\_/
_|_
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By Lemma 2.1,
2i
(;)/2 —1 _ o1,2i—1 _ it1 .
—————=1+[p=2]p =1 (mod p™) fori=2,3,....
(5= /2
pz—l

So we have
12p“ :12p_2p—1: B 20 3
2<pa)—2<p>—<p_1)—1+p[p—2]+p[p—3](m0dp)

by applying the well-known Wolstenholme congruence in the last step.
Clearly (2.2) follows from the above. [

Lemma 2.3. Let n > 1 and d be integers. Then

ni <Z) (CHT]{) =(1+(-1)" - 3[3 | n]) (d;”) . (23)

k=1

Proof. Let w denote the cubic root (—1 4 1/—3)/2 of unity. As observed
by E. Lehmer [L1] in 1938, for any r € Z we have

s x () (D)o sty

k=r (mod 3) k=0
=2" L W (14 w)" +w (1 4w
=2" +w ™" (~w?)" + W' (~w)"

=2 4 (~1)" (@ 4 ™)
2" +2(=1)" if3|n+r,
:{2n—( )" i 3fn+r
It follows that
> () (457 (5)+(57)
3 3

d+k n n
OG- 2,020

24+ (C)"BBln+l-d-1) 2"+ (-1)"BB|n+2-d -1
3 3

()3 ntl—d —[3|n+2—d]) = (=1)" (d;”).

Since p p p p
—-n +n
(557) + (5) < (557 =omin ),
we finally obtain the desired (2.3). O

Remark 2.2. The evaluation of }7, _ . 04 12) (}) with n € N and r € Z,
can be found in [Su].
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Lemma 2.4. Let p be a prime and let a € Z". Then

pi—1 g Pl g
(s % G ) =eb =2+ =3 tmed ). @)
3|17<; h=t

Proof. By Lehmer’s result mentioned in the proof of Lemma 2.3,

3 ) ( )+33|pa]+3_3 > (Z)

0<k<p? k=p® (mod 3)
3|k—p®

27" 4 (-1 (303 "+ 97— 1) =2 =33 7] - (1)

Therefore

For k =1,...,p% — 1, since p®/k =0 (mod p) and
pa_l hel pa B pa )
() I () i
0<j<k
we have

(Jor - G ) or g

0<j<k

If 1 <k<p®—1and p*!{k, then p*/k = 0 (mod p?). Note also that
—1=1 (mod 2). Thus

p®—1
a kD" p*

> BBE—p—1)(- ? > 7

k=1 <j<

p—1 pa pa
=» 3[3|p* 'k —p—1)(-1) ka_lk > o=

k=1 p 0<j<pa—lk

= p p°
=) BB[p M k-pl - DD Y =

k=1 oc<k P

p—1

=56 #3&3[k—p - DD S L (mod p?).

k=1 0<j<k J
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Combining the above,

b S 3B k-] - 1)

k=1

mod p?

does not depend on a. So it suffices to prove (2.4) for a = 1.

When a =1 and p € {2,3}, (2.4) can be verified directly.
Below we assume p > 3. With the help of Wolstenholme’s result

SP_11/k =0 (mod p?) (cf. [Gr] or [HT]), we see that

3
k k
k=1 k=1
3|lk—p
(p—1)/2 1 lp/3] 1 lp/6] 1
=— -+3 - —6 - (mod p?).

Recall the following congruences of E. Lehmer [L2]:

(p—1)/2 1
> = =-2,(2) +pg(2) (mod p?),

=1 7

lp/3]
1 @3) P o 2

= — =q,(3) (mod
Y g =ty A mods?)

Lp/6]
1 w(2)  %B3) P, D o 2
= -—=q,(2)—< mod
> D6 3 + o T g% (2) — g%(3) (mod p7),

=1

where ¢,(2) = (2P71 —1)/p and ¢,(3) = (3?~! —1)/p are Fermat quotients.

Consequently,

(-1)*
>33k —pl - 1) =0 (mod p?)
k=1
and hence (2.4) holds for a = 1.
U

In view of the above, we have completed the proof.

3. PrRoOOF OF THEOREM 1.1

In this section we prove Theorem 1.1 on the basis of Section 2.
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Lemma 3.1. Let p be a prime and let d € {1,...,p* — 1} with a € ™.
For the function F given by (1.1) we have

Fd—-1)+ F(d)+ F(d+1)

=2(7)) - (S S moa)
=0 (mod p?).

Proof. Observe that
2k N 2k N 2k
k+d—-1 k+d k+d+1
_(2k+1 n 2k+1 \ [ 2k [ 2k+2\ [ 2k
\k+d k+d+1 k+d)) \k+d+1 k+d
for every k =0,1,2,.... Thus
= 2\, (2%, ( 2
‘ k+d—1 k+d k+d+1
N (21 2\ 20 (0 [ °
= \\k+1)+d k+d)) \p*+d d)  \p*—d)

Note also that
k 3
e=—10<k<d+e

=X ) (5) ()

N (—;)d <d+?1)—d)

(]

>
Il

Q

E

Therefore

F(d—1)+F(d)+ F(d+1)
(7)) - (=) - (57) - (5)
d 1
\3

3
+ (—1)”‘%“# —plp = 3] < (%) (d%>

o 2p* — 1 B pa_d_lp_a
_pa_d(a_d_1)+( 1 d’
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Clearly

<—1>p“—d‘1(fp_a d__ll)= 11 (1—2fa)

0<r<p®—d
2p° p*
=1- — =2(1- — ] -1
> Tooi- ¥ )
0<r<p®—d 0<r<p®—d
_ a_g1 p*—1 2
=2(—1)" <p“ 4 1) — 1 (mod p*).

So, by the above we have

Fld—-1)+F(d)+ F(d+1)

__ b @ _d—1 a_qg1P"
e e G M
E(—l)pa_d_lp Py (mod p?)

and
Fd—-1)+F(d)+ F(d+1)

2( ' )‘<—1>pa_d‘1L+<—1)P“—d—13

“—d p*—d d
=) (p;) —pe (% + (—1)?“—1%) (mod p3).

This concludes the proof. [
Proof of Theorem 1.1. (i) For k=1,...,p* — 1, clearly

() 1L (5=

Thus, with the help of Lemma 2.3, for d € {p®, p* — 1} we have
p*—1 k
1 -1 d—k d
P~ S () s -3(5)

=(—1)P~* paf @) <%_d) —plp = 3] (g)

L+ (-1 =303 p) <_d3_pa) —rlp =3 (g)
+

pa) =plp =2 & 31d+2% (mod p?).
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This proves (1.2) for d = p®, p* — 1.
Assume that 0 < d < p®. If

F(d)=plp=2& 31 (=1)"+d] (mod p?)
and
Fd+1)=pp=2&31(-1)*+d+1] (mod p?),

then by Lemma 3.1 we have

Fd—1)=—F(d) - F(d+1)
—plp=2](B1(-1)*+d]+[31(-1)*+d+1])
=-pp=2]2-B1(-D)*+d-1])

=plp=2& 3t (-1)* +d — 1] (mod p?).

By induction. we obtain from the above that (1.2) holds for any d =
p* p*—1,...,0.
(ii) By Lemma 2.2,

F(0) + 2F(1)
S(Z - (5)+ 2 () (55 -
plp = 2] + P2y m+%@—(§))—(“;1)—%m=ﬂ

(1=3[3|p* —k]) + 2plp = 3]

=(—1)" (plp = 2]+ £lp = 3]) + 20lp = 3

[p = 3] (mod p°).
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Therefore
F(0) — F(p*) = —2(F(1) — F(p” — 1)) (mod p°).

When p =2 and d € {1,...,p* — 1}, we clearly have

p__Pr __P_ - = d p?
I d- d pd - d gaq=(wodp?)
and hence u " u u
p p*  _ p p 3
P _ = P (mod p?).
I p—d-pri—d q medy)

Thus, whether p = 2 or not, by Lemma 3.1 we always have
F(d—1)4+F(d)+F(d+1) = F(p*—d—1)+F(p*—d)+F(p*—d—1) (mod p?)

whenever d € {1,...,p* — 1}.
Set D(i) = F(i) — F(p* —i) fori =0,1,...,p% If 0 <4 < p® — 3 then

D)+ D(i+1)+D(i+2)=0=D(i+1)+D(i+2)+D(i+3) (mod p?)

and hence D(i 4+ 3) = D(i) (mod p?). If p = 3 then —D(0) = D(p?) =
D(0) (mod p?) and hence D(0) = 0 (mod p?). If p* =1 (mod 3) then

|
3
=
!
S
3
=
1

D(1) (mod p?).

If p* =2 (mod 3) then

I
S
—~~
=
I
S
—
i)
=
Il
S
—~
=
1l

—D(0) — D(1) (mod p*).

As D(0) +2D(1) = 0 (mod p3), we always have D(i) = 0 (mod p?) for
i = 0, 1. Therefore

D(i) =0 (mod p®) foralli=0,1,2,...,p%
So (1.3) is valid and we are done. [
4. PROOFS OF THEOREM 1.2 AND COROLLARY 1.2
Proof of Theorem 1.2. In the case m =n = 0, (1.10) reduces to (1.5).

Below we assume m > 0. By the Chu-Vandermonde convolution iden-
tity (cf. [GKP, (5.22)]),

(pam—l—Qk)_Z(pam)( 2k )
pn+k+d) pin—j3)\k+j+d

JEZ
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for any k € N. Thus we have
p*—1 a
Z pm + 2k B
— pn+k+d k—i—d

:§:<£iTj)gS<}+J+d>+;: pn+]>§§<:—3+d)

>0 k=0 >0 k=
paz—l ( pam )paz—l < ) paz—l paz—l
-3 (47 S (0 X ()
=1 T T ktj+d o\t ktj—d
p*—1
p*m 2k
R
where
p*—1
p*m 2k
Rg = Z ( a ) Z ( ) )
pe<j<p®+d pin g k=0 k+j—d
-5 () (s )
052 p*(n+1)+7 Pt k+j+p*—d

Note that Ry = 0if d € {0, 1}.
By Lemma 2.1, there are p-adic integers v and v such that

pin n

and

p(n+1)
= (") (g = 2ptm = o = 1) 4 m o).

( pm ) _ (nj—ll) (14 [p=2p(n+1)(m—n—1)+p*(n+ 1))

n n+1

Let j € {1,...,p" — 1}. When n # m, we have

( pim ) _ (p*m)! » [Tocic;(p*m — pn —1)
p'n+j) (p n)(panz—-pan) (p“n-%l) (p“n-+j)

()5 I
pn pn+J(K< pn+z
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and hence

i = 15 = () torr

since u " u

n
p__P :p_ P - =0 (mod p?)
J pin+ J pin+)

and

p*(m—n)—i _ p*—i _ p*—i

prr i e e (mod p) for 0< i< p“.

Similarly, if n # 0 then

) el e 2
n(@) (m—(m-n)(,") ( ) (mod p?).
Also,
(%) (pa(n +1) + j) = ) (n7-z1)

=(m —n)(m —n—1) (10;) (mod p2terde(m=n)y,

Combining the above, we find that

-1 pa—l

o) () s ()

m—n 2k Ry
n+41 ;0 <k+pa—d)_ﬁ

n
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By (1.5),

pa

= </€2—fd> = (p“g_d> —plp=3] (g) + 275, (mod %),

p 01 <k+p - ) = (g) —plp = 3] (pa;d) + 2998,y (mod p?).
(4.3)

[ay

Clearly p*Sy is congruent to

25 (50) - 2 00 ()

0<j<k

modulo p?. Observe that both p®S,._4 and

Pl p° iy 2k
> () Z ()

are congruent to

> 0= 2 (D)

0<j<pe—d

modulo p?. Also,

d<k<pe

. k
= (14 (-1 =331 ) <_d3_pa) T (pl:) (%)

with the help of Lemma 2.3. Thus,

J) iz \k+j+d

j=1

(4.4)
=plp=2& 31d+ (1) + plp = 3] (g) +p*Sq (mod p?).

Note that

a

SO ()
) o<32<d @) pkz__: <k vi- j) i \Z a @) pi (k +2f— d)
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is congruent to

() s ()

d<j<p®
1

ZO(C=2)-(229) - E 0 (5)

=(1-plp=3)) ) (pfl) (d%) F (14 (=1)P" =33 p]) (d—gp“)

0<j<d J

modulo p? in light of (1.5) and Lemma 2.3. Therefore

pil (@a) paz_:l <k +2f— d)

i=1 k=0 (4.5)
=p*Sa+plp=2&31d—(-1)"] - plp=3] (g) (mod p?).
As
p*—1
p° 2k
200 E i)
_ PN (P =G+ —d) _ . 2
:ogid(j)( D) < s (od 1),
(4.2) yields that
TL(T-‘_)le = (m —n)(m —n —1)p*S; (mod p?). (4.6)

Combining (4.1) with (4.3)—(4.6), we finally obtain (1.10). Note that
(1.11) follows from (1.10) in the case m = 2n. This ends the proof. O

Proof of Corollary 1.2. By (1.11) in the case d € {0,1}, we have
p®—1 ¢—1

1 1 g 2(pn + k) 2(p*n + k)
C’_n kZ:OOpanJrk_C_n Z (( pin + k )_<p“n+k+1

k=0

=(n+1) (%) - <n+(n+1) (pa?)_l) —[pzs]p(n+1>)

") ot

=1-3(n+1) (p 3
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This proves (1.12). On the other hand, (1.11) in the case d = 0 yields

p*—1
1

o 2 @'tk 1)Cpensp = (n+1) (%) (mod p°).

™ k=0

So we have
1 p*—1 pa pan+ 1 p*—1

ol > kCpangr =(n+1) (g) - > Cpanti
"k n k=0

B =(n+1) (j%a)_(p“nH) (1_3(n+1) <pa3_1))
1

=3p*n+1)(n+1) (

3
+(n+1) (2 (pa?)_l) +

(£52) (£) 1

(1.13) follows at once. We are done. [J

Since
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