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A ONE-PARAMETER FAMILY OF DENDRIFORM IDENTITIES

JEAN-CHRISTOPHE NOVELLI AND JEAN-YVES THIBON

Abstract. We prove a q-identity in the dendriform dialgebra of colored free quasi-
symmetric functions. For q = 1, we recover identities due to Ebrahimi-Fard, Man-
chon, and Patras, in particular the noncommutative Bohnenblust-Spitzer identity.

1. Introduction

The classical Spitzer and Bohnenblust–Spitzer identities [17, 1, 15] from prob-
ability theory can be formulated in terms of certain algebraic structures known as
commutative Rota-Baxter algebras. Recently, Ebrahimi-Fard et al. [3] have extended
these identities to noncommutative Rota-Baxter algebras. Their results can in fact
be formulated in terms of dendriform dialgebras [4], a class of associative algebras
whose multiplication split into two operations satisfying certain compatibility rela-
tions [10]. Here, we exploit a natural embedding of free dendriform dialgebras into
free colored quasisymmetric functions in order to simplify the calculations, and to
obtain a q-analog of the main formulas of [3, 4].

Notations – We assume that the reader is familiar with the standard notations of the theory of

noncommutative symmetric functions [5, 2].

2. Dendriform algebras and free quasi-symmetric functions

2.1. Dendriform algebras. A dendriform dialgebra [9] is an associative algebra A

whose multiplication · can be split into two operations

(1) a · b = a≺b + a≻b

satisfying

(2) (x≺y)≺z = x≺(y · z) , (x≻y)≺z = x≻(y≺z) , (x · y)≻z = x≻(y≻z) .

2.2. Free quasi-symmetric functions. For example, the algebra of free quasi-
symmetric functions FQSym [2] (or the Malvenuto-Reutenauer Hopf algebra of
permutations [11]) is dendriform. Recall that for a totally ordered alphabet A,
FQSym(A) is the algebra spanned by the noncommutative polynomials

(3) Gσ(A) :=
∑

w∈An

std(w)=σ

w
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where σ is a permutation in the symmetric group Sn and std(w) denotes the stan-
dardization of the word w. The multiplication rule is

(4) GαGβ =
∑

γ∈α∗β

Gγ,

where the convolution α ∗ β is [11]

(5) α ∗ β =
∑

γ=uv
std(u)=α; std(v)=β

γ .

The dendriform structure of FQSym is inherited from that of the free associative
algebra over A, which is [12, 13]

u≺v =

{

uv if max(v) ≤ max(u)

0 otherwise,
(6)

u≻v =

{

uv if max(v) ≥ max(u)

0 otherwise,
(7)

This yields

(8) GαGβ = Gα≺Gβ + Gα≻Gβ ,

where

(9) Gα≺Gβ =
∑

γ=uv∈α∗β
|u|=|α|; max(v)<max(u)

Gγ ,

(10) Gα≻Gβ =
∑

γ=u.v∈α∗β
|u|=|α|; max(v)≥max(u)

Gγ .

Then x = G1 generates a free dendriform dialgebra in FQSym, isomorphic to PBT,
the Loday-Ronco algebra of planar binary trees [10].

There is a Hopf embedding ι : Sym → PBT of noncommutative symmetric
functions into PBT [5, 2, 6], which is given by

(11) ι(Sn) = (. . . ((x≻x)≻x) . . . )≻x (n times).

One of the identites of [3] amounts to an expression of ι(Ψn) in terms of the dendriform
operations. It reads

(12) ι(Ψn) = (. . . ((x ⊲ x) ⊲ x) · · · ⊲ x (n times),

where a ⊲ b = a ≻ b − b ≺ a. Interestingly enough, applying this identity to the
dendriform products of a Rota-Baxter algebra yields a closed form solution to the
Bogoliubov recursion in quantum field theory [3]. However, using the embedding in
FQSym, the proof of this identity is remarkably simple. Indeed,

(13) Gσ≻x = Gσ·(n+1) and x≺Gσ = G(n+1)·σ ,
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so that ι(Sn) = G12...n. In terms of permutations, this is therefore the standard
embedding of Sym in FQSym as the descent algebra, for which, identifying Gσ

with σ,

(14) Ψn = [[. . . , [1, 2], . . . , n − 1], n].

We then clearly have

x ⊲ x = G12 −G21 = R2 − R11 = Ψ2(15)

Ψ2 ⊲ x = G123 −G213 −G312 + G321 = R3 − R21 + R111 = Ψ3(16)

Ψn−1 ⊲ x = G12...n − · · · ± Gn...21 =
n−1
∑

k=0

(−1)kR1k ,n−k = Ψn .(17)

2.3. Colored free quasi-symmetric functions. Similarly, the free dendriform di-
algebra of r generators x1, . . . , xr can be realized inside the algebra FQSym(r) of
free quasi-symmetric functions of level r [14]. It is a straightforward generalization
of FQSym, built from an r-colored alphabet

(18) A := A(1) ⊔ · · · ⊔ A(r)

where

(19) A(i) := {a
(i)
1 < a

(i)
2 < . . . }

are copies of A. Writing a colored word

(20) w = a
(u1)
i1

. . . a
(un)
in

= (w, u)

where w = ai1 . . . ain is the underlying word and u = u1 . . . un the color word, we
define

(21) Gσ,u :=
∑

std(w)=σ

(w, u) = Gσ ⊗ u.

Then,

(22) Gα,uGβ,v =
∑

γ∈α∗β

Gγ,u·v = (GαGβ) ⊗ uv ,

and we have again a natural dendriform structure, in which

(23) x1 = G1,1, . . . , xr = G1,r

generate a free dendriform dialgebra.

3. The identities

3.1. A q-analog of the Ψn with colors. For a color word u and a permutation σ

of the same size, we introduce the biword notation

(24)

(

u

σ

)

:= Gσ,u.
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With any color word u = u1 . . . ur, we associate a nested q-bracketing

(25) Ψu :=

[

. . .

[

u1

1
,
u2

2

]

q

. . . ,
up

p

]

q

where [x, y]q = xy − qyx, the multiplication of nonparenthesized biletters being or-
dinary concatenation, the result being interpreted as a linear combination of paren-
thesized biwords. For example,

(26) Ψ312 =

[

[

3
1
,
1
2

]

q

,
2
3

]

q

=

(

312
123

)

− q

(

132
213

)

− q

(

231
312

)

+ q2

(

213
321

)

.

This is an element of the free dendriform dialgebra generated by x1, . . . , xr:

(27) Ψu = (. . . (xu1 ⊲q xu2) ⊲q xu3 . . . ) ⊲q xup

where x ⊲q y = x≻y − qy≺x. For q = 1, ⊲q is one of the two pre-Lie products always
defined on a dendriform dialgebra.

A word u = u1 . . . up is called initially dominated if u1 > ui for all i > 1. Each
word has a unique increasing factorization into initially dominated words u(i), i.e.,

(28) u = u(1) · u(2) · · ·u(p)

such that u
(1)
1 ≤ u

(2)
1 ≤ · · · ≤ u

(p)
1 .

With a permutation σ ∈ Sn regarded as a word with increasing factorization
σ = u(1) · · ·u(p), we associate the following element of FQSym(n):

(29) Ψσ = Ψu(1)

Ψu(2)

· · ·Ψu(p)

.

For q = 1, this reduces to Tσ(x1, . . . , xn) in the notation of [3]. Our aim is to compute
the equivalent of the sum of all Tσ in our context.

Example 3.1. With n = 3, one has

(30) Ψ
123 = Ψ1Ψ2Ψ3 =

„

123
123

«

+

„

123
132

«

+

„

123
213

«

+

„

123
231

«

+

„

123
312

«

+

„

123
321

«

.

(31) Ψ
132 = Ψ1Ψ32 =

„

132
123

«

+

„

132
213

«

+

„

132
312

«

− q

„

123
132

«

− q

„

123
231

«

− q

„

123
321

«

.

(32) Ψ
213 = Ψ21Ψ3 =

„

213
123

«

+

„

213
132

«

+

„

213
231

«

− q

„

123
213

«

− q

„

123
312

«

− q

„

123
321

«

.

(33) Ψ
231 = Ψ2Ψ31 =

„

231
123

«

+

„

231
213

«

+

„

231
312

«

− q

„

213
132

«

− q

„

213
231

«

− q

„

213
321

«

.

(34) Ψ
312 = Ψ312 =

„

312
123

«

− q

„

132
213

«

− q

„

231
312

«

+ q
2

„

213
321

«

.

(35) Ψ
321 = Ψ321 =

„

321
123

«

− q

„

231
213

«

− q

„

132
312

«

+ q
2

„

123
321

«

.
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Let

(36) Σn :=
∑

σ∈Sn

Ψσ.

Summing Equations (30) to (35), one can observe that the coefficient of each indi-
vidual biword is a power of (−q) multiplied by a power of (1 − q). We shall see that
this is true in general. By putting q = 1 into Σn, one then recovers the result of [3],
namely that the sum of the Tσ is equal to the sum of all colorings of the identity
permutation. To prove this fact, we first group permutations into classes having the
same coefficient.

3.2. Grouping the permutations. If the sizes of the factors of a permutation σ

into initially dominated words are |u(1)| = k1, . . . , |u(p)| = kp, we set

(37) S(σ) := (k1, . . . , kp) = K,

and call it the saillance composition of σ. The following tables represent the saillance
compositions of all permutations of S3 and S4.

(38)

3 21 12 111

312 213 132 123
321 231

(39)

4 31 22 211 13 121 112 1111

4123 3124 2143 2134 1423 1324 1243 1234
4132 3214 3142 1432 2314 1342
4213 3241 2413 2341
4231 2431
4312 3412
4321 3421

The saillance composition is similar to the descent composition D(σ) = (i1, . . . , is)
whose parts are the sizes of the maximal increasing factors of σ. The descent set

Des(I) of a composition I = (i1, . . . , is) is

(40) Des(I) = {i1, i1 + i2, . . . , i1 + · · ·+ is−1}.

If one writes Des(I) = {d1, . . . }, we then define Des(I)− as the set {d1−1, d2−1, . . . }.
For a color word u of size n and compositions I and J of n, set

(41) Ru
I :=

∑

D(τ)=I

(

u

τ

)

,

and

(42) R
(J)
I :=

∑

S(σ)=J

Rσ
I =

∑

D(τ)=I

S(σ)=J

(

σ

τ

)

.
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Example 3.2. Regarding the biwords as bilinear operations, we have

(43) R
(13)
211 :=

(

1423 + 1432 + 2413 + 2431 + 3412 + 3421
2134 + 3124 + 4123

)

.

(44) R
(121)
31 :=

(

1324 + 2314
2143 + 3142 + 3241 + 4132 + 4231

)

.

We shall prove later that the sum Σn is a linear combination of R
(J)
I . Note that

the linear span of the R
(J)
I is not a subalgebra of the colored free quasi-symmetric

functions. However, we shall refer to it as the space of colored noncommutative
symmetric functions.

3.3. Other bases of colored noncommutative symmetric functions. The ex-
pression of Σn is simpler in a different basis. Let us define the colored elementary

basis Λ
(J)
I by

(45) Λ
(J)
I :=

∑

I′�I
∼

R
(J)
I′ ,

where the sum runs over the compositions I ′ finer than the conjugate I
∼

of the mirror
image I of I. Note that this definition is independent of the color J .

For example,

(46) Λ
(41)
32 = R

(41)
1121 + R

(41)
11111.

3.4. The main result. We shall need a simple statistic on pairs of compositions.
First recall the two basic operations on compositions I = (i1, . . . , ir) and J =
(j1, . . . , js):

(47) I · J = (i1, . . . , ir, j1, . . . , js), and I ⊲ J = (i1, . . . , ir + j1, . . . , js).

Now, let us define the I-decomposition of a composition J as the unique sequence of
compositions

(48) J ↓ I = (J (1), . . . , J (r))

such that J (k)
� ik for all k and

(49) J = J (1) ◦1 J (2) ◦2 · · · ◦r−1 J (r),

where each ◦i is either · or ⊲.
Let I and J be two compositions of n, and let (J (1), . . . , J (r)) = J ↓ I. Write

J (k) = (j
(k)
1 , . . . , j

(k)
sk ). Then the statistic D(I, J) is

(50) D(I, J) = n −
r

∑

k=1

j(k)
sk

.

For example, with I = (6, 2, 2, 4, 1, 4) and J = (3, 2, 4, 3, 2, 5), one has J ↓ I =
((3, 2, 1), (2), (1, 1), (2, 2), (1), (4)). Hence D(I, J) = 19− 1− 2− 1− 2− 1− 4 = 8.
The complete examples for sizes 3 and 4 are given in Section 5.1.

We then have the following simple expression:
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Theorem 3.3.

(51) Σn =
∑

I,J

(−1)l(I)−1qD(I,J)Λ
(J)
I .

The proof of this theorem relies on Theorem 4.5 and will be given in Section 4.
One easily derives from this result the expansion of Σn in terms of the ribbon basis.

Note that one can work in Sym since the colors J do not interfere with the change
of basis between Λ and R. We have

Corollary 3.4. The sum of all Ψσ in FQSym(n) is

(52)
∑

σ∈Sn

Ψσ =
∑

I,J �n

cIJ(q)R
(J)
I

where

(53)

cIJ(q) =

{

0 if Des(I)\Des(I)− 6⊂ Des(J),
(−q)|Des(I)\Des(J)|(1 − q)|Des(I)∩Des(J)| otherwise.

Corollary 3.5. For q = 1, we recover the noncommutative Bohnenblust-Spitzer iden-

tity of [3]:

(54)
∑

σ∈Sn

Tσ(u1, . . . , un) =
∑

σ∈Sn

Ψσ|q=1 =
∑

J �n

R(J)
n =

∑

σ∈Sn

(

12 . . . n

σ

)

.

Indeed, cIJ(1) 6= 0 iff Des(I) ∩Des(J) = ∅ and Des(I)\Des(I)− ⊂ Des(J), that is,
Des(I) ⊂ Des(I)−, so that I = (n) (no descents). So the sum simplifies to the sum
of all colorings of the identity permutation.

4. A refinement of Theorem 3.3

The proof of Theorem 3.3 relies on an induction similiar to Newton’s recursion for
symmetric functions. We shall use this recursion to state a refinement of the theorem
to prove. Let

(55) PI :=
∑

S(γ)=I

Ψγ.

Lemma 4.1. Let I = (n) be a one-part composition. Then

(56) PI = P(n) =
n

∑

k=1

(−q)n−k
∑

J �n−k

R
(J,k)

1n−k ,k
.

(57) P(n) =
∑

I,J

(−1)n−l(I)qD(I,J)Λ
(J)
I ,

where the sum is taken over all compositions J = (j1, . . . , jk) and all compositions

I belonging to the interval of the composition lattice for the refinement order whose

finest element is (n − jk + 1, 1jk−1) and whose coarsest element is (n).
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Proof – Formula (56) is immediate by definition of P(n). The second formula follows
from the first one by a simple computation in the algebra of noncommutative sym-
metric functions.

For an interval [H, K] of the boolean lattice of compositions of n, let

(58) Λ
[H,K]
I :=

∑

J∈[H,K]

Λ
(J)
I .

Using this notation, Equation (57) can be rewritten as

(59) P(n) =
∑

I=(i1,...,ip) �n

(−1)n−l(I)

n
∑

k=n−i1+1

qD(I,(n−k,k))Λ
[(n−k,k),(1n−k,k)]
I .

Note 4.2. The characterization of the Λ
(J)
I appearing in Pn is simple: it consists in

the compositions I and J of n such that the sum of the first part of I and the last
part of J is strictly greater than n.

We now need a very simple lemma on permutations.

Lemma 4.3. Let σ ∈ Sn. Then S(σ) = (l1, . . . , lp) iff

(60) S(σ1, . . . , σl1+···+lp−1) = (l1, . . . , lp−1) and σl1+···+lp−1+1 = n.

This lemma implies a recursion for PL. For any totally ordered color alphabet C

of size n, denote by PI [C] the result of replacing each color i by ci in PL. Then, by
definition of PL,

(61) P(l1,...,lp) =
∑

|C′|=n−lp, |C′′|=lp, n∈C′′

P(l1,...,lp−1)[C
′]P(lp)[C

′′].

This can be rewritten in the more suggestive form

(62) P(l1,...,lp) = P(l1,...,lp−1) ≫ P(lp).

where the dendriform products ≪ and ≫ are defined in the biword notation of (24)
by

(63)

(

α

β

)

≪

(

α′

β ′

)

:=

(

α≺α′

β ∗ β ′

)

(64)

(

α

β

)

≫

(

α′

β ′

)

:=

(

α≻α′

β ∗ β ′

)

Thanks to (59) and (62), the evaluation of PL reduces to the following:

Lemma 4.4. Let I and J = (j1, . . . , jp) be two compositions of the same size and let

I ′ be a composition of n. Then

(65) Λ
(j1,...,jp)
I ≫ Λ

[(n−k,k),(1n−k,k)]
I′ = Λ

[(j1,...,jp−1+jp,1n−k,k),(j1,...,jp−1,jp,1n−k,k)]
I·I′ .
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Proof – From the characterization of the right dendriform product (64), we just have
to evaluate in FQSym

(66)





∑

S(σ)=J ;σ∈Sn

Gσ



≻





∑

τm−k+1=m;τ∈Sm

Gτ





that is, thanks to Lemma 4.3,

(67)
∑

ρ=u.v;S(u)=S(σ)
ρn+m−k+1=n+m

Gρ =
∑

S(ρ)=(j1,...,jp−1,K,k)

|K|=jp+m−k;K1≥jp

Gρ.

We can now state our main result:

Theorem 4.5. Let L = (l1, . . . , lp) be a composition of n. Then

(68) PL =
∑

I,J

(−1)n−l(I)qD(I,J)Λ
(J)
I ,

where the sum is taken over all pairs of compositions (I, J) such that

• I is finer than L,

• For k = 1, . . . , p − 1, Des(J) ∩ [dk, dk+1 − 1] 6= ∅, where dk = l1 + · · · + lk,

• If I ↓ L = (I(1), . . . , I(p)) and J ↓ L = (J (1), . . . , J (p)), then, for all k ∈ [1, p],
the sum of the first part of I(k) and the last part of J (k) is strictly greater than

lk.

Proof – First, Equation (59) and Lemma 4.4 imply that PL is a linear combination

of Λ
(J)
I . It is also clear that the theorem holds if L = (n). The result now follows

by induction, since it is obviously a multiplicity-free expansion thanks to Lemma 4.4
and since the characterization is the expected one thanks to Note 4.2.

The only point that remains to be proved is that the coefficient (−1)n−l(I)qD(I,J) is
what is expected but this follows directly from the fact that, following the notations
of Lemma 4.4,

(69) D(I, J) + n − k = D(I · I ′, K),

for all I ′ such that I ′
1 > n − k and for all K in the interval

(70) [(j1, . . . , jp−1, jp + 1n−k, k), (j1, . . . , jp−1, jp, 1
n−k, k)].

Proof – [of Theorem 3.3] Thanks to Theorem 4.5, there only remains to prove that
each pair (I, J) appears in the expansion of exactly one PL. Indeed, starting from I

and J , one glues a part of I to the previous one if there is no descent of J in between

those two parts. This gives a composition L such that Λ
(J)
I appears in PL since it

satisfies all three conditions of Theorem 4.5: the third condition is the only one that
remains to be checked. It is satisfied with L = I and this property remains true after
each gluing, by definition of the gluing. Any composition strictly finer than L and
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coarser than I does not satisfy the second condition, any other composition coarser
than I does not satisfy the third condition. All other compositions do not satisfy the
first condition.

5. Examples

5.1. Expressions of Σn in terms of Λ and R. We have

(71) Σ2 = −qΛ
(11)
2 − Λ

(2)
2 + Λ

(11)
11 + Λ

(2)
11 .

Arranging the coefficients into a matrix, whose row I and column J gives the value

of Λ
(J)
I in Σn, we have

(72) M2 =

2 11

2
11

(

−1 −q

1 1

)

To save space and for better readability, we shall rather give the matrices of the
exponent D(I, J) itself, where 0 is represented by a dot.

(73) D2 =

2 11

2
11

(

. 1

. .

)

D3 =

3 21 12 111

3
21
12
111









. 2 1 2

. . 1 1

. 1 . 1

. . . .









(74) D4 =

4 31 22 211 13 121 112 1111

4
31
22
211
13
121
112
1111























. 3 2 3 1 3 2 3

. . 2 2 1 1 2 2

. 1 . 1 1 2 1 2

. . . . 1 1 1 1

. 2 1 2 . 2 1 2

. . 1 1 . . 1 1

. 1 . 1 . 1 . 1

. . . . . . . .























Note that all columns of Mn become equal when q = 1.

Here are now the matrices of Σ2, Σ3, and Σ4 in the ribbon basis R
(J)
I .

(75) M ′
2 =

2 11

2
11

(

1 1
. 1−q

)
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(76) M ′
3 =

3 21 12 111

3
21
12
111









1 1 1 1
. 1 − q . 1−q

. . 1−q 1−q

. −q(1−q) . (1−q)2









(77)

M ′
4 =

4 31 22 211 13 121 112 1111






















1 1 1 1 1 1 1 1
. 1−q . 1−q . 1−q . 1−q

. . 1−q 1−q . . 1−q 1−q

. −q(1−q) . . 1 1 1 1

. . 1 2 . 2 1 2

. . 1 1 . . 1 1

. . . 1 . 1 . 1

. q2(1−q) . . . . . .























5.2. Expressions of PL in terms of Λ. The entry (I, J) in the following matrices

is the composition L such that Λ
(J)
I appears in PL.

(78) N2 =

2 11

2
11

(

2 2
2 11

)

N3 =

3 21 12 111

3
21
12
111









3 3 3 3
3 21 3 21
3 12 12 12
3 21 12 111









(79) N4 =

4 31 22 211 13 121 112 1111

4
31
22
211
13
121
112
1111























4 4 4 4 4 4 4 4
4 31 4 31 4 31 4 31
4 22 22 22 4 22 22 22
4 31 22 211 4 31 22 211
4 13 13 13 13 13 13 13
4 31 13 121 13 121 13 121
4 22 22 22 13 112 112 112
4 31 22 211 13 121 112 1111
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