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PARTIAL TRANSPOSE OF PERMUTATION MATRICES

Abstract. The main purpose of this paper is to look at the notion of partial transpose from
the combinatorial side. In this perspective, we solve some basic enumeration problems involving
partial transpose of permutation matrices. Specifically, we count the number of permutations
matrices which are invariant under partial transpose. We count the number of permutation
matrices which are still permutation matrices after partial transpose. We solve this problem also
for transpositions. In this case, there is little evidence to justify a link between some permutations,
partial transpose, and certain domino tilings.
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1. Introduction

The partial (matrix) transpose is a linear algebraic concept, which can be interpreted as a simple
generalization of the usual matrix transpose. The partial transpose can be defined for every square
matrix of composite degree. The definition is as follows. Let p, q be two positive integers, n = pq
and M be an n × n matrix with real entries. We can look at the matrix M as partitioned into p2

blocks each one q × q. The partial transpose of M , denoted by MΓp , is the matrix obtained from
M , by transposing independently each of its p2 blocks. Formally, if

M =







B1,1 · · · B1,p

...
. . .

...
Bp,1 · · · Bp,p






then MΓp =







BT
1,1 · · · BT

1,p
...

. . .
...

BT
p,1 · · · BT

p,p






,

where BT
i,j denotes the transpose of the block Bi,j , for 1 ≤ i, j ≤ p. By taking the adjoint B†

i,j ,

instead of the transpose BT
i,j, we can easily extend the notion of partial transpose to matrices with

complex entries. This is something which we will not need in the present paper. Note that we have
defined partial transpose with respect to the parameter p. We can also define partial transpose
with respect to the parameter q, if we look at the blocks of M as the entries of a p × p matrix.
Formally,

MΓq =







B1,1 · · · Bp,1

...
. . .

...
B1,p · · · Bp,p






.

That is, the block Bi,j in M is the block Bj,i in MΓq for all 1 ≤ i, j ≤ p.
The role of partial transpose is important in the mathematical theory of quantum entanglement.

For a general reference on the topic see, e.g., [7]; see [2] for an explanation of the meaning of
partial transpose in this context. In particular, the PPT-criterion [5, 7, 8], where “PPT” stands
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for Positive Partial Transpose, also called Peres-Horodecki criterion, ascertains that if the density
matrix (or, equivalently, the state) of a quantum mechanical system with composite dimension pq
is entangled, with respect to the subsystems of dimension p and q, then its partial transpose is
positive. Interestingly, it does not matter if the partial transpose is taken with respect to p or to
q. An important open mathematical problem is to prove that non-distillable states have positive
partial transpose (see, e.g., [3]).

Looking at partial transpose from the combinatorial point of view is an appealing topic, because
it has the potential to uncover rules and patters behind the behavior of entangled states. As a
matter of fact there have been a number of recent papers considering entanglement combinatorially
[1, 4, 6]. Permutation matrices appear to be a simple, yet rich territory to start with. We will
deal with some enumeration problems involving permutation matrices and partial transpose. Let
us recall that a permutation matrix of size n is an n× n matrix, with entries in the set {0, 1}, such
that each row and each column contains exactly one nonzero entry. A permutation of length n is a
bijection π : [n] −→ [n], where [n] = {1, 2, ..., n}. Given an n × n permutation matrix P , there is a
unique permutation π of length n associated to P , such that π(i) = j if and only if Pi,j = 1. Let
us denote by Sn the set of all n×n permutation matrices. With an abuse of notation, we write Sn

also for the set of all permutations of length n.
We will consider the following problems:

• Count the number of permutation matrices P ∈ Spq such that PΓp ∈ Spq.

For example, when p = q = 2, we have all together 4 + 4 + 4 = 12 matrices P ∈ S4 such that
PΓ2 ∈ S4. Among these, 8 are the block-matrices of the forms

(1)

[

∗ 0

0 ∗

]

and

[

0 ∗
∗ 0

]

.

The remaining 4 matrices are the circulant and anti-circulant matrices

(2)









1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0









,









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









,









0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1









and









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0









.

• Count the number of permutation matrices P ∈ Spq such that PΓp = P .

For example, when p = q = 2, we have all together 4 + 4 + 2 = 10 matrices P ∈ S4 such that
PΓ2 = P . Among these, 8 are the block matrices in equation 1. The remaining 2 matrices are the
first and the third anti-circulant matrices in equation 2.

We will also consider the number of transpositions which are invariant under partial transpose.
This is equivalent to count the number of separable (non-entangled) density matrices of graphs,
corresponding to a disjoint union of cycles and isolated vertices [1]. Let us recall that a permutation
matrix P is said to be a transposition if P = PT and P is not the identity matrix. Namely, we will
address the following:

• Count the number of transpositions P ∈ Spq such that PΓp ∈ Spq.

Section 2 contains solutions to these problems. Section 3 contains a list of open questions.

2. Results

We begin by considering the first problem: count the number of permutation matrices P ∈ Spq

such that PΓp ∈ Spq. For a permutation matrix P ∈ Spq, let us denote by Pi,j the block located in
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the i-th row and j-th column. Let further Ai,j , Bi,j ⊆ [q] = {1, 2, . . . , q} be the sets of relative row
indices and column indices of the 1’s in Pi,j . For example, given









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0









,

we have
A1,1 = {2}, A1,2 = {1}, A2,1 = {1}, A2,2 = {2},

and
B1,1 = {1}, B1,2 = {2}, B2,1 = {2}, B2,2 = {1}.

Clearly, Ai,j has the same cardinality as Bi,j , which we denote by ri,j . For fixed Ai,j and Bi,j , we
have ri,j ! ways to place 1’s in Pi,j . Therefore, the number of required matrices equals the number
of Ai,j , Bi,j ’s multiplied by

∏

i,j ri,j !. At this stage, let us impose the required constraints on Ai,j

and Bi,j . We know that P is a permutation matrix if and only if

(3) Ai,j ∩ Ai,k = ∅, for every i, j, k with j 6= k,

(4) Bi,j ∩ Bk,j = ∅, for every i, j, k with i 6= k,

and
p

⋃

j=1

Ai,j = [q], for i = 1, 2, ..., p,(5)

p
⋃

i=1

Bi,j = [q], for j = 1, 2, ..., p.(6)

We need that PΓp is also a permutation matrix. Therefore, we have

(7) Ai,j ∩ Ak,j = ∅, for every i, j, k with i 6= k,

(8) Bi,j ∩ Bi,k = ∅, for every i, j, k with j 6= k,

and
p

⋃

i=1

Ai,j = [q], for j = 1, 2, ..., p,(9)

p
⋃

j=1

Bi,j = [q], for i = 1, 2, ..., p.(10)

Let

Aπ =

p
⋂

i=1

Ai,πi
and Bπ =

p
⋂

i=1

Bi,πi
, ∀π ∈ Sp,

By the equations (3)–(5), we know that

(11) Ai,j =
⋃

πi=j

Aπ , Bi,j =
⋃

πi=j

Bπ.

From (3) and (4), we can write

(12) Aπ ∩ Aσ = Bπ ∩ Bσ = ∅, for every π, σ ∈ Sp with π 6= σ.
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Furthermore,

(13)
⋃

π∈Sp

Aπ =
⋃

π∈Sp

Bπ = [q].

Conversely, given two set partitions {Aπ} and {Bπ} of [q], satisfying the equations (12) and (13),
we may define Ai,j and Bi,j by equation (11). One can easily check that (3)–(10) hold. The only
restriction on the Aπ ’s and the Bπ’s is that the cardinalities of Ai,j and Bi,j should be the same.
Let aπ and bπ denote the cardinalities of Aπ and Bπ, respectively. On the basis of the above
observations, we can state the following result:

Theorem 1. Let Z(p, q) the number of permutation matrices P ∈ Spq such that PΓp ∈ Spq. Then

(14) Z(p, q) =
∑

P

aπ=
P

bπ=q
P

πi=j
aπ=

P

πi=j
bπ

q!2
∏

π aπ!bπ!

p
∏

i,j=1





∑

πi=j

aπ



!,

where the sum runs over all nonnegative integers aπ and bπ.

It may be worth to point out the next corollary:

Corollary 2. The number of permutation matrices P ∈ S2q such that PΓ2 ∈ S2q is

Z(2, q) = q!(q + 1)!.

Now we focuse on the second problem: count the number of permutation matrices P ∈ Spq such
that PΓp = P . We then ask that Pi,j = PT

i,j . Hence, Ai,j = Bi,j . Additionally, given Ai,j , the
number of ways to put 1’s in the block Pi,j is exactly the number of transpositions of size q, which
we denote by I(q). It is well-known that (see, e.g., Example 5.2.10 in [10])

(15) I(q) =

q
∑

j=0
j even

(

q

j

)

j!

2j/2(j/2)!

and I(q +1) = I(q)+ q · I(q− 1). With the same analysis carried on for Theorem 1, we can directly
obtain the number of desired matrices:

Theorem 3. Let Ze(p, q) the number of permutation matrices P ∈ Spq such that P = PΓp . Then

(16) Ze(p, q) =
∑

P

aπ=q

q!
∏

π aπ!

p
∏

i,j=1

i





∑

πi=j

aπ



 ,

where the sum runs over all nonnegative integers aπ, with π ∈ Sp.

When taking p = 2, the number of permutation matrices is particularly neat:

Corollary 4. The number of permutation matrices P ∈ S2q such that P = PΓ2 is

Ze(2, q) =

q
∑

r=0

(

q

r

)2

I(r)2I(q − r)2.
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Here is the third problem: count the number of transpositions P ∈ Spq such that PΓp ∈ Spq.
Let P be the transposition defined by the ordered pairs (aq + i, bq + j), where 0 ≤ a, b ≤ p − 1,
1 ≤ i, j ≤ q and (a, i) 6= (b, j). Note that the partial transpose keeps fixed the 1’s in the diagonal.
So, the only possible permutation matrices after partial transpose would be the identity matrix
Id or P itself. In the first case, we must have P = Id, since we get back to the original matrix
by applying twice the partial transpose operation. Therefore, we only need to consider the second
case, that is, when P remains invariant under partial transpose. Notice that the (aq + i, bq + j)-th
and the (bq + j, aq + i)-th entry of the permutation matrix are 1’s. After partial transpose, the
(aq + j, bq + i)-th and the (bq + i, aq + j)-th entry are 1’s. Thus we have

(aq + i, bq + j) = (aq + j, bq + i),

(bq + j, aq + i) = (bq + i, aq + j),

or

(aq + i, bq + j) = (bq + i, aq + j),

(bq + j, aq + i) = (aq + j, bq + i).

That is, i = j or a = b. Hence, the desired transpositions are of type (aq + i, aq + j), with i 6= j,
or, of type (aq + i, bq + i), with a 6= b.

Theorem 5. Let Zt(p, q) be the number of transpositions P ∈ Spq such that PΓp ∈ Spq, or,

equivalently, PΓp = P . Then

Zt(p, q) = p

(

q

2

)

+ q

(

p

2

)

.

Corollary 6. The number of transpositions P ∈ Spq and p = q + 1 such that PΓp = P is

Zt(q + 1, q) = q(q + 1)(2q − 1)/2.

When p = q,
Zt(q, q) = q3 − q2.

At the end we note that Z(p, q) = Z(q, p) and Zt(p, q) = Zt(q, p), which can be seen by the
following bijection: Suppose the

(ap + i, b(a, i)p + j(a, i))-th

entry of P is 1, then let the

((i − 1)q + (a + 1), (j(a, i) − 1)q + (b(a, i) + 1))-th

entry of P ′ be 1. If P is a permutation after partial transpose, then ap + j(a, i) and b(a, i)p + i run
over 1 to n for 0 ≤ a ≤ q − 1, 1 ≤ i ≤ p. Thus, (i− 1)q + (b(a, i) + 1) and j(a, i)− 1)q + (a + 1) run
over 1 to n also, which implies that P ′ is a permutation after partial transpose.

While in general Ze(p, q) 6= Ze(p, q).
In standard linear notation, a permutation π ∈ Sn can be written as a word of the form

π(1)π(2)...π(n). Note that
∑n

i=1
π(i) =

∑n
i=1

i. Also, for a permutation matrix P ,
∑

Pi,j=1
i =

∑n
i=1

i. The cells in the table below include each permutation π ∈ S4 and the indices of the rows

in the associated matrix PΓ2 :

1234, 1234 1243, 1243 1324, 1414 1342, 1432 1423, 1441 1432, 1432
2134, 2134 2143, 2143 2314, 4114 2341, 4123 2413, 1414 2431, 1423
3142, 2314 3142, 2323 3214, 3214 3241, 3223 3412, 3412 3421, 3421
4123, 2341 4132, 2332 4213, 2314 4231, 2323 4312, 4312 4321, 4321.
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Proposition 7. Let P ∈ Sn, where n = pq. Then
∑

P
Γp

i,j
=1

i = n (n + 1) /2.

Proof. Suppose P is a permutation matrix and the (ap+ i, b(a, i)p+j(a, i))-th entry of P is 1. Then
b(a, i) runs over 0, . . . , q − 1 p times and j(a, i) runs over 1, . . . , p q times. Thus,

∑

a,i b(a, i) = p
(

q
2

)

and
∑

a,i j(a, i) = q
(

p+1

2

)

. Therefore

∑

a,i

ap + j(a, i) = p

(

q

2

)

+ q

(

p + 1

2

)

=

(

n + 1

2

)

,

which completes the proof. �

3. Open questions

• Formulate the first two problems for particular classes of permutations. For example, count
the number of cyclic permutations P ∈ Spq such that PΓp = P .

• Formulate the same problems for graphs, that is, general symmetric matrices with entries in
the set {0, 1}. When restricted to regular graphs, this problem seems to be amenable to be
approached with a direct method similar to the one used in this paper. In fact the adjacency
matrix of each d-regular graph can be written as a sum of d permutation matrices.

• The number Zt(q+1, q) is equal to the number of ways of covering a 2q×2q lattice with 2q2

dominoes with exactly 2 horizontal dominoes ([9], Sequence A002414). Is there a bijection
between these objects and the permutations of Corollary 6? Pondering this observation, it
is tempting to ask if there a relation between certain domino tilings and positivity of partial
transpose, at least for some restricted class of matrices.
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