
ar
X

iv
:0

71
0.

18
42

v1
 [

cs
.D

M
]

 9
 O

ct
 2

00
7

AN EXPLICIT UNIVERSAL CYCLE FOR THE

(n− 1)-PERMUTATIONS OF AN n-SET

FRANK RUSKEY AND AARON WILLIAMS

Abstract. We show how to construct an explicit Hamilton cycle in the directed Cayley

graph
−−→
Cay({σn, σn−1} : Sn), where σk = (1 2 · · · k). The existence of such cycles was

shown by Jackson (Discrete Mathematics, 149 (1996) 123–129) but the proof only shows
that a certain directed graph is Eulerian, and Knuth (Volume 4 Fascicle 2, Generating All
Tuples and Permutations (2005)) asks for an explicit construction. We show that a simple
recursion describes our Hamilton cycle and that the cycle can be generated by an iterative
algorithm that uses O(n) space. Moreover, the algorithm produces each successive edge of
the cycle in constant time; such algorithms are said to be loopless.

1. Introduction and motivation

There are many proofs in the mathematical literature showing the existence of Hamilton
cycles or Eulerian cycles in important families of graphs. However, turning these proofs into
efficient algorithms often represents a significant challenge.

An interesting case in point is the well-known De Bruijn cycle, which is a length kn circular
string over a k-ary alphabet with the property that every length n string occurs as a sub-
string. The existence of De Bruijn cycles is commonly presented in undergraduate discrete
mathematics courses as a consequence of a certain graph being Eulerian. However, it is not
widely known how to efficiently generate a De Bruijn cycle. In the authors’ view two aspects
of this question have particular importance.

• Space, not time, is the primary enemy. A näıve solution would be to build the
graph and then use a Eulerian cycle algorithm to produce the cycle. This will be
practical for small values of n and k, but for large values space will be the limiting
factor long before time becomes a factor. In general, we need to be able to generate
the Hamilton or Eulerian cycle without building the graph, or storing exponentially-
long sublists. There are algorithms for building De Bruijn cycles that use space O(n).
The earliest of these is due to Fredricksen and Maiorana [3] and is presented in Knuth
[8].
• The development of efficient algorithms reveals structure. It is often worth-

while to turn a proof into an algorithm, or to develop an alternate proof, because the

Research supported in part by NSERC.
1

http://arxiv.org/abs/0710.1842v1

2 F. RUSKEY AND A. WILLIAMS

process often results in a deeper structural understanding of the cycles being listed.
For example, the efficient algorithm due to Fredricksen and Maiorana is based on
necklaces, Lyndon words, and is related to pattern-matching and Lyndon factoriza-
tion.

As another example from the Hamiltom cycle domain, Eades, Hickey, and McKay [2] con-
sidered the graph G(n, k) whose vertices are all length n bitstrings with density k and where
two bitstrings are joined by an edge if they differ by transposing two adjacent bits. They
showed that G(n, k) is Hamiltonian if and only if n is even and k is odd. The proof is
inductive and relies on the fact that the graph has a spanning subgraph that is the prism
of two “combs.” However, it was not at all clear how to turn that proof into an efficient
algorithm. Eventually an algorithm that mimics the proof was found that uses O(n) space
and take time O(1) per bitstring generated [5].

In the present paper we are considering the construction of a “universal cycle” for the
(n− 1)-permutations of an n-set (which we take to be {1, 2, . . . , n}). Here a universal cycle

is a circular string of length n! what contains each of the n! different (n− 1)-permutations
as a (contiguous) substring. For example, 321312 is a such a universal cycle for n = 3, since
its substrings are 32, 21, 13, 31, 12, and 23.

More general universal cycles were introduced by Chung, Diaconis, and Graham [1] as a way
of extending the de Bruijn cycle idea to combinatorial objects in general. The existence of a
universal cycle for the k-permutations of an n-set was shown by Jackson [6] when k < n. His
proof sets up a certain natural Eulerian graph, call it Jk,n, and shows that any Eulerian cycle
in that graph corresponds to the required universal cycle. However, no explicit construction
of the cycle is indicated. The problem for k = n − 1 is discussed by Knuth [8] in Exercise
112 of Section 7.2.1.2. On page 121 of [8] we find the following quote:

“At least one of these cycles must almost surely be easy to describe and to
compute, as we did for de Bruijn cycles in Section 7.2.1.1. But no simple
construction has yet been found.”

The purpose of this paper is to provide such a description and computational method. We
will show how to construct a particular universal cycle. Our algorithm takes space O(n) and
uses a constant amount of time between successive outputs of characters in the cycle. To be
precise regrading the space requirement: The algorithm uses a constant number of arrays,
each with O(n) indices, and each storing integers of value at most n. Similarly regarding
time, we use a constant number of operations (comparisons, increments, decrements, and
parity tests) on integers of value at most n.

Universal cycles for the permutations of an n-set are not directly possible unless n ≤ 2.
However, every (n− 1)-permutation of an n-set can be uniquely extended to a permutation
of an n-set by appending the unique missing symbol. Thus, universal cycles for (n − 1)-
permutations can be viewed as universal cycles for permutations. For example, 321312

AN EXPLICIT UNIVERSAL CYCLE FOR THE (n − 1)-PERMUTATIONS OF AN n-SET 3

produces the permutations 321, 213, 132, 312, 123, and 231, where the appended missing
symbols are underlined. For this reason, our results add to the already sizeable literature
on generating permutations. A good survey is provided by Sedgewick [11] and more recent
developments are to be found in Knuth [8].

We don’t expect our algorithms to be a fast way to generate permutations using the usual
model of computation, since at least n − 1 of the n values change at each step. However,
they will be fast if a circular representation is used; for example, when using linked lists or a
circular array. In a circular array we maintain a start position and do arithmetic on indices
mod n. They will also be fast if the permutation is stored as a computer word. For example,
we can store the permutations up to n = 16 by dividing 64 bit words into 4 half-bytes. The
shifts can then be accommodated in a few machine instructions.

Finally, we mention that additional symbols can also be used to create universal cycles
whose substrings are order isomorphic to permutations. For example, 421423 produces the
permutations 321, 213, 132, 312, 123, and 231. Recently Johnson [7] proved a conjecture
in [1] by showing that n + 1 symbols are always sufficient for constructing these universal
cycles.

The paper is organized as follows. In Section 2 we give our explicit construction as a certain
recursively defined string. Then, in Section 3, we show that this string can be generated
by an algorithm that uses only a constant amount of computation between the output of
successive symbols of the string — the first such algorithm for a universal cycle. In Section
4, we give further properties of our recursive construction; first some results on the number
of σn or σn−1 operations that are used, then that our ordering has an efficiently computable
ranking function, and finally that it is “multiversal,” in a sense to be described later. We
conclude with Section 5, which contains some open problems.

2. An explicit construction

Initially, we will couch our discussion in terms of finding Hamilton paths in certain di-

rected Cayley graphs. Cayley graphs are denoted X =
−−→
Cay({α1, α2, · · · , αk} : G). Here

{α1, α2, · · · , αk} is a generating set of a group G. The vertices of X are the elements of
G and the edges are all of the form g → αig; these edges are usually thought of as being
labelled with αi. In an undirected Cayley graph, if α is in the generating set, then its inverse
α− is also in the generating set. Driven by the question of Lovász of whether there is a
Hamilton cycle in all undirected Cayley graphs, there is a significant literature of results
about Hamilton cycles in Cayley graphs. A survey may be found in Gallian and Witte [4];
see also Pak and Radoš Radoičić [10].

In the solution to Exercise 112 of Section 7.2.1.2 Don Knuth implicitly poses the problem
of finding an explicit expression for universal cycles of (n− 1)-permutations of an n-set [8].
This problem is equivalent to generating permutations of an n-set by rotations of the form

4 F. RUSKEY AND A. WILLIAMS

(1 2 · · · n) or (1 2 · · · n−1); i.e., it is equivalent to asking whether the Cayley graph

Ξn :=
−−→
Cay({σn, σn−1} : Sn)

is Hamiltonian. We use Sk,n to denote the set of k-permutations of the n-set [n] = {1, 2, . . . , n}.
In the case where k = n we use Sn. Although we do not use this fact below, it is interesting
to note that a short proof reveals that the graph Ξn is the line graph of the Jackson graph
Jn−1,n.

Consider the binary string Sn defined by the following recursive rules. The base case is
S2 = 00. Let Sn = x1x2 · · ·xn! where x denotes flipping the bit x. Then, for n > 2,

(1) Sn+1 := 001n−2 x1001n−2 x2 · · · 001n−2 xn!.

We use above the usual convention that if w is a string and m is an integer then wm is w
concatenated together m times, wm = ww · · ·w; also w0 is the empty string.

Below we list S3, S4, and S5. Each Si is of the form ww since 00 has this property and the
recurrence (1) preserves it.

S3 = 00 0̄ 00 0̄ = 00 1 00 1.

S4 = 001 0̄ 001 0̄ 001 1̄ 001 0̄ 001 0̄ 001 1̄ = 001 1 001 1 001 0 001 1 001 1 001 0.

S5 = (0011 1 0011 1 0011 0 0011 0 0011 1 0011 1

0011 0 0011 0 0011 1 0011 1 0011 0 0011 1)2

Now define the mapping φ by 0→ σn and 1→ σn−1 where σk = (1 2 · · · k).

Theorem 2.1. The list φ(Sn) is a Hamilton cycle in the directed Cayley graph Ξn.

Proof. In listing the Hamilton cycle we use one-line notation for the permutations, starting
with n n−1 · · · 2 1, and think of the cycles σn−1 and σn as acting on the positions in the
one-line notation. Thus, in a slight abuse of notation,

φ(S3) = 321, 213, 132, 312, 123, 231,

since S3 implies the successive application of σ3, σ3, σ2, σ3, σ3, and finally σ2 to map the
last permutation to the first.

Our proof strategy is to give an explicit listing of permutations of [n] with the required
properties and then show that it is equivalent to (1). Recursively define a circular list
Π(n) = Π(n)0, Π(n)1, . . . , Π(n)n!−1 of permutations of [n]. For small values of n, define
Π(1) = 1, Π(2) = 21, 12, and Π(3) = φ(S3). Every n-th permutation of Π(n) is defined as
follows.

(2) Π(n)jn := nΠ(n− 1)j.

AN EXPLICIT UNIVERSAL CYCLE FOR THE (n − 1)-PERMUTATIONS OF AN n-SET 5

The n− 1 permutations that follow nπ, where π = Π(n− 1)j , are defined to be

(3) σn(nπ), σ2
n(nπ), σn−1(σ

2
n(nπ)), . . . , σn−3

n−1(σ
2
n(nπ)).

The list Π(4) is shown in Table 1, column (d). The permutation nπ followed by the permuta-
tions above comprise the sublist Π(n)jn, Π(n)jn+1, . . . , Π(n)(j+1)n−1 and these permutations
are all distinct since the position of n is successively in the n different positions 1, n, n− 1,
. . . , 2. Furthermore, because we can recover π from any permutation in this sublist, the
uniqueness of every permutation in Π(n) follows inductively from the uniqueness of every
permutation in Π(n− 1).

It remains only to prove that successive permutations differ by σn or σn−1 and that the list
is circular. It is clear from (3) that successive permutations differ by σn or σn−1, except
for those that precede the one of the form nπ successively followed by nπ. Let aτz be a
permutation of 1, 2, . . . , n − 1 where a and z are numbers and τ is a sequence (of length
n− 3). Note that the last permutation of (3) is

σn−3
n−1(σ

2
n(naτz)) = σ−2

n−1(σ
2
n(naτz)) = σ−2

n−1(τzna) = znτa.

Now suppose that π = Π(n−1)j = aτz and π′ = Π(n−1)j+1. Inductively, either π′ = σn−1(π)
or π′ = σn−2(π). Observe that

σn(znτa) = nτaz = nσn−2(aτz), and(4)

σn−1(znτa) = nτza = nσn−1(aτz).(5)

Since the successor of aτz is either σn−2(aτz) or σn−1(aτz), the transition to the permutation
π′ is also of the correct form; successive permutations in Π(n) differ by σn or σn−1. The
circularity of the list follows inductively from the circularity of the list Π(n−1) (alternatively
we could use Lemma 2.2 below). Furthermore, in terms of the mapping φ defined earlier,
the bits are flipped; a 0 (σn−1) transition in Π(n− 1) becomes a 1 (σn−1) transition in Π(n)
by (5), and a 1 (σn−2) transition in Π(n− 1) becomes a 0 (σn) transition in Π(n) by (4). �

Lemma 2.2. Any Hamilton path in Ξn is, in fact, a Hamilton cycle.

Proof. Suppose that Π = Π1, Π2, . . . , Πn! is a Hamilton path in Ξn that is not a Hamilton
cycle. In particular σn(Πn!) 6= Π1 and σn−1(Πn!) 6= Π1. Thus Πn! 6= σ−

n (Π1) and Πn! 6=
σ−

n−1(Π1). We must then have that σ−

n (Π1) → σn−1(σ
−

n (Π1)) and σ−

n−1(Π1) → σn(σ−

n−1(Π1))
are distinct edges in Π(n). However, an easy calculation shows that σ−

n−1σn = σ−

n σn−1 =
(n−1 n) and thus these permutations are identical. This contradiction shows that Π is a
Hamilton cycle. �

The proof shows that in fact the lemma is true for any Cayley graph on two generators ρ
and τ for which τ−ρ is an involution.

The universal cycle for (n− 1)-permutations of [n] is obtained by recording the first symbol
in each of the permutations in Π(n). We use Un to denote the resulting universal cycle.

6 F. RUSKEY AND A. WILLIAMS

3. A loopfree algorithm

Suppose that in our recurrence (1) for Sn+1 that for each “new” bit we record the value
n, and apply this idea recursively. Call the corresponding new sequence Rn+1. That is,
R2 = 11, and for n > 1,

Rn+1 = nny1n
ny2 · · ·n

nyn!,

where Rn = y1y2 · · · yn!. For example

R4 = 333 2 333 2 333 1 333 2 333 2 333 1.

The sequence R4 is exactly the sequence that is obtained by recording the most significant
position that changes when counting with the multi-radix numbers with parameters 2×3×4,
when the numbers are indexed 1, 2, 3, from left-to-right. See Table 1, columns (a) and (b).
In general, Rn gives us the positions when counting with multi-radix numbers 2×3×· · ·×n.

These observations suggest that we may be able to efficiently generate the Sn sequence
by modifying the classic algorithm for counting with multi-radix numbers. In the classic
algorithm the multi-radix number is stored in the array an−1 · · ·a2a1 and j is used to represent
the rightmost, or smallest, index where aj is not at its maximum value. The next multi-
radix number is obtained by incrementing aj and setting all values to its right to 0. Now
suppose that we just incremented the integer in position j so that the multi-radix number
is an−1 · · ·ajaj−1 · · ·a1 = an−1 · · ·aj0 · · ·0. Then the corresponding Rn value is n− j and so
the non-recursive part of the Sj sequence that we are listing is going through the pattern
001n−j−1 or the pattern 110n−j−1, depending on whether j is odd or even, respectively. For
proposition P we use the notation [[P]] to mean the value 1 if P is true and the value 0 if
P is false; also ⊕ denotes exclusive-or. The expression [[j even ⊕ aj ≤ 1]] gives the correct
value of the bit to be output. Below is the entire algorithm, rendered in pseudo-code.

an+1an · · ·a1 ← 0 0 · · · 0;
repeat

j ← 1;
while aj = n− j do aj ← 0; j ← j + 1; od;
output([[j even ⊕ aj ≤ 1]]);
aj ← aj + 1;

until j ≥ n;

There is an loopless algorithm for listing multi-radix numbers as a Gray code in which the
value in only one position changes and that change is by ±1 (see, for example, Williamson
[12], pg. 112, or Knuth [8], pg. 20). Together with the ideas used in the previous “counting”
algorithm, we can adapt those loopless algorithms to get a loopless algorithm for generating
Sn or our universal cycle. In the Gray code for multi-radix numbers, the values in a given
position alternately increase and decrease. Furthermore, the values change in exactly the

AN EXPLICIT UNIVERSAL CYCLE FOR THE (n − 1)-PERMUTATIONS OF AN n-SET 7

(a) (b) (c) (d) (e) (f) (g)
234 R4 234 S4 S4 U4 rank
000 3 000 . . 0 4321 4 0
001 3 001 . . 0 3214 3 1
002 3 002 . . 1 2143 2 2
003 2 003 . 1 . 1423 1 3
010 3 013 . . 0 4213 4 4
011 3 012 . . 0 2134 2 5
012 3 011 . . 1 1342 1 6
013 2 010 . 1 . 3412 3 7
020 3 020 . . 0 4132 4 8
021 3 021 . . 0 1324 1 9
022 3 022 . . 1 3241 3 10
023 1 023 0 . . 2431 2 11
100 3 123 . . 0 4312 4 12
101 3 122 . . 0 3124 3 13
102 3 121 . . 1 1243 1 14
103 2 120 . 1 . 2413 2 15
110 3 110 . . 0 4123 4 16
111 3 111 . . 0 1234 1 17
112 3 112 . . 1 2341 2 18
113 2 113 . 1 . 3421 3 19
120 3 103 . . 0 4231 4 20
121 3 102 . . 0 2314 2 21
122 3 101 . . 1 3142 3 22
123 1 100 0 . . 1432 1 23

Table 1. (a) Counting in multi-radix base 2×3×4, (b) the R4 sequence, (c)
the corresponding multi-radix Gray code, (d) indented version of S4, (e) the
list Π(4), (f) the universal cycle U4, and (g) the rank of each permutation.

positions given by the Rn sequence. In the implementation we maintain a direction array
d where +1 means increase and −1 means decrease We also maintain an array f of “focus
pointers” which allow instant access to the next position whose value will change (we set
fn = n+1 (instead of n) so that the last iteration is handled correctly). See Table 1, column
(c), for an example.

Thus the values of j from the counting algorithm are exactly the same in the Gray code
algorithm, except that in the Gray code algorithm j is the position where a value changes.
The only complication arises because the values in a given position can be decreasing, and
so the test “aj ≤ 1” is not sufficient. Fortunately, all algorithms that looplessly implement
the Gray code maintain an array of directions dn−1 · · · d2d1 for each position, where di ∈

8 F. RUSKEY AND A. WILLIAMS

{+1,−1}, indicating whether the values in that position are currently increasing (+1) or
decreasing (−1). If dj = +1 then we can continue to test aj ≤ 1, but to account for dj = −1,
we need to test

(aj ≤ 1 and dj = 1) or (aj ≥ n− j − 1 and dj = −1).

We can “optimize” this condition. Notice that the test (aj ≤ 1 and dj = 1) can be replaced
by aj − dj ≤ 0. This change is possible because if dj = −1 then aj − dj is guaranteed to be
greater than zero because aj ≥ 0. Therefore, if aj − dj ≤ 0, then this immediately implies
that dj = 1 and so aj − 1 ≤ 0, which is equivalent to the original test aj ≤ 1. Likewise, the
test (aj ≥ n− j−1 and dj = −1) can be replaced by aj−dj ≥ n− j. Below is our loopless
algorithm in full detail.

an+1an · · ·a1 ← 0 0 0 · · · 0;
dndn−1 · · · d1 ← 1 1 1 · · · 1;
fnfn−1 · · · f1 ← n+1 n−1 n−2 · · · 1;
repeat

j ← f1; f1 ← 1;
output([[j even ⊕ (aj − dj ≤ 0 or aj − dj ≥ n− j)]]);
aj ← aj + dj;
if aj = 0 or aj = n− j then dj ← −dj; fj ← fj+1; fj+1 ← j + 1; fi;

until j ≥ n;

It is also possible to output the universal cycle itself in a loopless manner, but an additional
circular array is required to hold the current permutation. To follow are the details. Define
an array π1π2 · · ·πn initialized to n n−1 · · · 1 and an index t that will be incremented mod
n on each iteration of the algorithm. We will think of π as a circular array. The index t is
the position of the last element of π, so initially t = n. As each bit of Sn is determined, we
will ouput the first element of π (i.e., the one in position t + 1). If the bit is a 1, so that
σn−1 is acting on π then we need to swap the last two elements: πt−1 ↔ πt. In other words
the output statements in the preceding code fragments is replaced with the following code
where expr is the expression inside of the output statement in either the previous counting
algorithm of the previous loopless algorithm.

t′ ← t; t← (t + 1) mod n;
output(π(t+1) mod n);
if expr = 1 then πt ↔ πt′ fi;

Finally, we note that every permutation can be output in a circular fashion by outputting π
and t. We could also use a linked list, which would give a loopless permutation generation
algorithm.

AN EXPLICIT UNIVERSAL CYCLE FOR THE (n − 1)-PERMUTATIONS OF AN n-SET 9

4. Further properties

In this section we explore further properties of Ξn and our Hamilton cycle.

4.1. How many of each rotation is used? It is clear from the recurrence relation (1)
that the number, call it fn, of σn’s in φ(Sn) satisfies the recurrence relation

(6) fn+1 =

{

2 if n = 1

3n!− fn if n > 1.

This recurrence relation can be iterated to obtain

fn = 2(−1)n − 3
n−1
∑

k=1

(−1)k(n− k)!,

from which it follows that

fn ∼ 3(n− 1)! or
fn

n!
∼

3

n
.

Interestingly, this sequence appears in OEIS [9] as A122972(n + 1) as the solution to the
“symmetric” recurrence relation a(n + 1) = (n− 1) · a(n) + n · a(n− 1). The values of fn for
n = 1..10 are 1, 2, 4, 14, 58, 302, 1858, 13262, 107698, 980942.

Consider the cosets induced by σn; there are n!/n = (n − 1)! of them. In a Hamilton
cycle there must be at least one σn−1 edge that leaves each coset, and thus there must be
at least (n − 1)! of them. Alternatively, consider the cosets induced by σn−1; there are
n!/(n − 1) = n · (n − 2)! of them. In a Hamilton cycle there must be at least one σn edge
that leaves the coset, and thus there must be at least n · (n − 2)! of them. We can make a
stronger statement regarding the σn edges.

Lemma 4.1. The least number of σn edges in any Hamilton cycle in Ξn is 2n(n− 2)!− 2.

Proof. First, observe that

σ−

−1σnσ−

n−1σn = (n−1 n)(n−1 n) = id .

The two σn edges above are incident with the same unordered pair of cosets induced by
σn−1. Thus if we contract each coset into a singe super-vertex, then the resulting graph,
call it Qn, is undirected in the sense that every directed edge is paired with an edge in a
2-cycle. Furthermore, it is not hard to see that if one of those σn edges is used in a Hamilton
cycle, then so must the other. Thus a Hamilton cycle in Xn becomes a connected spanning
subgraph of Qn. Since a minimal connected spanning subgraph is a spanning tree, and any
spanning tree has n · (n−2)!−1 edges, the number of σn edges is at least 2n(n−2)!−2. �

Figure 1 shows the Cayley graph X4. Note that the contracted graph Q4 is the 3-cube. The
red edges show the Hamilton cycle S4. In this case Sn corresponds to a spanning tree in Qn,
but this is not the case for n ≥ 6.

10 F. RUSKEY AND A. WILLIAMS

132

134

123 234

143 142

243

124

Figure 1. The Cayley graph Ξ4 on the left. The graph Q4 on the right. The
thick (red) edges indicate the Hamilton cycle S4.

4.2. Ranking. The rank of a permutation π is the value r for which Π(n)r = π. Our
recursive equation for the rank depends on the position of n within the permutation being
ranked. From the definition of Π(n) we can infer that

rank(a1a2 · · ·ak−1nak+1 · · ·an)

=

0 if n = 1,

n · rank(a2a3 · · ·an) if k = 1,

n− k + 1 + n · rank(anak+1 · · ·an−1a1 · · ·ak) if k > 1.

The expression n − k + 1 accounts for the position of the n, and the rest comes from the
recursive part of the definition of Π(n). We can also express the rank as

rank(αnβ) =

0 if α = β = ǫ,

n · rank(β) if α = ǫ,

n− |α|+ n · rank(σ(β)α) otherwise ,

where σ(β) is β rotated one position to the right.

Implemented in the obvious manner, these recurrence relations lead to algorithms that use
O(n2) arithmetic operations on integers as large as n!.

4.3. Multiversal Cycle Property. In this section we prove that the sequence Π(n) =
Π(n)0, Π(n)1, . . . , Π(n)n!, written out as a long string of symbols by concatenating each
permutation, is a “multiversal cycle”. We denote this “flattening” of Π(n) as

∐

(n). For

AN EXPLICIT UNIVERSAL CYCLE FOR THE (n − 1)-PERMUTATIONS OF AN n-SET 11

example, consider
∐

(3) = 321 213 132 312 123 231. Starting in positions 0,1, or 2 and
advancing the position in increments of 3, recording the first two symbols, we obtain

0 32 21 13 31 12 23
1 21 13 32 12 23 31
2 12 31 23 21 32 13

In each case a complete set of all 2-permutations of [3] is obtained. The purpose of this
section is to prove that this property holds in general.

Definition 4.2. A multiversal cycle for the (n − 1)-permutations of an n-set is a circular
string a0a1 · · ·aN−1 of length N = n · n! such that, for all m = 0, 1, . . . , n− 1,

(7) {am+in · · ·am+in+n−2 | i = 1, 2, . . . , n!} = Sn−1,n,

where arithmetic in the indices is taken mod n.

Before getting to the main theorem in this section we prove a technical lemma.

Lemma 4.3. For all i 6= 0,−1 mod n, if
∐

(n) = a0a1 · · ·aN−1, then

ai = ai+n−1.

Proof. Because i 6= 0 mod n the numbers ai and ai+n−1 lie in two successive permutations of
Π(n). The conclusion now follows since successive permutations differ by σn or σn−1. The
i 6= −1 mod n condition is necessary when they differ by σn−1. �

Theorem 4.4. The string
∐

(n) = a0a1 · · ·an!−1 is a multiversal cycle.

Proof. The proof is by induction on the value m in the definition. The base case m = 0 sat-
isfies (7) because Π(n)0, Π(n)1, . . . , Π(n)n!−1 is a listing of all permutations of [n], so ignoring
the last character of each permutation gives a complete listing of all (n − 1)-permutations
of [n]. Similarly, when m = 1, ignoring the first character of each permutation also gives a
complete listing of all (n− 1)-permutations of [n]. We now argue by contradiction. Suppose
that there are some values m > 1, i and i′, with i 6= i′, such that

(8) am+in · · ·am+in+n−2 = am+i′n · · ·am+i′n+n−2.

Inductively, we know that

am−1+in · · ·am−1+in+n−2 6= am−1+i′n · · ·am−1+i′n+n−2.

Thus it must be the case that am−1+in 6= am−1+i′n. However, applying Lemma 4.3 to am−1+in

and am−1+i′n gives

am−1+in = am−1+in+n−1 and am−1+i′n = am−1+i′n+n−1,

12 F. RUSKEY AND A. WILLIAMS

so long as m 6= 0, 1. But by (8) we now have

am−1+in = am−1+in+n−1 = am+in+n−2 = am+i′n+n−2 = am−1+i′n+n−1 = am−1+i′n,

which is a contradiction. �

The careful reader will have noted that Lemma 4.3 and Theorem 4.4 apply to any Hamilton
cycle in Ξn since the only property that we use is that successive permutations differ by σn−1

or σn.

5. Final Remarks, Open Problems

In this paper we have developed an explicit algorithm for generating a universal cycle for
the (n − 1)-permutations of an n-set. This is the first universal cycle for which a loopless
algorithm has been discovered.

Below is a list of open problems inspired by this work.

• Can the results of this paper be extended to k-permutations of [n] for 1 ≤ k < n−1?
• Among all Hamilton cycles in Ξn we determined in Lemma 4.1 the least number of

σn edges that need to be used in a Hamilton cycle in Ξn. What is the least number
of σn−1 edges that need be used? In our construction, the number of σn edges is
asymptotic to 3/n and the number of σn−1 edges is asymptotic to (n−3)/n. Is there
a general construction that uses more σn edges than σn−1 edges?
• Can the results of this paper be extended to the permutations of a multiset? That

is, given multiplicities n0, n1, . . . , nt, where ni is the number of times i occurs in the
multiset and n = n0 + n1 + · · · + nt, is there a circular string a1a2 · · ·aN of length
N =

(

N

n0,n1,...,nt

)

with the property that

{ai ai+1 · · · ai+n−2 ι(ai, ai+1, . . . , ai+n−2) | 1 ≤ i ≤ N}

is equal to the set of all permutations of the multiset. Since the length of aiai+1 · · ·ai+n−2

is n−1 it is not a permutation of the multiset; one character is missing. The function
ι gives the missing character. We call these strings shorthand universal cycles. The
current paper gave a shorthand cycle for permutations of [n].
• It would be interesting to gain more insight in to the ranking process. Is there a way

to iterate the recursion so that it can be expressed as a sum?

References

[1] Fan Chung, Persi Diaconis, and Ron Graham, Universal cycles for combinatorial structures, Discrete
Mathematics, 110 (1992) 43–59.

[2] P. Eades, M. Hickey, and R.C. Read, Some Hamilton paths and a minimal change algorithm, Journal
of the ACM, 31 (1984) 19–29.

[3] H. Fredricksen and J. Maiorana, Necklaces of beads in k colors and k-ary de Bruijn sequences, Discrete
Mathematics, 23 (1978) 207-210.

AN EXPLICIT UNIVERSAL CYCLE FOR THE (n − 1)-PERMUTATIONS OF AN n-SET 13

[4] J. Gallian and D. Witte, A survey: hamiltonian cycles in Cayley graphs, Discrete Mathematics, 51
(1984) 293–304.

[5] T. Hough and F. Ruskey, An Efficient Implementation of the Eades, Hickey, Read Adjacent Inter-

change Combination Generation Algorithm, Journal of Combinatorial Mathematics and Combinatorial
Computing, 4 (1988) 79–86.

[6] B. Jackson, Universal cycles of k-subsets and k-permutations, Discrete Mathematics, 149 (1996) 123–
129.

[7] R. Johnson, Universal cycles for permutations, Discrete Mathematics, to appear.
[8] D.E. Knuth, The Art of Computer Programming, Volume 4, Generating All Tuples and Permutations,

Fascicle 2, Addison-Wesley, 2005.
[9] N.J.A. Sloane, The Online Encyclopedia of Integer Sequences,

http://www.research.att.com/∼njas/sequences/.
[10] Igor Pak and Radoš Radoičić, Hamiltonian paths in Cayley Graphs, manuscript, 2004.
[11] Robert Sedgewick, Permutation Generation Methods, Computing Surveys, 9 (1977) 137-164.
[12] S. Gill Williamson, Combinatorics for Computer Science, Computer Science Press, 1985.

Dept. of Computer Science, University of Victoria, CANADA

URL: http://www.cs.uvic.ca/~ruskey

Dept. of Computer Science, University of Victoria, CANADA

http://www.research.att.com/~njas/sequences/

	1. Introduction and motivation
	2. An explicit construction
	3. A loopfree algorithm
	4. Further properties
	4.1. How many of each rotation is used?
	4.2. Ranking
	4.3. Multiversal Cycle Property

	5. Final Remarks, Open Problems
	References

