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Abstract. The descent algebra Σ(W) is a subalgebra of the group algebra QW of

a finite Coxeter group W, which supports a homomorphism with nilpotent kernel

and commutative image in the character ring of W. Thus Σ(W) is a basic algebra,

and as such it has a presentation as a quiver with relations. Here we construct

Σ(W) as a quotient of a subalgebra of the path algebra of the Hasse diagram of

the Boolean lattice of all subsets of S, the set of simple reflections in W. From this

construction we obtain some general information about the quiver of Σ(W) and

an algorithm for the construction of a quiver presentation for the descent algebra

Σ(W) of any given finite Coxeter group W.
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1. Introduction.

The descent algebra Σ(W) of a finite Coxeter group W of rank n is a remarkable 2n-

dimensional subalgebra of the group algebra QW, which supports a homomorphism θ

with nilpotent kernel and commutative image in the character ring of W. Therefore,

Σ(W) is a basic algebra, and as such it has a presentation as a quiver with relations.

In this article we construct Σ(W) as a quotient of a subalgebra of the path algebra

of the Hasse diagram of the power set of S, the set of simple reflections of W. From

this construction we obtain general information about the quiver of Σ(W) and an

algorithm, which for a given finite Coxeter group W computes a quiver presentation

for the descent algebra Σ(W).

Solomon [21] has defined the descent algebra Σ(W) in terms of distinguished coset

representatives of the standard parabolic subgroups of W. Bergeron, Bergeron,

Howlett and Taylor [2] have obtained a decomposition of Σ(W) into principal in-

decomposable modules. More recently, Bidigare [3] has identified Σ(W) with the

fixed point space under the action of W on the monoid algebra of the face monoid

of the hyperplane arrangement associated to the reflection representation of W. In

this approach, the descent algebra Σ(W) is a subalgebra of a quotient of a path

algebra. Brown [8] discusses this construction in the wider context of semigroups

of idempotents. The face monoid algebra of the reflection arrangement of a finite

Coxeter group W is called the Solomon-Tits algebra by Patras and Schocker [13].

Schocker [18] discusses the descent algebra of the symmetric group and its quiver in

this context.

More results concerning the quiver of Σ(W) have been obtained for particular types of

finite Coxeter groups, mostly for type An. Garsia and Reutenauer [9] have performed

a very detailed analysis of the descent algebra of the symmetric group, and described

its quiver in terms of restricted partition refinement. Atkinson [1] has determined the

Loewy length of the descent algebra of the symmetric group. Bonnafé and Pfeiffer [6]

have determined the Loewy length of Σ(W) for the other types of irreducible finite

Coxeter groups with the exception of type Dn for n odd. An argument which settles

this case has been put forward by Saliola [15], based on his investigation of Bidigare’s

geometric setting [16].
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In this article, we present an alternative approach to Σ(W). We construct a quiver

with relations for Σ(W) in three steps. The point of departure is the path algebra

A of the Hasse diagram of the power set P(S) of a finite set S, partially ordered by

reverse inclusion. Then we use a partial action of W on P(S) to exhibit a subalgebra

of A, and a quiver presentation for it. Finally, a quotient of this subalgebra, formed

with the help of a difference operator on A, is shown to be isomorphic to Σ(W).

This article is organized as follows. In Section 2 we recall the definition of the descent

algebra in terms of the distinguished coset representatives of parabolic subgroups of

W and some combinatorial properties of these transversals. Section 3 introduces

quivers and their path algebras, and shows how monoid actions, in particular of a

free monoid, produce examples of quivers. In Section 4, the conjugation action of W

on its parabolic subgroups is described as an action of a free monoid on the standard

parabolic subgroups of W. In Section 5 we obtain the Hasse diagram of the power set

of S from the take-away action of the free monoid S∗. The paths in this particular

quiver are called alleys and they form a basis of a path algebra A. Prefixes and

suffixes of paths define in a natural way two rooted forests on the set of all alleys. In

Section 6, we apply the conjugation action from Section 4 to the alleys of Section 5.

An orbit of alleys is called a street and the streets (identified with the sums of their

elements) form a basis of a subalgebra Ξ of A. Prefixes and suffixes of alleys induce

two rooted forests on the set of all streets, which in particular decompose Ξ into

projective indecomposable modules. We furthermore conjecture that Ξ is a path

algebra. In Section 7, a difference operator ∆ on A is used to map Ξ surjectively

onto the grade 0 component A0 of A. In Section 8, we use the difference operator to

define a matrix representation of Ξ on A0. In Section 9, we prove in Theorem 9.3 a

key result about right multiplication in Σ(W). We then identify A0 with the descent

algebra Σ(W), and show as our Main Theorem 9.5 that with this identification ∆

becomes an anti-homomorphism from Ξ onto Σ(W). In Section 10, we derive some

properties of the quiver of Σ(W) from this construction. Finally, in Section 11, we

present an algorithm which computes, for a given finite Coxeter group W, a quiver

presentation for Σ(W). For each of the series An, Bn, and Dn of irreducible finite

Coxeter groups, we state some general properties of the quiver of Σ(W) and give one

example of a quiver presentation.

Throughout, we use the symmetric group on 4 points for the purpose of illustration.

The constructions, however, work for all types of finite Coxeter groups. Concrete
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results for particular types will be the subject of subsequent articles. Computer

implementations of data structures corresponding to some of the combinatorial and

algebraic objects introduced here have helped us to produce the examples and figures,

and to verify conjectured theorems in many cases. They are available in the form

of the GAP [19] package ZigZag [14], which is based on the CHEVIE [10] package for

finite Coxeter groups and Iwahori–Hecke algebras.

2. Descents and Parabolic Transversals.

In this section, notation and some basic concepts are introduced, mostly following

Geck and Pfeiffer [11]. Let W be a finite Coxeter group, generated by a set S of

simple reflections. Let ℓ : W → N0 be the usual length function on W. The (left)

descent set of an element w ∈W is the set

D(w) = {s ∈ S : ℓ(sw) < ℓ(w)}.(2.1)

For each subset J ⊆ S, the subgroup WJ = 〈J〉 is called a (standard) parabolic

subgroup of W, and the set

XJ = {w ∈W : D(w) ∩ J = ∅}(2.2)

is a transversal of the right cosets WJw of the parabolic subgroup WJ in W, consisting

of the elements of minimal length in each coset. For a fixed subset J ⊆ S, each element

w ∈W can be written as a product w = u·x for unique elements u ∈WJ and x ∈ XJ.

A product w1w2 · · ·wk of elements w1, w2, . . . , wk ∈W is called reduced if

ℓ(w1w2 · · ·wk) = ℓ(w1) + ℓ(w2) + · · ·+ ℓ(wk).(2.3)

If this is the case, we sometimes write a product like w1w2w3 as w1 · w2 · w3 in

order to emphasize the fact that the product is reduced. For example, the product

u ·x of an element u ∈WJ and a coset representative x ∈ XJ is reduced. The longest

element of the parabolic subgroup WJ is denoted by wJ, the longest element of W

also by w0. The elements wJ are involutions. The quotient w−1
J w0 = wJw0 is the

unique longest element of the transversal XJ.

The descent algebra of W is defined as the subspace Σ(W) of the group algebra QW

spanned by the sums

xJ =
∑

x∈X−1
J

x ∈ QW(2.4)
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over the sets X−1
J = {x−1 : x ∈ XJ} of left coset representatives of WJ in W, for

J ⊆ S. By Solomon’s Theorem [21], this subspace is in fact a subalgebra of QW with

structure constants as in equation (2.8) below. For J, K ⊆ S, one further defines

XJK = XJ ∩ X−1
K and XK

J = XJ ∩WK.(2.5)

The set XJK is a transversal of the double cosets of WJ and WK in W. A parabolic

transversal XJ can in many ways be described in terms of other transversals, or as

a set of prefixes. Here, an element u ∈ W is called a prefix of w ∈ W if l(w) =

l(u) + l(u−1w). In that case we write u 6 w. The partial order defined in this way

on W is sometimes called the weak Bruhat order on W.

2.1. Proposition. Let J, K ⊆ S. Then

(i) XJ = XK
J · XK if J ⊆ K;

(ii) XJ = dXK if d ∈ XJ and K are such that Jd = K;

(iii) XJ =
⊔

d∈XJK
d · XK

Jd∩K
;

(iv) XJ = {w ∈ W : w 6 wJw0}. Thus, w ∈ XJ whenever w 6 x for some

x ∈ XJ.

Proof. [11, (2.1.5), (2.1.8), (2.1.9), and (2.2.1)]. �

For subsets J, K, L ⊆ S, we furthermore define

XJKL = {x ∈ XJK : Jx ∩ K = L}.(2.6)

The cardinalities

aJKL = |XJKL|(2.7)

are the structure constants of the descent algebra: according to Solomon [21], for all

J, K ⊆ S,

xJ xK =
∑

d∈XJK

xJd∩K =
∑

L⊆S

aJKL xL.(2.8)

Denote by θ the linear map from Σ(W) into the character ring of W (over Q) which

assigns, for J ⊆ S, to xJ the permutation character

θ(xJ) = 1W
WJ

(2.9)
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of the action of W on the cosets of the parabolic subgroup WJ in W. Then, according

to Solomon [21], θ is a homomorphism of algebras with commutative image and

nilpotent kernel. It follows that the descent algebra Σ(W) is a basic algebra, and as

such it has a presentation as a quiver with relations.

3. Quivers, Path Algebras and Monoid Actions.

A quiver is a directed multigraph Q = (V, E) consisting of a vertex set V and an edge

set E, together with two maps ι, τ : E→ V, assigning to each edge e ∈ E a source (or

initial vertex ) ι(e) ∈ V and a target (or terminal vertex ) τ(e) ∈ V. A path of length

ℓ(a) = l in Q is a pair

a = (v; e1, e2, . . . , el)(3.1)

consisting of a source v ∈ V and a sequence of l edges e1, e2, . . . , el ∈ E such that

ι(e1) = v and ι(ei) = τ(ei−1) for i = 2, . . . , l.

Let A be the set of all paths in Q and let

Al = {a ∈ A : ℓ(a) = l}(3.2)

be the set of paths of length l. We denote by ∅ the unique sequence of length 0

and identify a vertex v ∈ V with the path (v; ∅) ∈ A0. We also identify an edge

e ∈ E with the path (ι(e); e) ∈ A1. The following properties of path concatenation

are obvious.

3.1. Proposition. The set A =
⊔

l>0 Al together with the partial multiplication

defined as

(v; e1, . . . , el) ◦ (v ′; e ′
1, . . . , e

′
l ′) = (v; e1, . . . , el, e

′
1, . . . , e

′
l ′),

provided that τ(el) = v ′, is (the set of morphisms of) a category with object set A0.

The category A is the free category generated by the quiver Q. Every path a ∈ A of

length ℓ(a) > 0 is a unique product of elements in the set A1.

The category A of all paths in Q can be used as formal basis of a vector space. For

l > 0, let Al = Q[Al], the Q-vector space with basis Al. The path algebra A of the

quiver Q is defined as

A = Q[A] =
⊕

l>0

Al,(3.3)
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where a◦a ′ = 0 if the product a◦a ′ is not defined in A, and otherwise multiplication

is extended by linearity from A. The path algebra A is a graded algebra, since we

have Al ◦Ak ⊆ Al+k, for all l, k > 0.

3.2. Monoid Actions. A good source for examples of quivers and categories are

monoid actions. Suppose M is a monoid acting on a set X via (x, m) 7→ x.m, then

the set X×M together with the partial multiplication

(x, m) ◦ (x ′, m ′) = (x, mm ′),(3.4)

whenever x, x ′ ∈ X and m, m ′ ∈ M are such that x.m = m ′, is a category with

object set X.

If M is generated by a set S ⊆ M, then the action graph defined as the directed

multigraph with vertex set X and edge set X × S is a quiver with ι(x, s) = x and

τ(x, s) = x.s for all (x, s) ∈ X × S. If M is the free monoid S∗, then the category

X×M is the free category generated by the action graph (X, X× S).

In the following two sections, we consider two different, but related, examples of

actions of the free monoid S∗ on the power set P(S) of a finite set S. In section 6,

we apply one action to the path algebra arising from the other.

4. Shapes.

Let W be the finite Coxeter group from Section 2 and let S ⊆W be its set of simple

reflections. Here we regard W as a quotient of the free monoid S∗ consisting of all

words over the alphabet S. The empty word will be denoted by ∅; the identity

element of W by id. Beyond that, we make no notational effort to distinguish a word

in S∗ from a product of simple reflections in W.

The conjugation action of W on itself induces a conjugation action of W on its

subsets which partitions the power set P(S) ⊆ P(W) into classes of W-conjugate

subsets. We write

A ∼ B(4.1)

if A, B ⊆W are such that B = Aw for some w ∈W and call the class

[J] = {K ⊆ S : K ∼ J}(4.2)
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of a subset J ⊆ S the shape of J in W. Moreover, we denote by

Λ = {[J] : J ⊆ S}(4.3)

the set of all shapes of W. The shapes of W correspond to the conjugacy classes

of parabolic subgroups of W, since, for J, K ⊆ S, the parabolic subgroup WK is a

conjugate of WJ if and only if K is a conjugate of J [11, (2.1.13)].

4.1. Example. Suppose W is the symmetric group Sym(n+1) of degree n+1. Every

parabolic subgroup of W is a direct product of symmetric groups, whose degrees form

a partition of n+ 1, if fixed points are counted as factors of degree 1. Two parabolic

subgroups are conjugate in W if and only if the corresponding partitions are the

same. In this way the shapes of a Coxeter group of type An correspond to the

partitions of n + 1.

In a similar way, the shapes of a Coxeter group of type Bn correspond to the partitions

of all m ∈ {0, . . . , n} [11, (2.3.10)]. The shapes of a Coxeter group of type Dn

correspond to the partitions of all m ∈ {0, . . . , n − 2}, and the partitions of n, with

two copies of each even partition of n [11, (2.3.13)].

In order to decide whether a parabolic subgroup WK of W is a conjugate Wx
J of a

parabolic subgroup WJ, it clearly suffices to consider elements x ∈ XJ which conjugate

J ⊆ S to a subset of S. For J ⊆ S we denote

X
♯
J = {x ∈ XJ : Jx ⊆ S} =

⊔

K∼J

XJKK.(4.4)

Certainly id ∈ X
♯
J for all J ⊆ S. And it is easy to see that X

♯
L ⊆ X

♯
J for all J ⊆ L ⊆ S.

In general, the elements of X
♯
J can be described as reduced products of certain longest

coset representatives. Given J ⊆ S and s ∈ S, we let L = J ∪ {s} and denote

ω(J, s) = wJwL ∈ X
♯
J,(4.5)

the longest coset representative of WJ in WL. Clearly, if s ∈ J then ω(J, s) = id.

Note that

ω(J, s)−1 = ω(JwL, swL).(4.6)

4.2. Lemma. Let J ⊆ S and let x ∈ X
♯
J.

(i) x−1 ∈ X
♯
Jx.
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(ii) If J is a maximal subset of S then x = id or x = wJw0.

(iii) If s ∈ D(x) then ω(J, s) is a prefix of x. Moreover, ω(J, s)−1x ∈ X
♯
K, where

K = Jω(J,s).

(iv) There exist elements s1, . . . , sr ∈ S such that

x = ω(J1, s1) ·ω(J2, s2) · · ·ω(Jr, sr)

is a reduced product, where J1 = J and Jk+1 = J
ω(Jk,sk)

k for 1 6 k < r.

Proof. (i) If Jx = K ⊆ S then clearly Kx−1

= J ⊆ S. It remains to show that

x−1 ∈ XK = {w ∈W : K∩D(w) = ∅}. But if there exists an element s ∈ K∩D(x−1)

then sx−1

= xsx−1 ∈ J ∩D(x), contradicting x ∈ XJ.

(ii) [11, (2.3.2)].

(iii) Let L = J ∪ {s}. Using Proposition 2.1(i), we can write x = x1 · x2 for (unique)

elements x1 ∈ XL
J and x2 ∈ XL. Clearly x1 ∈ X

♯
J and x1 6= id since s ∈ D(x1). With

(ii), this forces x1 = wJwL, since J is a maximal subset of L.

(iv) follows by induction on ℓ(x) from (iii). �

The preceding lemma motivates the following definition of an action of the free

monoid S∗ on the power set P(S). For J ⊆ S and s ∈ S we set

J.s = Jω(J,s).(4.7)

Most of the following properties are obvious.

4.3. Lemma. Let J ⊆ S, s ∈ S and L = J ∪ {s}. Then

(i) J.s = J if s ∈ J;

(ii) J.ss = J.s;

(iii) swL ∈ S and J.sswL = J.

Proof. (ii) If J.s 6= J then s ∈ J.s. (iii) See equation (4.6). �

Lemma 4.3(iii) shows that all the effects of S∗ on P(S) can be undone. There-

fore, the S∗-orbits on P(S) form a partition of P(S). In fact, as a consequence of
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Lemma 4.2(iv), these orbits coincide with the shapes of W. The following theorem

states some known properties of normalizers of parabolic subgroups in terms of the

conjugation action of S∗ on the power set P(S).

4.4. Theorem (Howlett). Suppose S∗ acts on P(S) as defined above.

(i) The orbits of S∗ on P(S) form a partition of P(S) and, for all J ⊆ S, the

S∗-orbit of J coincides with the shape [J] in W.

(ii) The stabilizer

NJ = {x ∈ XJ : Jx = J} = XJJJ

of J is a complement of WJ in its normalizer NW(WJ) = WJ ⋊ NJ.

Proof. [12]; see also [11, Theorem 2.3.3 and Proposition 2.1.15]. �

According to Section 3.2, this action gives rise to a category P(S) × S∗. We will

ignore the obviously trivial elements (J, s) where s ∈ J (see Lemma 4.3(i)) and define

the action graph of S∗ on P(S) as the quiver with edge set

{(J, s) : J ⊆ S, s ∈ S − J},(4.8)

where ι(J, s) = J and τ(J, s) = J.s. We then define a category C as the subcategory

of P(S)× S∗ which is generated as a free category by this action graph.

4.5. Example. Figure 1 illustrates the action graph and the category C for the

type A3 generated by a set S = {1, 2, 3} of simple reflections, where 1 commutes with

3. Here the vertices are the subsets of S, written with braces and commas omitted.

Multiple labels (like 1, 2, 3) on arrows indicate multiple arrows, one for each label.

The fact that the effects of the monoid S∗ on any subset J ⊆ S can be undone

manifests itself further in the form of a closely related groupoid. Note that if J ∼ K

then XJKK = {x ∈ XJ : Jx = K}. From Proposition 2.1(ii) it follows that, if J ∼ K ∼ L

then dXKLL = XJLL for all d ∈ XJKK, and hence that XJKKXKLL = XJLL. Recall that

X
♯
J =

⊔

K∼J XJKK. Then the set of pairs

G = {(J, x) : J ⊆ S, x ∈ X
♯
J}(4.9)

forms a category with respect to the partial multiplication

(J, x)(K, y) = (J, xy)(4.10)
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Figure 1. S∗ acting on P(S) of type A3.

if J, K ⊆ S, x ∈ X
♯
J and y ∈ X

♯
K are such that Jx = K. Each pair (J, x) ∈ G has an

inverse (Jx, x−1) ∈ G, since by Lemma 4.2(i) x ∈ X
♯
J implies x−1 ∈ X

♯
Jx . Therefore,

the category G is in fact a groupoid.

There exists a unique functor ω from the category P(S) × S∗ to the group W,

regarded as a one-object category, extending the map ω : P(S)× S→W as defined

in equation (4.5). Then,

J.m = Jω(J,m)(4.11)

for all J ∈ P(S) and all m ∈ S∗, and conjugation by ω(J, m) induces a bijection

s 7→ sω(J,m)(4.12)

from J to J.m.

4.6. Proposition. The map (J, m) 7→ (J, ω(J, m)) together with the identity map on

the object set P(S) is a functor from the category P(S)× S∗ onto the groupoid G.

Proof. Let J ⊆ S. We only need to show that ω(J, m) ∈ XJ for all m ∈ S∗. If

m = ∅ then ω(J, m) = id and there is nothing to show. Otherwise m = sm ′ for

some s ∈ S and m ′ ∈ S∗. Let d = ω(J, s). Then ω(J, m) = dω(Jd, m ′), where

ω(Jd, m ′) ∈ XJd , by induction on the length of m ′. By Proposition 2.1, dXJd = XJ,

whence ω(J, m) = dω(Jd, m ′) ∈ XJ. �
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Brink and Howlett [7] have given a presentation of G as a quotient of the free category

C in terms of the generating set

{(J, ω(J, s)) : J ⊆ S, s ∈ S − J}(4.13)

corresponding to the edges of the action graph. Before we formulate the relations,

we introduce the notion of a reduced expression for elements of G.

We call (J, m) ∈ C with m = s1s2 · · · sk ∈ S∗ a reduced expression for (K, x) ∈ G if

(J, ω(J, m)) = (K, x) and

x = ω(J1, s1) ·ω(J2, s2) · · ·ω(Jk, sk)(4.14)

is a reduced product in W in the sense of equation (2.3), where Ji = J.s1s2 · · · si−1,

for i = 1, . . . , k. In particular, for J ⊆ S, the pair (J, ∅) ∈ C is the unique reduced

expression for (J, id) ∈ G.

By Lemma 4.2(iv), each element (J, x) ∈ G has a reduced expression. Suppose J ⊆

L ⊆M ⊆ S. Then clearly wLwM ∈ X
♯
J and (J, wLwM) ∈ G has a reduced expression.

The following result by Brink and Howlett [7] is concerned with a situation where

this reduced expression is unique.

4.7. Proposition. Let J ⊆ S and s, t ∈ S − J be such that s 6= t. Let L = J ∪ {s} and

let w ∈ X
♯
J be a prefix of ω(L, t). Then the element (J, w) ∈ G has a unique reduced

expression. In particular, the reduced expression for (J, ω(L, t)) ∈ G is unique.

Proof. Without loss of generality we may assume that L ∪ {t} = S. Then, by Propo-

sition 2.1(iv), w is a prefix of ω(L, t) if and only if w ∈ XL.

The claim is certainly true for w = id. Otherwise, w ∈ X
♯
J ∩ XL is such that

l(w) > 0. If follows that D(w) = {t} and hence, using Lemma 4.2(iii), that each

reduced expression for (J, w) ∈ G begins with (J, t) ∈ C.

Let K = J ∪ {t}. A straightforward comparison of lengths shows that the product

(ω(J, t)−1ω(L, t)) ·ω(J, s)ω(L,t) = ((wJwK)−1wLw0) · (wJwL)wLw0(4.15)

= wKw0 = ω(K, s)

is reduced in W. Therefore the element

w ′ = ω(J, t)−1w ∈ X
♯
J.t(4.16)



A QUIVER PRESENTATION FOR SOLOMON’S DESCENT ALGEBRA. 13

is a prefix of ω(K, s). By induction on the length ℓ(w), the pair (J.t, w ′) ∈ G has a

unique reduced expression. This shows that

(J, w) = (J, ω(J, t)) · (J.t, w ′) ∈ G(4.17)

has a unique reduced expression. �

The last result implies that (J, wJwM), where M = J∪{s, t}, has exactly two reduced

expressions, (J, smL) and (J, tmK), where mL, mK ∈ S∗ are such that (J.s, mL) ∈ C is

the unique reduced expression for (J.s, ω(L, t)) ∈ G and (J.t, mK) ∈ C is the unique

reduced expression for (J.t, ω(K, s)). These two reduced expressions for the same

element give rise to a relation

(J, smL) ≡ (J, tmK)(4.18)

It is a remarkable fact, that these relations together with relations of the form

(J, sswL) ≡ (J, ∅),(4.19)

which are consequences of (4.6), are sufficient for a presentation of the groupoid G

as a quotient of the free category C.

4.8. Theorem (Brink–Howlett). Let ≡ be the congruence generated by all the rela-

tions of the forms (4.19) and (4.18) in C. Then C/≡ is isomorphic to G.

5. Alleys.

In this section we introduce a particular quiver Q on the vertex set P(S), whose

paths will be called alleys. The quiver Q arises from the take-away action of the

free monoid S∗ on P(S) defined by (L, s) 7→ L − {s}. We exhibit various structural

properties of the category A of all alleys and of the corresponding path algebra A of

the quiver Q. There are two natural partial orders on A, which turn the set A into a

rooted twofold forest. In subsequent sections, the S∗-action on P(S) from Section 4

will be extended to an S∗-action on A and a difference operator δ will be defined on

the graded algebra A.

Let S be a finite set. For L ⊆ S and s ∈ S denote

Ls = L − {s}.(5.1)
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The map P(S)× S → P(S), (L, s) 7→ Ls, defines an action of the free monoid S∗ on

the power set P(S). Ignoring the obviously trivial edges (L, s) where s ∈ S − L, the

action graph of this action is the Hasse diagram Q of the power set P(S), partially

ordered by reverse inclusion. For a subset L ⊆ S and pairwise different elements

s, t, . . . ∈ L denote by (L; s, t, . . . ) the unique path with vertices

L, L − {s}, L − {s, t}, . . . , L − {s, t, . . . }(5.2)

in Q, deviating slightly from the notation for quivers in equation (3.1). As before

in Section 3, we denote by A the category of all paths in Q, and by A = Q[A] the

path algebra of the quiver Q. We call the path a = (L; s, t, . . . ) ∈ A an alley from

its source ι(a) = L to its target τ(a) = L − {s, t, . . . }. The elements of the sequence

(s, t, . . . ) are the segments of a, and the length ℓ(a) of a is the number of segments,

i.e., ℓ(a) = #{s, t, . . . }.

5.1. Example. Figure 2 shows the quiver Q for S = {1, 2, 3}. As in Figure 1, the

vertices of Q are the subsets of S, written without punctuation.

123

12 23 13

1 2 3

∅

Figure 2. The Alley Quiver Q for S = {1, 2, 3}.

5.2. Counting Alleys. Let n = |S|. For 0 6 l 6 n there are 2l

l!
n! alleys of length

n−l, since there are n!
l!

ways to choose n−l segments and 2l ways to choose a target

from the remaining l elements of S. Hence there are

(5.3) |A| = n!

n
∑

l=0

2l

l!



A QUIVER PRESENTATION FOR SOLOMON’S DESCENT ALGEBRA. 15

alleys in total. The values of |A| for n 6 9 are as follows.

n 0 1 2 3 4 5 6 7 8 9

|A| 1 3 10 38 168 872 5296 37200 297856 2681216
(5.4)

This is sequence number A010842 in Sloane’s online encyclopedia of integer se-

quences [20], which has exponential generating function e2x/(1 − x).

5.3. Partial Order. The set A of all alleys is in two ways partially ordered as

follows. Let a, a ′ ∈ A. We say that a ′ is a prefix of a, and write

a ′ �π a,(5.5)

if a = a ′ ◦ a ′′ for some a ′′ ∈ A. By the unique factorization property of Proposi-

tion 3.1, each a = (L; s1, . . . , sl) ∈ A of length ℓ(a) = l > 0 has a unique longest

nontrivial prefix

π(a) = (L; s1, . . . , sl−1).(5.6)

Thus A is a forest of rooted trees with roots L ⊆ S, where π(a) is the parent of a

if ℓ(a) > 0. The alley a lies in the π-tree with root L if and only if ι(a) = L. The

π-children of an alley a = (L; s1, s2, . . . , sl) are the alleys (L; s1, s2, . . . , sl+1) with

sl+1 ∈ L − {s1, . . . , sl}. The alley a = (L; s1, s2, . . . , sl) is a π-leaf if L = {s1, . . . , sl}.

Note that

ι(a) = πℓ(a)(a)(5.7)

for all a ∈ A.

We furthermore say that a ′ is a suffix of a, or that a ends in a ′, and write

a �σ a ′(5.8)

if a = a ′′ ◦ a ′ for some a ′′ ∈ A. By the unique factorization property of Proposi-

tion 3.1, each a = (L; s, t, . . . ) ∈ A of length ℓ(a) > 0 has a unique longest nontrivial

suffix

σ(a) = (Ls; t, . . . ).(5.9)

Thus A also is a forest of rooted trees with roots L ⊆ S, where σ(a) is the parent of

a if ℓ(a) > 0. Here the alley a lies in the σ-tree with root L if and only if τ(a) = L.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A010842
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The σ-children of an alley a = (L; s, t, . . . ) are the alleys (L ∪ {r}; r, s, t, . . . ) with

r ∈ S − L. The alley a = (L; s, t, . . . ) is a σ-leaf if L = S. Note that

τ(a) = σℓ(a)(a)(5.10)

for all a ∈ A.

Hence A together with the two partial orders �π and �σ forms a rooted twofold

forest where the subsets L ⊆ S serve as roots for both forests. In terms of these

forests, the product of two alleys a, a ′ ∈ A can be described as the intersection of

the π-subtree with root a and the σ-subtree with root a ′, provided that τ(a) = ι(a ′);

in that case τ(a) = ι(a ′) is the only subset L ⊆ S with a �σ L �π a ′, otherwise

there is no such subset at all. In any case, this argument proves the following result.

5.4. Proposition. Let a, a ′ ∈ A. Then

a ◦ a ′ =
∑ ∑

L⊆S,a ′′∈A
a�σL�πa ′

a�πa ′′�σa ′

a ′′.

6. Streets.

As before in Section 4, let S be the set of simple reflections of a finite Coxeter

group W. In this section we relate the conjugation action of the free monoid S∗

on the power set P(S) from Section 4 to the takeaway action of S∗ on P(S) from

Section 5, by extending the conjugation action to the set A of all alleys. Again, the

S∗-orbits form a partition of A. An orbit of alleys will be called a street and Ψ will

denote the set of all streets. The two main results of this section show that Ψ is a

rooted twofold forest, and that the linear span of Ψ forms a subalgebra Ξ of A. The

partial order on streets allows us to identify a complete set of primitive orthogonal

idempotents for Ξ. We furthermore conjecture that Ξ is a path algebra.

The conjugate of a = (L; s, t, . . . ) ∈ A by an element w ∈W is the pair

aw = (Lw; sw, tw, . . . ),(6.1)

consisting of a subset Lw ⊆ W and a sequence of elements sw, tw, . . . ∈ Lw. The

conjugate cw of an element

c =
∑

a∈A

caa ∈ A(6.2)
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is the linear combination

cw =
∑

a∈A

caaw,(6.3)

which only is an element of A if aw ∈ A for all a ∈ A with ca 6= 0. Clearly, aw ∈ A if

and only if Lw ⊆ S. Usually we will only consider conjugates aw with w ∈ X
♯
L. Given

a, a ′ ∈ A with ι(a) = L and x ∈ X
♯
L, by the definition of the partial multiplication

on A, the product a ◦ a ′ is defined if and only if the product ax ◦ (a ′)x is defined,

and in that case

(a ◦ a ′)x = ax ◦ (a ′)x.(6.4)

The action of the free monoid S∗ on the power set P(S), together with the bi-

jections (4.12) induces an action of S∗ on the set A of all alleys as follows. For

a = (L; s, t, . . . ) ∈ A and r ∈ S we set

(L; s, t, . . . ).r := (L; s, t, . . . )ω(L,r).(6.5)

Note that (L; s, t, . . . )ω(L,r) ∈ A since ω(L, r) ∈ X
♯
L. Again, we ignore the obviously

trivial edges and define as the action graph of this action of S∗ on A the graph with

vertex set A and edge set {a r−→ a.r : a = (L; s, t, . . . ) ∈ A, r ∈ S − L}.

6.1. Proposition. Let a, a ′ ∈ A and let L = ι(a). Then a.m = a ′ for some m ∈ S∗

if and only if ax = a ′ for some x ∈ X
♯
L.

Proof. Suppose first that a ′ = a.m for some m ∈ S∗. Let x = ω(L, m). Then

ω(L, m) ∈ X
♯
L by Proposition 4.6 and a ′ = ax. Conversely, suppose a ′ = ax for

some x ∈ X
♯
L. Let (L, m) ∈ C be a reduced expression for (L, x) ∈ G. Then a ′ = a.m,

as desired. �

As in Lemma 4.3, if a ∈ A has ι(a) = J and L = J ∪ {s} then

a.sswL = a.(6.6)

Hence the effects of S∗ on A can be undone and the action of the free monoid S∗

partitions the set of alleys into classes of conjugate alleys. We call such an S∗-orbit

a street and denote by

[a] = [L; s, t, . . . ] = {a.m : m ∈ S∗}(6.7)
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the class of the alley a = (L; s, t, . . . ) ∈ A. Furthermore, we let

Ψ = {[a] : a ∈ A}(6.8)

denote the set of all streets. The source of a street [a] is the shape

ι([a]) = [ι(a)] ∈ Λ(6.9)

and its target is the shape

τ([a]) = [τ(a)] ∈ Λ,(6.10)

both being well defined by Proposition 6.1. The length of a street [a] is

ℓ([a]) = ℓ(a).(6.11)

We write

a ∼ a ′(6.12)

if a, a ′ ∈ A are in the same S∗-orbit. Note that in general aw = a ′ for some

w ∈ W does not imply a ∼ a ′. E.g., for the element w = sts ∈ W(A2) =
〈

s, t : s2 = t2 = (st)3 = 1
〉

we have (S; s)w = (Sw; sw) = (S; t). But (S; t) is not

in the S∗-orbit of (S; s) since XS = {id} contains no element x with (S; s)x = (S; t).

∅⊃
1
2
3

1;1⊃3

2↓↑1
2;2

3↓↑2
3;3⊃1

1⊃3

2↓↑1
2

3↓↑2
3⊃1

13;13
2

⇄13;31 13;1
2

⇄13;3 13⊃2

12;12
3↓↑1
23;23

12;21
3↓↑1
23;32

12;1
3↓↑1
23;2

12;2
3↓↑1
23;3

12
3↓↑1
23

123;213

123;123

123;312

123;231

123;132

123;321

123;21

123;12

123;31

123;23

123;13

123;32

123;2 123;3 123;1 123

Figure 3. Streets of A3.
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6.2. Example. Figure 3 illustrates the streets for W type A3 as action graph

on the set of all alleys. Here a notation like 123; 21 is used as a shorthand for

({1, 2, 3}; 2, 1) ∈ A. The streets are arranged in a square grid using their sources

and targets as coordinates. (Some entries are highlighted in red in order to illustrate

Proposition 10.1.)

For L ⊆ S and a subset B ⊆ A, the set L◦B is the set of all alleys a ∈ B with source

L and the set B ◦ L is the set of all a ∈ B with target L. Moreover,

B =
⊔

L⊆S

L ◦B =
⊔

L⊆S

B ◦ L.(6.13)

If, in particular, B is a street then even more can be said.

6.3. Proposition. Let a = (L; s, t, . . . ) ∈ A, let λ = [L] and let α = [a]. Denote by

Na = {x ∈ NL : ax = a}

the stabilizer of a, i.e., the stabilizer of the tuple (s, t, . . . ) in NL. Then

α =
⊔

L ′⊆S

L ′ ◦ α,

where

(i) L ′ ◦ α = ∅ unless L ′ ∈ λ;

(ii) for each x ∈ X
♯
L, the map a 7→ ax is a bijection from L ◦ α to Lx ◦ α;

(iii) L ◦ α = aNL is an NL-orbit of length |NL : Na|.

(iv) |α| = |λ| · |L ◦ α| = |λ| · |NL : Na|.

Proof. (i) and (ii) are clear. (iii) follows from Proposition 6.1, (iv) from parts (i), (ii)

and (iii). �

With the notation of Proposition 6.3, we call |λ| the width of α and |L ◦ α| the depth of

α. Note that, by Proposition 6.3(iii), the depth of a street with source L is bounded

above by the order of the permutation group induced by NL on the set L.

The stabilizer Na of an alley a ∈ A can be described as intersection of normalizer

complements.
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6.4. Theorem. Let a = (L; s1, . . . , sl) ∈ A. Then

Na = NL ∩NL−{s1} ∩ · · · ∩NL−{s1,...,sl}.

In particular, if a, a ′ ∈ A are such that the product a ◦ a ′ is defined, then

Na◦a ′ = Na ∩Na ′.

Proof. If ℓ(a) = 0 then Na = NL and there is nothing to prove.

Otherwise, ℓ(a) = l > 0. Let J = L − {s1, . . . , sl} and let a ′ = (L; s1, . . . , sl−1). By

induction on the length ℓ(a),

Na ′ = NL ∩NL−{s1} ∩ · · · ∩NL−{s1,...,sl−1}.

Clearly,

Na ′ ∩NJ ⊆ {x ∈ Na ′ : Jx = J} = {x ∈ Na ′ : sx
l = sl} = Na.

Conversely, from Na ′ ⊆ XLLL ⊆ XLL ⊆ XJJ it follows that

Na = {x ∈ Na ′ : Jx = J} ⊆ Na ′ ∩ {x ∈ XJJ : Jx = J} = Na ′ ∩ XJJJ = Na ′ ∩NJ.

Hence

Na = Na ′ ∩NJ = NL ∩NL−{s1} ∩ · · · ∩NL−{s1,...,sl−1} ∩NL−{s1,...,sl},

as desired. �

6.5. Products of Streets. From now on we identify a street α ∈ Ψ with the sum
∑

a∈α a of all its elements in A. Due to the unique factorization property of Propo-

sition 3.1, for each b ∈ α ◦ α ′ there are unique factors a ∈ α and a ′ ∈ α ′ such that

b = a ◦ a ′. Therefore, the product α ◦ α ′ ∈ A coincides with the sum over the set

of products {a ◦ a ′ : a ∈ α, a ′ ∈ α ′}. In fact, the product of two streets is a sum of

streets, as the next result shows.

6.6. Theorem. Let a = (L; s, t, . . . ) ∈ A and a ′ = (L ′; s ′, t ′, . . . ) ∈ A be such that

L ′ = L − {s, t, . . . }. Let D be a set of double coset representatives of Na ′ and Na in

NL ′ =
⊔

d∈D

Na ′dNa.

Then

[a] ◦ [a ′] =
∑

d∈D

[a ◦ (a ′)d].
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Proof. It suffices to show that

L ◦ [a] ◦ [a ′] =
∑

d∈D

L ◦ [a ◦ (a ′)d] = L ◦
∑

d∈D

[a ◦ (a ′)d].

Then, using Proposition 6.3(i) and (ii), we can conclude that

J ◦ [a] ◦ [a ′] = J ◦
∑

d∈D

[a ◦ (a ′)d]

for all J ⊆ S and hence the claim follows by equation (6.13).

Using Proposition 6.3(iii), we write

L ◦ [a] ◦ [a ′] = aNL ◦ [a ′] =
∑

n∈NL/Na

an ◦ [a ′],(6.14)

where NL/Na denotes a transversal of the right cosets of Na in

NL =
⊔

n∈NL/Na

Nan,(6.15)

and first calculate an ◦ [a ′] for n ∈ NL. Then we form the sum over all these cosets

and derive the claimed formula.

Let n ∈ NL. From L ′ ⊆ L follows NL ⊆ XL ⊆ XL ′, and therefore [(a ′)n] = [a ′], by

Proposition 6.1. Hence,

(L ′)n ◦ [a ′] = (L ′)n ◦ [(a ′)n] = (a ′)nN(L ′)n = (a ′)nNn
L ′ = (a ′)NL ′n.(6.16)

We can thus conclude, writing an = (a ◦ L ′)n = an ◦ (L ′)n, that

an ◦ [a ′] = an ◦ (L ′)n ◦ [a ′] = an ◦ (a ′)NL ′n = (a ◦ (a ′)NL ′)n,(6.17)

which shows that

an ◦ [a ′] =
∑

n ′∈NL ′/Na ′

(a ◦ (a ′)n ′

)n,(6.18)

a sum over the right cosets Na ′n ′ of Na
′ in NL ′.

Let D be a set of double coset representatives of Na ′ and Na in NL ′. For each d ∈ D,

the double coset Na ′dNa is a union

Na ′dNa =
⊔

n ′′∈Na/(Nd
a ′∩Na)

Na ′dn ′′(6.19)



22 GÖTZ PFEIFFER

of right cosets of Na ′, parametrized by the right cosets of Nd
a ′ ∩ Na in Na. By

Theorem 6.4,

Nd
a ′ ∩Na = Na ∩N(a ′)d = Na◦(a ′)d.(6.20)

Moreover, if n ′ ∈ NL ′, d ∈ D and n ′′ ∈ Na are such that Na ′n ′ = Na ′dn ′′ then

a ◦ (a ′)n ′

= an ′′

◦ (a ′)dn ′′

= (a ◦ (a ′)d)n ′′

.(6.21)

Therefore, if we denote b(d) = a ◦ (a ′)d for d ∈ D, then
∑

n ′∈NL ′/Na ′

(a ◦ (a ′)n ′

)n =
∑

d∈D

∑

n ′′∈Na/Nb(d)

b(d)n ′′n.(6.22)

Now {n ′′n : n ′′ ∈ Na/Nb(d), n ∈ NL/Na} is a transversal of the right cosets of

Nb(d) in NL. Thus a summation over n ∈ NL/Na on both sides finally yields

L ◦ [a] ◦ [a ′] =
∑

d∈D

∑

m∈NL/Nb(d)

b(d)m(6.23)

=
∑

d∈D

b(d)NL =
∑

d∈D

L ◦ [b(d)] = L ◦
∑

d∈D

[b(d)],

as desired. �

As an immediate consequence, we obtain a product formula for the depths of streets.

6.7. Corollary. Denote by dp(α) the depth of α ∈ Ψ. Suppose α, α ′ ∈ Ψ and

α1, . . . , αl ∈ Ψ are such that α ◦ α ′ = α1 + · · ·+ αl 6= 0. Then

dp(α) · dp(α ′) = dp(α1) + · · ·+ dp(αl).

In particular, if dp(α) = dp(α ′) = 1 then the product α ◦ α ′, if defined, is a single

street.

Proof. With the notation from (the proof of) Theorem 6.6, we can derive from

|NL ′ : Na ′ | =
∑

d∈D

∣

∣Na : Nd
a ′ ∩Na

∣

∣(6.24)

that

dp([a]) · dp([a ′]) = |NL : Na| · |NL ′ : Na ′ | =
∑

d∈D

∣

∣NL : Nd
a ′ ∩Na

∣

∣(6.25)

=
∑

d∈D

∣

∣NL : Na◦(a ′)d

∣

∣ =
∑

d∈D

dp([a ◦ (a ′)d]),
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as desired. �

The action of S∗ on A is compatible with the partial orders from Section 5.3, that

is with taking prefixes and suffixes. This property can be used to formulate, in The-

orem 6.11 below, an alternative product formula for streets in the spirit of Proposi-

tion 5.4.

6.8. Proposition. Let a = (L; s, t, . . . ) ∈ A and m ∈ S∗. Then

(i) π(a.m) = π(a).m and

(ii) σ(a.m) = σ(a).m ′, where m ′ ∈ S∗ is such that (Ls, m
′) ∈ C is a reduced

expression for (Ls, ω(L, m)) ∈ G.

Proof. Let d = ω(L, m). Then a.m = ad = (Ld; sd, td, . . . ).

(i) Clearly, π(a.m) = π(ad) = π(a)d = π(a).m.

(ii) We have σ(a.m) = σ(ad) = ((Ls)
d; td, . . . ) = σ(a)d, since (Ld)sd = (Ls)

d. From

d ∈ XL ⊆ XLs
and with Proposition 6.1 it then follows that σ(a.m) = σ(a).m ′, as

desired. �

In other words, the preimage of any street, under π and under σ, is a union of streets.

The streets in the preimage of α ∈ Ψ under π can be listed efficiently.

6.9. Proposition. Let a = (L; s1, . . . , sk) ∈ A and let J = L − {s1, . . . , sk}. Then

π−1([a]) =
⊔

t∈J/Na

[L; s1, . . . , sk, t],

where t ranges over a transversal of the Na-orbits on J.

Proof. This follows from Proposition 6.3(iii). �

If we define relations �π and �σ on the set Ψ of all streets by

α ′ �π α if a ′ �π a for some a ∈ α and some a ′ ∈ α ′(6.26)

and

α �σ α ′ if a ′ �σ a for some a ∈ α and some a ′ ∈ α ′(6.27)
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for α, α ′ ∈ Ψ, then both �π and �σ are partial orders. The set of streets Ψ together

with the two partial orders �π and �σ forms a rooted twofold forest with roots

λ ∈ Λ.

n 0 1 2 3 4 5 6 7 8

An 1 3 8 27 108 536 3180 22113 176175

Bn 10 34 136 648 3720 25186 196777

Dn 123 579 3417 23387 184580

En 3347 23057 180570

F4 136

Hn 8 30 120

Table 1. The number of streets for some types of Coxeter groups.

The streets of W can be efficiently enumerated by using Proposition 6.9 to span the

π-forests. In Table 1 we list the number of streets |Ψ| for some types of Coxeter

groups W of small rank.

6.10. Example. Figure 4 shows the rooted twofold forest for type A3. Here the

π-forests grow horizontally towards the left and the σ-forests grow vertically down-

wards out of the roots λ ∈ Λ on the diagonal. The other vertices can be identified

with the help of Figure 3. (Some vertices are coloured red in order to illustrate

Proposition 10.1.)

The product of α, α ′ ∈ Ψ can be described as the intersection of the π-subtree

spanned by α and the σ-subtree spanned by α ′, provided that τ(α) = ι(α ′); in that

case τ(α) = ι(α ′) is the only shape λ ∈ Λ with α �σ λ �π α ′, otherwise there is no

such shape at all. In any case, we have the following.

6.11. Theorem. Let α, α ′ ∈ Ψ. Then

α ◦ α ′ =
∑∑

λ∈Λ,α ′′∈Ψ
α�σλ�πα ′

α�πα ′′�σα ′

α ′′.
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[∅]

[1]

[13]

[12]

[123]

Figure 4. The rooted twofold forest for type A3.

Proof. By definition,

α ◦ α ′ =
∑∑

a∈α, a ′∈α ′

τ(a)=ι(a ′)

a ◦ a ′.(6.28)
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This sum is 0 unless τ(α) = ι(α ′). In that case, there is a unique λ ∈ Λ with α �σ λ

and λ �π α ′ and

∑

α�πα ′′�σα ′

α ′′ =
∑

α∋a�πa ′′�σa ′∈α ′

a ′′,(6.29)

that is the sum over all a ′′ ∈ A such that a �π a ′′ for some a ∈ α and a ′′ �σ a ′

for some a ′ ∈ α ′, which is α ◦ α ′ according to (6.28). �

6.12. Corollary. Let α ∈ Ψ. Then

(i) the elements {α ′ ∈ Ψ : α �π α ′} form a basis for the right ideal αΞ of Ξ,

(ii) the elements {α ′ ∈ Ψ : α ′ �σ α} form a basis for the left ideal Ξα of Ξ.

Moreover, the elements λ ∈ Λ form a complete set of primitive orthogonal idempo-

tents for the algebra Ξ and the Cartan invariants of Ξ are

dim λΞλ ′ = #{α ∈ Ψ : λ �π α �σ λ ′},

for λ, λ ′ ∈ Λ.

It follows in particular, that the matrix (dimλΞλ ′)λ,λ ′∈Λ of Cartan invariants of Ξ is

unitriangular.

Let us call α ∈ Ψ irreducible, if ℓ(α) > 0 and α = α ′◦α ′′ for some α ′, α ′′ ∈ Ψ implies

ℓ(α ′) · ℓ(α ′′) = 0. Then the algebra Ξ has a presentation as a (not necessarily canon-

ical) quiver with vertex set Λ, edge set corresponding to the irreducible elements of

Ψ and the multiplication table of Ψ as its only relations.

6.13. Example. Figure 5 illustrates the quiver for Ξ in the case A3. There are only

two irreducible streets of length greater than 1. The only relevant relation in this

case is [123; 2] ◦ [13; 1] = [123; 21] + [123; 23]. This relation allows us to drop one of

[123; 21], [123; 23] from the edge set. Hence Ξ of type A3 is in fact a path algebra.

The calculations for other types of Coxeter groups suggest that this is always the

case.

6.14. Conjecture. For any type of finite Coxeter group, the algebra Ξ is a path

algebra.
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[123]

[12] [13]

[∅]

[1]

[123; 1] [123; 2]
[123; 3]

[13; 1]
[12; 1]

[12; 2]

[1; 1]

[123; 21] [123; 23]

Figure 5. A quiver for Ξ of type A3.

7. Difference Operators.

In this section a grade decreasing difference operator is introduced and shown to

eventually map Ξ surjectively onto the grade 0 component of A. In the next section,

this difference operator will be used to construct a matrix representation of Ξ.

For i > 0, denote by

Ei = {a r−→ a.r : a = (L; s, t, . . . ) ∈ Ai, r ∈ S − L}(7.1)

the set of nontrivial edges of the graph of the action of S∗ on Ai. Then the set of all

edges

E =
⊔

i>0

Ei(7.2)

is in bijection to the set of alleys a ∈ A of positive length.

7.1. Proposition. For each i > 0, the map

(L; s, t, . . . ) 7→ (Ls; t, . . . )
s−→ (Ls; t, . . . ).s

is a bijection from Ai to Ei−1.

In what follows, we will use this bijection to identify edges with elements of A. Note

that, if n = |S| then An has no nontrivial edges, and therefore En = ∅.
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We define the little difference operator δ : A → A as the linear map which maps an

edge a = (L; s, t, . . . ) ∈ A to the difference of its end points, i.e.,

δ(a) =

{

(Ls; t, . . . ) − (Ls; t, . . . ).s, if ℓ(a) > 0,

0, otherwise.
(7.3)

Then δ(Ai) ⊆ Ai−1 for all i > 0, and hence

δi(Ai) ⊆ A0(7.4)

for all i > 0. Based on this observation, we furthermore define the big difference

operator ∆ : A→ A0 as the linear map with

∆(a) = δi(a)(7.5)

for a ∈ Ai. Then, for all a ∈ A, we have

∆(a) =

{

a, if ℓ(a) = 0,

∆(δ(a)) if ℓ(a) > 0.
(7.6)

We will use this latter description of ∆ for inductive arguments. It also follows that

0 = ∆(a) − ∆(δ(a)) = ∆(a − δ(a)),(7.7)

whence a − δ(a) ∈ ker ∆ for all a ∈ A with ℓ(a) > 0.

7.2. Remark. The difference operator δ does not turn A into a chain complex,

or a differential graded algebra, since neither δ2 = 0 nor the graded Leibniz Rule

δ(a ◦ b) = δ(a) ◦ b + (−1)ℓ(a)a ◦ δ(b) are satisfied in general.

7.3. Proposition. Let a = (L; s, t, . . . ) ∈ A and let x ∈ X
♯
L. Then

(i) δ(ax) = δ(a)x,

(ii) ∆(ax) = ∆(a)x.

Proof. (i) From δ(a) = σ(a) − σ(a).s it follows that

δ(ax) = σ(ax) − σ(ax).sx

= σ(a)x − σ(a)x.sx

= σ(a)x − (σ(a).s)x

= (σ(a) − σ(a).s)x

= δ(a)x,
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as desired, since σ(ax) = σ(a)x by Proposition 6.8 and (σ(a).s)x = σ(a)x.sx.

(ii) If J ⊆ L then X
♯
L ⊆ X

♯
J. Thus, by (i), if b ∈ A has source ι(b) = J then

δ(bx) = δ(b)x. By linearity, this is even true for all b ∈
∑

J⊆L J ◦ A. Noting that

a ∈
∑

J⊆L J◦A implies δ(a) ∈
∑

J⊆L J◦A, the result follows by applying δ sufficiently

often. �

The following graph theoretical lemma will help us to map Ξ surjectively onto A0 =

Q[P(S)].

7.4. Lemma. Let (V, E) be a connected simple graph with vertex set V and edge set

E, and let X = Q[V] be the vector space with basis V. Then X is spanned by
∑

V

and the set B = {u − v : {u, v} ∈ E}.

Proof. Since the graph (V, E) is connected, for any choice of x, y ∈ V, there is a path

(v0, v1, . . . , vl) from v0 = x to vl = y in (V, E), i.e, {vi−1, vi} ∈ E for i = 1, . . . , l, and

x − y =
∑l

i=1(vi−1 − vi) is a linear combination of elements in B. Now let v ∈ V.

Then |V | v =
∑

V +
∑

x 6=v(v − x) and it follows that the space spanned by
∑

V and

B is all of X. �

Denote Ξl = Ξ∩Al for l > 0. We conclude this section with the following important

result.

7.5. Theorem. Al = Ξl ⊕ δ(Al+1) for all l > 0 and A0 =
⊕

l>0 ∆(Ξl) = ∆(Ξ).

Proof. Consider the action graph on the vertex set Al for some l > 0. Its edge

set corresponds to Al+1 by Proposition 7.1. The connected components of this

graph are the streets α ∈ Ψl. By Lemma 7.4, the space Al = Q[Al] is spanned by

Ψl ∪ {δ(a) : a ∈ Al+1}. Moreover, suppose an element

c =
∑

a∈Al

caa ∈ Al(7.8)

is contained in Ξl∩δ(Al+1). Then c ∈ Ξl implies ca = ca ′ whenever a ∼ a ′, whereas

c ∈ δ(Al+1) implies
∑

a∈α

ca = 0(7.9)
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for all α ∈ Ψl. It follows that ca = 0 for all a ∈ Ai, whence c = 0 and

Al = Ξl ⊕ δ(Al+1).(7.10)

It now follows by induction from An+1 = 0 that

A0 =
⊕

l>0

δl(Ξl) =
⊕

l>0

∆(Ξl) = ∆(Ξ),(7.11)

as desired. �

8. A Matrix Representation.

In this section we use the big difference operator ∆ to turn A0 = Q[P(S)] into a

module for the street algebra Ξ. This yields an explicit matrix representation µ of Ξ.

For each a ∈ A, we define a linear map µ(a) ∈ End A0 by setting

L.µ(a) = ∆(L ◦ a)(8.1)

for all L ⊆ S.

For an alley a = (L; s, t, . . . ) ∈ A this means that L.µ(a) = ∆(a) and L ′.µ(a) = 0

for all L ′ ⊆ S with L ′ 6= L. For each street α ∈ Ψ, we get an endomorphism µ(α) of

A0 with the property that

L.µ(α) =
∑

a∈L◦α

∆(a)(8.2)

for all L ⊆ S. The linear maps µ(α), for α ∈ Ψ, have the following crucial property.

8.1. Proposition. ∆(a).µ(α ′) = ∆(a ◦ α ′) for all a ∈ A and all α ′ ∈ Ψ.

Proof. It suffices to consider an alley a ∈ A. If ℓ(a) = 0 then a = ∆(a) ⊆ S and the

claim is just equation (8.1).

Otherwise ℓ(a) > 0. Suppose that a = (L; s, t, . . . ). Let d = ω(Ls, s) and L ′ =

L − {s, t, . . . }. Then δ(a) = (Ls; t, . . . ) − (Ls; t, . . . )
d and ∆(a) = ∆(δ(a)). By
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induction on ℓ(a),

∆((Ls; t, . . . )).µ(α ′) = ∆((Ls; t, . . . ) ◦ α ′)(8.3)

= ∆
(

∑

a ′∈L ′◦α ′

(Ls; t, . . . ) ◦ a ′
)

=
∑

a ′∈L ′◦α ′

∆
(

(Ls; t, . . . ) ◦ a ′
)

.

Similarly,

∆((Ls; t, . . . )
d).µ(α ′) = ∆((Ls; t, . . . )

d ◦ α ′)(8.4)

= ∆
(

∑

a ′∈L ′◦α ′

(Ls; t, . . . )
d ◦ (a ′)d

)

=
∑

a ′∈L ′◦α ′

∆
(

((Ls; t, . . . ) ◦ a ′)d
)

.

Hence

∆(a).µ(α ′) =
(

∆((Ls; t, . . . )) − ∆((Ls; t, . . . )
d)

)

.µ(α ′)(8.5)

=
∑

a ′∈L ′◦α ′

∆
(

(Ls; t, . . . ) ◦ a ′
)

− ∆
(

((Ls; t, . . . ) ◦ a ′)d
)

=
∑

a ′∈L ′◦α ′

∆(δ(a ◦ a ′))

= ∆(a ◦ α ′),

using the facts that (Ls−{t, . . . })d = Ld
s −{td, . . . } and that (a ′′)d◦(a ′)d = (a ′′◦a ′)d

by equation (6.4). �

We denote the restriction of the linear map µ to the subalgebra Ξ of A again by µ.

8.2. Theorem. The map µ : Ξ→ End A0 defined by

L.µ(α) = ∆(L ◦ α)

is a homomorphism of algebras.

Proof. Let a ∈ A and α ′ ∈ Ψ. By Proposition 8.1, we have

L.µ(a)µ(α ′) = ∆(L ◦ a).µ(α ′) = ∆(L ◦ a ◦ α ′) = L.µ(a ◦ α ′),(8.6)
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for all L ⊆ S. It follows that µ(a ◦α ′) = µ(a)µ(α ′) for all a ∈ A and all α ′ ∈ Ψ and

thus, in particular, µ(α ◦ α ′) = µ(α)µ(α ′) for all α, α ′ ∈ Ψ. �

9. More about Descents.

In this section we identify the Ξ-module A0 with the descent algebra Σ(W) and show

that the linear maps µ(α) for α ∈ Ψ are endomorphisms of Σ(W). It follows that

Σ(W) is anti-isomorphic to Ξ/ ker µ = Ξ/ ker ∆. This gives us the desired presentation

of Σ(W) as a quiver with relations.

We first take a closer look at certain of the sets XJKL from equation (2.6).

9.1. Proposition. Let s ∈ S and J, K, L, M ⊆ S be such that J∪ {s} = L and K = Jd,

where d = ω(J, s). Then

(i) XMJJ ∩ XMKK = XMLL;

(ii) (XMJJ − XMLL)d = XMKK − XMLL.

Proof. (i) First note that J ⊆ L implies XL ⊆ XJ and

XMLL = {x ∈ XM ∩ X−1
L : Mx ⊇ L} ⊆ {x ∈ XM ∩ X−1

J : Mx ⊇ J} = XMJJ.(9.1)

Similarly, XMLL ⊆ XMKK. Conversely, let x ∈ XMJJ ∩ XMKK. Then x ∈ XM, and

x ∈ X−1
J ∩ X−1

K = X−1
L , and Mx ⊇ J ∪ K = L whence x ∈ XMLL.

(ii) Let x ∈ XMJJ − XMLL. By (i) and by symmetry it suffices to show that xd ⊆

XMKK. We have xd ∈ X−1
J d = X−1

K by Proposition 2.1(ii) and Mxd∩K = (Mx∩J)d =

Jd = K. It remains to show that xd ∈ XM. We distinguish two cases.

If x ∈ X−1
L then x ∈ XML and x ∈ XMJJ − XMLL implies Mx ∩ L = J. Hence, using

the Mackey decomposition of Proposition 2.1(iii),

XM =
⊔

b∈XML

bXL
Mb∩L ⊇ xXL

J(9.2)

and xd ∈ XM, since d = wJwL ∈ XL
J .

Otherwise, x /∈ X−1
L . Then s is a prefix of x−1 and since x−1 ∈ XJ and Jx−1

⊆ M,

Lemma 4.2(iii) implies that d is a prefix of x−1. Therefore, xd ∈ XM as xd then is

a prefix of x ∈ XM. �
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Following Bergeron, Bergeron, Howlett and Taylor [2], we define numbers mKL, for

K, L ⊆ S, as

mKL =
∑

J∼L

aJKL =

{

|XK ∩ X♯
L| , if L ⊆ K,

0, otherwise.
(9.3)

Then, for a suitable ordering of the subsets of S, the matrix (mKL)K,L⊆S is lower

triangular with nonzero diagonal entries

mKK =
∑

J∼K

aJKK = #[K] · |NK| ,(9.4)

for K ⊆ S, and thus has an inverse (nJK)J,K⊆S over Q.

9.2. Proposition. The elements eJ ∈ Σ(W), defined for J ⊆ S as

eJ =
∑

K

nJK xK,(9.5)

form a basis of Σ(W) with

eJ xM =
∑

K∼J

aJMK eK(9.6)

for all J, M ⊆ S. Moreover, the elements eλ, defined for λ ∈ Λ as

eλ =
∑

L∈λ

eL,(9.7)

form a complete set of primitive orthogonal idempotents of Σ(W) with eλeM = eM

if M ∈ λ, and eλeM = 0, otherwise.

Proof. [2, Theorem 7.8 and Proposition 7.11]. �

We further define, for each alley a = (L; s, t, . . . ) ∈ A, an element fa ∈ Σ(W) as

fa =

{

eL, if ℓ(a) = 0,

fσ(a) − fσ(a).s, if ℓ(a) > 0.
(9.8)

More generally, for a linear combination c =
∑

a∈A caa ∈ A, we define

fc =
∑

a∈A

cafa.(9.9)
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Then fa = fδ(a) for all a ∈ A and fc = f∆(c) for all c ∈ A. In particular, for each

street α ∈ Ψ, we have an element

fα =
∑

a∈α

fa,(9.10)

and for each L ⊆ S we have

fL◦α =
∑

a∈L◦α

fa,(9.11)

If we identify A0 with Σ(W) by setting (L; ∅) = eL, we even have fc = ∆(c) for all

c ∈ A.

By Proposition 9.2, right multiplication by xM maps eJ to a sum of conjugates of eJ.

The following key result generalizes this property to the elements fa. Recall from

Section 6 that, if a = (L; s, t, . . . ) ∈ A and x ∈ X
♯
L, then ax = (Lx; sx, tx, . . . ) ∈ A.

9.3. Theorem. Let L, M ⊆ S and a = (L; s, t, . . . ) ∈ A. Then

faxM =
∑

x∈X−1
MLL

fax.

In particular, faxM = 0 unless L is contained in a conjugate of M.

Proof. If ℓ(a) = 0 then fa = eL and by equation (9.6),

eLxM =
∑

K∼L

aLMKeK =
∑

x∈XLM:Lx⊆M

eLx∩M =
∑

x∈X−1
MLL

eLx,(9.12)

since {x ∈ XLM : Lx ⊆M} = {x ∈ X−1
ML : Mx−1

∩ L = L} = X−1
MLL.

Otherwise ℓ(a) > 0 and fa = f(J;t,... ) − f(K;t ′,... ), where J = Ls, d = ω(J, s), K = Jd

and t ′ = td. By induction on ℓ(a) and by Proposition 9.1, we have

f(J;t,... )xM =
∑

x∈X−1
MJJ

f(J;t,... )x(9.13)

=
∑

x∈X−1
MLL

f(J;t,... )x +
∑

x∈X−1
MJJ−X−1

MLL

f(J;t,... )x
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and

f(K;t ′,... )xM =
∑

y∈X−1
MKK

f(K;t ′,... )y(9.14)

=
∑

y∈X−1
MLL

f(K;t ′,... )y +
∑

x∈X−1
MJJ−X−1

MLL

f(J;t,... )x.

It follows with Proposition 7.3 that

faxM = (f(J;t,... ) − f(K;t ′,... ))xM(9.15)

=
∑

x∈X−1
MLL

(f(J;t,... )x − f(K;t ′,... )x) =
∑

x∈X−1
MLL

fax,

as desired. �

9.4. Corollary. Let a = (L; s, t, . . . ) ∈ A, let α = [a], let λ = [L] and let M ⊆ S. If

M ∈ λ then

(i) faeM =
1

|α|
fM◦α, (ii) fL◦αeM =

1

|λ|
fM◦α, (iii) fαeM = fM◦α.

Otherwise, fαeM = 0.

Proof. Suppose first that M ∈ λ. (i) From equation (9.5), we have

faeM = fa

∑

J

nMJxJ =
∑

J⊆M

nMJfaxJ = nMMfaxM =
1

mMM

faxM(9.16)

since, by Theorem 9.3, faxJ = 0 unless L is contained in a conjugate of J ⊆ M.

Moreover, mMM = |NL| |λ| and by Theorem 9.3, faxM = |Na| fM◦α since M ◦ α

is the NM-orbit of a ∈ α and Na is its stabilizer. The claim now follows from

|α| = |NL : Na| |λ|, see Proposition 6.3(iv).

(ii) and (iii) follow easily from (i).

Now suppose that M /∈ λ. With fλ =
∑

L ′∈λ eL ′, we have

fαfλ =
∑

L ′∈λ

fαeL ′ =
∑

L ′∈λ

fL ′◦α = fα.(9.17)

It follows that, for M /∈ λ,

fαeM = fαfλeM = 0,(9.18)

since fλeM = 0 unless M ∈ λ. �
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We identify A0 with Σ(W) by setting

L = (L; ∅) = eL(9.19)

for all L ⊆ S and can now formulate the main result of this article.

9.5. Theorem. The linear map ∆ : Ξ→ Σ(W) defined by α 7→ ∆(α) = fα for α ∈ Ψ

is a surjective anti-homomorphism of algebras which induces a bijection between the

complete set of primitive orthogonal idempotents λ ∈ Λ of Ξ and the complete set of

primitive orthogonal idempotents eλ, λ ∈ Λ, of Σ(W).

Proof. Let α, α ′ ∈ Ψ and let M ⊆ S. Then

fαeM = fM◦α = ∆(M ◦ α) = M.µ(α) = eM.µ(α).(9.20)

It follows that

fα ′fαeM = fα ′(eM.µ(α)) = (eM.µ(α)).µ(α ′)(9.21)

= eM.(µ(α)µ(α ′)) = eM.µ(α ◦ α ′) = fα◦α ′eM.

Hence

fα ′fα = fα◦α ′ ,(9.22)

as desired. �

Note that the linear map defined by a 7→ fa in general is not an algebra homomor-

phism from A to Σ(W): the product of (J, ∅) and (K, ∅) in QA is zero unless J = K

while eJeK 6= 0 if J ∼ K by Proposition 9.2.

As an immediate consequence of Theorem 9.5, we derive some properties of the

Cartan matrix of Σ(W) from the Cartan matrix of Ξ.

9.6. Corollary. The Cartan invariants of Σ(W) are given by the dimensions of the

subspaces

eλ ′Σ(W)eλ = 〈fα : λ �π α �σ λ ′〉Q

of Σ(W), for all λ, λ ′ ∈ Λ. Hence the matrix (dim eλ ′Σ(W)eλ)λ ′,λ∈Λ of Cartan

invariants of Σ(W) is unitriangular.
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Proof. By Corollary 6.12, the set {α ∈ Ψ : λ �π α �σ λ ′} forms a basis of the

subspace λΞλ ′ of Ξ. Under the anti-homomorphism ∆, this set is mapped to {fα :

λ �π α �σ λ ′} which therefore spans the subspace

eλ ′Σ(W)eλ = ∆(λΞλ ′)

of Σ(W). �

10. The Quiver of the Descent Algebra.

Denote by Q = (V, E) the quiver of Σ(W). This is a graph with vertex set V

corresponding to the shapes Λ of W, which, by Proposition 9.2, label the complete

set of primitive orthogonal idempotents fλ = eλ, λ ∈ Λ, of Σ(W), and edge set E

consisting of dim eλ ′(RadΣ(W)/ Rad2 Σ(W))eλ edges from λ ′ to λ for all λ, λ ′ ∈ Λ.

We denote by 6 the partial order induced on Λ by subset inclusion and by ⋖ the

cover relation of this partial order, i.e., given λ, λ ′ ∈ Λ we write

λ ′ 6 λ(10.1)

if L ′ ⊆ L for some L ∈ λ, L ′ ∈ λ ′, and

λ ′ ⋖ λ(10.2)

if λ ′ < λ and there is no ρ ∈ Λ with λ ′ < ρ < λ.

It follows from Corollary 9.6 that, if there is an edge e from λ ′ to λ in the quiver Q

then λ ′ < λ. Some further properties of Σ(W) and its quiver Q follow easily from the

description of Σ(W) as anti-homomorphic image of the streets algebra Ξ. We can,

for example, find some streets in ker ∆. Recall from Proposition 7.1 that an alley

a = (L; s, t, . . . ) corresponds to an edge from σ(a) to σ(a).s in the action graph

on A. If this edge is a loop then a and its S∗-orbit [a] lie in ker ∆. In fact, each

street α which ends in [a] then lies in ker ∆, as the next result shows.

10.1. Proposition. Let a = (L; s, t, . . . ) ∈ A be such that ℓ(a) > 0. If σ(a) = σ(a).s

then fα = 0 for all α ∈ Ψ such that α �σ [a].

Proof. We first consider the case α = [a]. From σ(a) = σ(a).s follows δ(a) = 0

and thus ∆(a) = ∆(δ(a)) = ∆(0) = 0. Moreover, by Proposition 7.3, we have

∆(a.m) = 0 for all m ∈ S∗. Hence fα = ∆(α) =
∑

a∈α ∆(a) = 0.



38 GÖTZ PFEIFFER

Now suppose α = [a ′] ∈ Ψ is such that ∆(σ(a ′)) = 0. Then ∆(a ′) = ∆(δ(a ′)) = 0

and it follows as before that fα = 0. The claim for all α �σ [a] then follows by

induction. �

10.2. Example. In Figure 3 and Figure 4, for W of type A3, all those α ∈ Ψ with

fα = 0 are highlighted in red. In this example, all cases of fα = 0 can be explained

by Proposition 10.1

A street α may be in ker ∆ for other reasons. By equation (6.6), an alley a =

(L; s, t, u, . . . ) ∈ A of length l(a) > 0 corresponding to the edge (Ls; t, u, . . . ) s−→

(Ls; t, u, . . . ).s of the action graph has a reverse edge

(Ls; t, u, . . . ).s s ′
−→ (Ls; t, u, . . . )(10.3)

going in the opposite direction, where s ′ = swL . To this reverse edge corresponds

the reverse alley a of a which we accordingly define as

a = (L; swL, td, ud, . . . ),(10.4)

where d = ω(Ls, s). Clearly,

δ(a) = −δ(a)(10.5)

and

ax = ax(10.6)

for all x ∈ X
♯
L. From this, the following properties are obvious.

10.3. Lemma. Let α ∈ Ψ. Then

(i) α = {a : a ∈ α} ∈ Ψ with ι(α) = ι(α) and τ(α) = τ(α);

(ii) fα = −fα;

(iii) fα = 0 if α = α.

Lemma 10.3(iii) has consequences for the images of streets α of length ℓ(α) = 1 in

Σ(W).

10.4. Proposition. Let s ∈ L ⊆ S. If there exists a subset M with L ⊆ M ⊆ S

such that (L; s)wM = (L; s) then f[L;s] = 0. In particular, if the longest element w0

is central in W then f[L;s] = 0 for all L ⊆ S and s ∈ L.
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Proof. The reverse of the alley (L; s) is (L; swL). Clearly x = wLwM ∈ X
♯
L. The

claim now follows with Lemma 10.3, since (L; swL)x = (LwM; swM) = (L; s). �

10.5. Reduction to Irreducible Finite Coxeter Groups. It has been shown [2,

Proposition 3.2], that if there are subsets J, K ⊆ S such that W is the direct product

WJ×WK then the descent algebra Σ(W) is the tensor product of Σ(WJ) and Σ(WK).

The quiver Q = (V, E) of Σ(W) is then the direct product of the quiver QJ = (VJ, EJ)

of Σ(WJ) and the quiver QK = (VK, EK) of Σ(WK). It has vertex set V = VJ ×VK

and edges (x ′, y ′) → (x, y) if x ′ = x ∈ VJ and y ′ → y is an edge in EK or if

y ′ = y ∈ VK and x → x ′ is an edge in EJ. Moreover, in every square arising from

the product of an edge x ′ → x in EJ and an edge y ′ → y in EK, the relation

((x ′, y ′)→ (x ′, y)→ (x, y)) = ((x ′, y ′)→ (x, y ′)→ (x, y))(10.7)

holds in Σ(W).

The problem of finding a quiver presentation for Σ(W) is thus reduced to irreducible

Coxeter groups and we will, for the remainder of this section, assume that W is

an irreducible finite Coxeter group. The following property of maximal parabolic

subgroups is then easily verified in a case-by-case analysis.

10.6. Proposition. Suppose that W is an irreducible finite Coxeter group. Let L ⊆ S

and let s, s′ ∈ L be such that Ls ∼ Ls ′ in W. Then there exists an x ∈ NW(WL) such

that Lx
s = Ls ′, unless W is of type H3 and WL of type A1 ×A1.

10.7. Corollary. Suppose that W is an irreducible finite Coxeter group not of type

H3. Let λ, λ ′ ∈ Λ be such that λ ′ ⋖ λ and let α, α ′ ∈ Ψ have common source λ and

target λ ′. Then α ′ = α or α ′ = α.

Proof. Let s, s′ ∈ L ⊆ S be such that L ∈ λ and Ls, Ls ′ ∈ λ ′. Then, by Proposi-

tion 10.6, Lx
s = Ls ′ for some x ∈ NW(WL) = WL ⋊NL. Let J = Ls and write x = y ·z

for y ∈ XL
J and z ∈ NL. Then J is a maximal subset of L and thus either y = id

or y = wJwL, by Lemma 4.2. With Proposition 6.3(iii) it now follows that either

(L; s ′) ∼ (L; s) or (L; s ′) ∼ (L; swL). �

10.8. Remark. A direct inspection shows that, if λ, λ ′ ∈ Λ are such that λ ′ ⋖λ then

#{α ∈ Ψ : λ �π α �σ λ ′} ∈ {1, 2} holds for W of type H3 as well.

Each cover relation gives rise to at most one edge in Q.
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10.9. Theorem. Let λ, λ ′ ∈ Λ be such that λ ′ ⋖ λ and denote by nλλ ′ the number of

edges from λ ′ to λ in Q. If there are s ∈ L ⊆ M ⊆ S such that L ∈ λ, Ls ∈ λ ′ and

(L; s)wM = (L; s) then nλλ ′ = 0. Otherwise nλλ ′ 6 1.

Proof. The number of edges from λ ′ to λ is given by

nλλ ′ = dim eλ ′(RadΣ(W)/ Rad2 Σ(W))eλ = dim eλ ′Σ(W)eλ,(10.8)

since clearly eλ ′Σ(W)eλ 6 RadΣ(W) and eλ ′Σ(W)eλ ∩ Rad2 Σ(W) = 0. And by

Corollary 9.6, eλ ′Σ(W)eλ is spanned by {fα : λ �π α �σ λ ′}.

If W is of type H3 then the longest element w0 is central in W and it follows from

Proposition 10.4 that nλλ ′ = 0.

Otherwise, by Corollary 10.7 and Lemma 10.3(ii), the subspace eλ ′Σ(W)eλ is spanned

by a single element fα = −fα, which, by Proposition 10.4, is 0 if there are s ∈ L ⊆

M ⊆ S such that L ∈ λ, Ls ∈ λ ′ and (L; s)wM = (L; s). �

[∅]

[123]

[12]

[1]

[13]

Figure 6. The quiver of Σ(W) of type A3. There are no relations.

10.10. Example. Figure 6 illustrates the case A3. The vertices of the quiver are the

shapes Λ of W, which in this case correspond to the partitions of 4. There are only

two edges, one mapping to f[12;1] and the other to f[123;1] in Σ(W).
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11. Examples of Quiver Presentations.

In this section we look at particular examples of irreducible finite Coxeter groups.

For each of the series An, Bn and Dn, we list some general properties of the quiver

Q = (V, E) and give a presentation as a quiver with relations of Σ(W) for the smallest

group W in the series for which the descent algebra is not a path algebra.

11.1. Algorithm. Based on Theorem 9.5 and the results of the previous section,

we can use the following algorithm to calculate a quiver presentation for the descent

algebra Σ(W) of a particular finite Coxeter group W.

• Given: a finite Coxeter group W.

• Compute: A quiver Q = (V, E) and a set R of relations between the paths

in Q such that the path algebra of Q modulo R is isomorphic to Σ(W).

1. V← Λ, the set of all shapes of W.

2. M← {α ∈ Ψ : l(α) > 0 and ∆(α) 6= 0};

3. i← 0.

4. while M 6= ∅:

5. i← i + 1;

6. Ei ←M;

7. add to R a basis of the nullspace of ∆ on 〈E1 ∪ · · · ∪ Ei〉Q;

8. remove redundant elements from E1;

9. M←M ◦ E1;

10. Return (V, E1), R expressed in terms of E1.

In the resulting quiver, the edges are elements of Ψ, so that an explicit isomorphism

between the path algebra of this quiver Q and the descent algebra Σ(W) is obtained

by simply applying ∆.

11.2. Type An. The shapes of a Coxeter group of type An correspond to the parti-

tions of n+1. If λ, λ ′ ∈ Λ are such that λ ′ ⋖λ then the partition q corresponding to
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λ is obtained from the partition p corresponding to λ ′ by joining two parts of p. And

if there is an edge from λ ′ to λ in Q then the two parts are distinct, by Theorem 10.9.

It turns out that there is in fact an edge in Q whenever the two parts are distinct.

It furthermore turns out that fα ∈ Rad2 Σ(W) for all α ∈ Ψ with ℓ(α) > 1.

Hence the vertices of quiver Q correspond to the partitions of n + 1 with an arrow

p→ q between partitions p, q of n + 1 if and only if q is obtained from p by joining

two distinct parts of p. This quiver has an isolated vertex 1n and a further isolated

vertex 2n/2 if n is even. The remaining vertices form one connected component.

The descent algebra Σ(W) therefore has 2 or 3 blocks, depending on whether n is

odd or even. This description of Q has been given by Garsia and Reutenauer [9].

It also follows from the results of Blessenohl and Laue [4, 5], as pointed out by

Schocker [17]. A complete proof of this description in the present framework together

with a description of the relations in a quiver presentation for Σ(W) of type An will

be the subject of a subsequent article.

11.3. Example. Consider the Coxeter group W of type A5 with Coxeter diagram:

1 − 2 − 3 − 4 − 5

Here, and similarly in the following examples, we identify the elements of the set

S = {1, 2, . . . , 5} with the simple reflections of W. The vertices v ∈ V of the quiver

v type λ v type λ v type λ

1. 111111 [∅] 5. 222 [135] 9. 42 [1235]

2. 21111 [1] 6. 321 [124] 10. 51 [1234]

3. 2211 [13] 7. 411 [123] 11. 6 [S]

4. 3111 [12] 8. 33 [1245]

e α e α e α

2→ 4. [12; 1] 6→ 8. [1245; 1] 7→ 10. [1234; 1]

3→ 6. [124; 1] 6→ 9. [1235; 1] 9→ 11. [S; 2]

4→ 7. [123; 1] 6→ 10. [1234; 2] 10→ 11. [S; 1]

Table 2. The quiver of Σ(W) for W of type A5.

Q, correspond to the partitions of 6 and are enumerated in Table 2, together with a

representative L ⊆ S for each shape λ = [L] of W. The edges e ∈ E of the quiver Q
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are listed in terms of the vertex numbering and as a streets α. The only relation in

this case is

(3→ 6→ 9→ 11) = (3→ 6→ 10→ 11),(11.1)

arising from the fact that f[S;234] = f[S;134] in Σ(W).

11.4. Type Bn. In the Coxeter group W of type Bn the longest element w0 is

central. Proposition 10.4 thus yields fα = 0 for all α ∈ Ψ with ℓ(α) = 1, and

therefore no cover relation λ ′ ⋖ λ of shapes λ, λ ′ ∈ Λ gives rise to an edge of the

quiver Q!

v type λ v type λ v type λ

1. 111111 [∅] 11. 321 [235] 21. 21 [1236]

2. 11111 [1] 12. 211 [125] 22. 51 [2345]

3. 21111 [2] 13. 411 [345] 23. 11 [1234]

4. 2111 [16] 14. 111 [123] 24. 4 [12456]

5. 2211 [26] 15. 32 [1356] 25. 5 [13456]

6. 3111 [45] 16. 22 [1246] 26. 3 [12356]

7. 1111 [12] 17. 33 [2356] 27. 6 [23456]

8. 222 [246] 18. 31 [1256] 28. 2 [12346]

9. 221 [146] 19. 41 [1345] 29. 1 [12345]

10. 311 [145] 20. 42 [2456] 30. ∅ [S]

e α e α e α

3→ 13. [234; 23] 9→ 28. [12346; 23] 12→ 29. [12345; 34]

3→ 14. [123; 12] 10→ 25. [13456; 34] 13→ 27. [23456; 23]

4→ 19. [1345; 34] 10→ 29. [12345; 23] 13→ 29. [12345; 12]

4→ 23. [1234; 23] 11→ 26. [12356; 12] 15→ 30. [S; 24]

5→ 20. [2346; 23] 11
.
→ 27. [23456; 34] 18→ 30. [S; 34]

5→ 21. [1235; 12] 11
..
→ 27. [23456; 42] 19→ 30. [S; 23]

5→ 22. [2345; 34] 11→ 28. [12346; 12] 20→ 30. [S; 13]

6→ 22. [2345; 23] 11→ 29. [12345; 13] 21→ 30. [S; 45]

6→ 23. [1234; 12] 12→ 24. [12456; 45] 22→ 30. [S; 12]

9→ 25. [13456; 45]

Table 3. The quiver of Σ(W) for W of type B6.
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The shapes of W correspond to the partitions of m ∈ {0, . . . , n}. Experimental

evidence suggests that the edge set E of the quiver Q on this vertex set can be

described as follows. There is an e-fold edge p→ q between two partitions p, q if q

is be obtained from p by either joining 3 parts a, b, c with e = |{a, b, c}| − 1, or by

dropping 2 parts a, b with e = |{a, b}| − 1.

The graph described by these rules has five isolated vertices 1n, 1n−1, 1n−2, 2⌊n/2⌋,

and 3⌊n/3⌋, for n large enough, and a further isolated vertex 2n/2−1 if n is even. The

remaining vertices form two connected components, one on the partitions of odd

length and one on the partitions of even length. The descent algebra Σ(W) therefore

has 4 or 6 blocks if n = 2 or n = 3, and, for larger n, it has 8 or 7 blocks, depending

on whether n is even or odd. The quiver is illustrated with an example of type B6

below.

We hope to give a complete proof of this description of the quiver together with

a description of the relations in a quiver presentation for Σ(W) of type Bn in a

subsequent article.

11.5. Example. Consider the Coxeter group W of type B6 with Coxeter diagram:

1 = 2 − 3 − 4 − 5 − 6

The shapes of W, which serve as vertex set of the quiver Q, correspond to the

partitions of all m ∈ {0, 1, . . . , 6} and are enumerated in Table 3, together with a

representative L ⊆ S for each shape λ = [L] of W. The edges e ∈ E of the quiver Q

are listed in terms of the vertex numbering and as a streets α. Note that there are

two edges between vertices 11 and 27, i.e., between the partitions 321 and 6 of 6,

which are distinguished by using the symbols
.
→ and

..
→ as arrows.

The only relation in this case is

(5→ 20→ 30) = (5→ 22→ 30),(11.2)

arising from the fact that f[2346;23]f[S;13] = f[2345;34]f[S;12] in Σ(W).

11.6. Type Dn. If n is even then the longest element w0 is central in the Coxeter

group W of type Dn and, as in the case of type Bn, no cover relation λ ′⋖λ of shapes

λ, λ ′ ∈ Λ gives rise to an edge of the quiver Q.
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If n is odd, then the shapes λ ∈ Λ of W correspond to the partitions of m ∈

{0, 1, . . . , n− 2}∪ {n} in such a way that each part a of a partition p of m stands for

a direct factor of type Aa−1 of WL, L ∈ λ, and if m < n then WL also has a direct

factor of type Dn−m. And if λ ′, λ ∈ Λ correspond to partitions p, q in this set then

λ ′ ⋖ λ if and only if q is obtained from p by either joining two parts or by dropping

one part. With Theorem 10.9, it can be shown that, if λ ′ ⋖ λ and there is an edge

from λ ′ to λ in the quiver Q, then λ ′ corresponds to a partition p of n, which has

exactly one odd part a, and the partition q corresponding to λ arises from p by

either joining a and another (even) part of p or, if a > 1, by dropping a from p.

v type λ v type λ v type λ

1. 111111 [∅] 10. 111 [123] 19. 11 [1234]

2. 21111 [1] 11. 411 [134] 20. 4 [12456]

3. 1111 [12] 12. 22 [1246] 21. 3 [12356]

4. 2211 [46] 13. 31 [1256] 22. 2 [12346]

5. 3111 [13] 14. 33 [1356] 23. 6− [13456]

6. 222− [146] 15. 21 [1236] 24. 6+ [23456]

7. 222+ [246] 16. 42− [1346] 25. 1 [12345]

8. 211 [124] 17. 42+ [2346] 26. ∅ [S]

9. 321 [236] 18. 51 [1345]

e α e α e α

2→ 10. [123; 12] 8→ 25. [12345; 34] 11→ 23. [13456; 13]

2→ 11. [134; 13] 9
.
→ 21. [12356; 12] 11→ 24. [23456; 23]

4→ 14. [1356; 15] 9
..
→ 21. [12356; 15] 11→ 25. [12345; 12]

4→ 15. [1235; 12] 9
.
→ 22. [12346; 21] 13→ 26. [S; 34]

4→ 16. [1346; 13] 9
..
→ 22. [12346; 12] 14→ 26. [S; 41]

4→ 17. [2346; 23] 9
.
→ 23. [13456; 34] 15→ 26. [S; 45]

4→ 18. [1345; 34] 9
..
→ 23. [13456; 41] 16→ 26. [S; 23]

5→ 18. [1345; 13] 9
.
→ 24. [23456; 42] 17→ 26. [S; 13]

5→ 19. [1234; 12] 9
..
→ 24. [23456; 34] 18

.
→ 26. [S; 21]

8→ 20. [12456; 45] 9→ 25. [12345; 13] 18
..
→ 26. [S; 12]

Table 4. The quiver of Σ(W) for W of type D6.
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11.7. Example. Consider the Coxeter group W of type D6 with Coxeter diagram:

2 −

1

|

3 − 4 − 5 − 6

The shapes of W, which serve as vertex set of the quiver Q, correspond to the

partitions of all m ∈ {0, 1, 2, 3, 4, 6}, with two copies of each even partition of 6,

and are enumerated in Table 4, together with a representative L ⊆ S for each shape

λ = [L] of W. The edges e ∈ E of the quiver Q are listed in terms of the vertex

numbering and as a streets α. Note that there are two edges between vertices 9 and

21, 22, 23, 24 respectively, and between vertices 18 and 26.

There are three relations:

(4→ 14→ 26) = −2(4→ 15→ 26),(11.3)

arising from f[1356;15]f[S;41] = −2f[1235;12]f[S;45] in Σ(W),

(4→ 16→ 26) = (4→ 18
.
→ 26),(11.4)

arising from f[1346;13]f[S;23] = f[1345;34]f[S;21] in Σ(W), and

(4→ 17→ 26) = (4→ 18
..
→ 26),(11.5)

arising from f[2346;23]f[S;13] = f[1345;34]f[S;12] in Σ(W).

11.8. Exceptional types. The quivers Q of the descent algebras Σ(W) for Cox-

eter groups W of exceptional or non-crystallographic type have been computed with

Algorithm 11.1 and will be described in detail elsewhere.
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