REGULAR INTEGERS MODULO n

László Tóth (Pécs, Hungary)

October 10, 2007

Abstract

Let $n=p_{1}^{\nu_{1}} \cdots p_{r}^{\nu_{r}}>1$ be an integer. An integer a is called regular $(\bmod n)$ if there is an integer x such that $a^{2} x \equiv a(\bmod n)$. Let $\varrho(n)$ denote the number of regular integers $a(\bmod n)$ such that $1 \leq a \leq n$. Here $\varrho(n)=\left(\phi\left(p_{1}^{\nu_{1}}\right)+1\right) \cdots\left(\phi\left(p_{r}^{\nu_{r}}\right)+1\right)$, where $\phi(n)$ is the Euler function. In this paper we first summarize some basic properties of regular integers $(\bmod n)$. Then in order to compare the rates of growth of the functions $\varrho(n)$ and $\phi(n)$ we investigate the average orders and the extremal orders of the functions $\varrho(n) / \phi(n), \phi(n) / \varrho(n)$ and $1 / \varrho(n)$.

Mathematics Subject Classification: 11A25, 11N37
Key Words and Phrases: regular integers $(\bmod n)$, unitary divisor, Euler's function, average order, extremal order

1. Introduction

Let $n>1$ be an integer. Consider the integers a for which there exists an integer x such that $a^{2} x \equiv a(\bmod n)$. In the background of this property is that an element a of a ring R is said to be regular (following J. von Neumann) if there is an $x \in R$ such that $a=a x a$. In case of the ring \mathbb{Z}_{n} this is exactly the condition of above.

Properties of these integers were investigated by J. Morgado [7], [8], who called them regular (mod $n)$. In a recent paper O. Alkam and E. A. Osba [1] using ring theoretic considerations rediscovered some of the statements proved elementarly by J. Morgado. It was observed in [7], [8] that $a>1$ is regular $(\bmod n)$ if and only if the $\operatorname{gcd}(a, n)$ is a unitary divisor of n. We recall that d is said to be a unitary divisor of n if $d \mid n$ and $\operatorname{gcd}(d, n / d)=1$, notation $d \| n$.

These integers occur in the literature also in an other context. It is said that an integer a possesses a weak order $(\bmod n)$ if there exists an integer $k \geq 1$ such that $a^{k+1} \equiv a(\bmod n)$. Then the weak order of a is the smallest k with this property, see [4], [2]. It turns out that a is regular $(\bmod n)$ if and only if a possesses a weak order $(\bmod n)$.

Let $\operatorname{Reg}_{n}=\{a: 1 \leq a \leq n, a$ is regular $(\bmod n)\}$ and let $\varrho(n)=\# \operatorname{Reg}_{n}$ denote the number of regular integers $a(\bmod n)$ such that $1 \leq a \leq n$. This function is multiplicative and $\varrho\left(p^{\nu}\right)=$ $\phi\left(p^{\nu}\right)+1=p^{\nu}-p^{\nu-1}+1$ for every prime power $p^{\nu}(\nu \geq 1)$, where ϕ is the Euler function. Consequently, $\varrho(n)=\sum_{d \| n} \phi(d)$ for every $n \geq 1$, also $\phi(n)<\varrho(n) \leq n$ for every $n>1$, and $\varrho(n)=n$ if and only if n is squarefree, see [7], [4], [1].

Let us compare the functions $\varrho(n)$ and $\phi(n)$. The first few values of $\varrho(n)$ and $\phi(n)$ are given by the next tables $(\varrho(n)$ is sequence $A 055653$ in Sloane's On-Line Encyclopedia of Integer Sequences [10]). Note that $\varrho(n)$ is even iff $n \equiv 2(\bmod 4)$, and $\sqrt{n} \leq \rho(n) \leq n$ for every $n \geq 1$, see [1].

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\varrho(n)$	1	2	3	3	5	6	7	5	7	10	11	9	13	14	15
$\phi(n)$	1	1	2	2	4	2	6	4	6	4	10	4	12	6	8

n	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
$\varrho(n)$	9	17	14	19	15	21	22	23	15	21	26	19	21	29	30
$\phi(n)$	8	16	6	18	8	12	10	22	8	20	12	18	12	28	8

For the Euler ϕ-function,

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{2}} \sum_{n \leq x} \phi(n)=\frac{3}{\pi^{2}} \approx 0.3039
$$

The average order of the function $\varrho(n)$ was considered in [4], [2]. One has

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{2}} \sum_{n \leq x} \varrho(n)=\frac{1}{2} A \approx 0.4407
$$

where

$$
A=\prod_{p}\left(1-\frac{1}{p^{2}(p+1)}\right)=\zeta(2) \prod_{p}\left(1-\frac{1}{p^{2}}-\frac{1}{p^{3}}+\frac{1}{p^{4}}\right) \approx 0.8815
$$

is the so called quadratic class-number constant. For its numerical evaluation see [9].
More exactly,

$$
\sum_{n \leq x} \varrho(n)=\frac{1}{2} A x^{2}+R(x)
$$

where $R(x)=O\left(x \log ^{3} x\right)$, given in [4] using elementary arguments. This was improved into $R(x)=O\left(x \log ^{2} x\right)$ in [12], and into $R(x)=O(x \log x)$ in [3], using analytic methods. Also, $R(x)=\Omega_{ \pm}(x \sqrt{\log \log x})$, see [3].

In this paper we first summarize some basic properties of regular integers $(\bmod n)$. We give also their direct proofs, because the proofs of [7], [8] are lengthy and those of [1] are ring theoretical.

Then in order to compare the rates of growth of the functions $\varrho(n)$ and $\phi(n)$ we investigate the average orders and the extremal orders of the functions $\varrho(n) / \phi(n), \phi(n) / \varrho(n)$ and $1 / \varrho(n)$. The study of the minimal order of $\varrho(n)$ was initiated in [1].

2. Characterization of regular integers $(\bmod n)$

The integer $a=0$ and those coprime to n are regular $(\bmod n)$ for each $n>1$. If $a \equiv b(\bmod$ $n)$, then a and b are regular $(\bmod n)$ simultaneously. If a and b are regular $(\bmod n)$, then $a b$ is also regular $(\bmod n)$.

In what follows let $n>1$ be of canonical form $n=p_{1}^{\nu_{1}} \cdots p_{r}^{\nu_{r}}$.
Theorem 1. For an integer $a \geq 1$ the following assertions are equivalent:
i) a is regular $(\bmod n)$,
ii) for every $i \in\{1, \ldots, r\}$ either $p_{i} \nmid a$ or $p_{i}^{\nu_{i}} \mid a$,
iii) $(a, n)=\left(a^{2}, n\right)$,
iv) $(a, n) \| n$,
v) $a^{\phi(n)+1} \equiv a(\bmod n)$,
vi) there exists an integer $k \geq 1$ such that $a^{k+1} \equiv a(\bmod n)$.

Proof. i) \Rightarrow ii). If $a^{2} x \equiv a(\bmod n)$ for an integer x, then $a(a x-1) \equiv 0\left(\bmod p_{i}^{\nu_{i}}\right)$ for every i. We have two cases: $p_{i} \nmid a$ and $p_{i} \mid a$. In the second case, since $(a, a x-1)=1$, obtain that $a \equiv 0$ $\left(\bmod p_{i}^{\nu_{i}}\right)$.
ii) \Rightarrow i). If $p_{i}^{\nu_{i}} \mid a$, then $a^{2} x \equiv a\left(\bmod p_{i}^{\nu_{i}}\right)$ for any x. If $p_{i} \nmid a$, then the linear congruence $a x \equiv 1$ $\left(\bmod p_{i}^{\nu_{i}}\right)$ has solutions in x and obtain also $a^{2} x \equiv a\left(\bmod p_{i}^{\nu_{i}}\right)$.
ii) \Leftrightarrow iii). Follows at once by the property of the gcd.
ii) \Leftrightarrow iv) Follows at once by the definition of the unitary divisors (the unitary divisors of a prime power p^{ν} are 1 and p^{ν}).
ii) $\Rightarrow \mathrm{v})([1])$ If $p_{i}^{\nu_{i}} \mid a$, then $a^{\phi(n)+1} \equiv a\left(\bmod p_{i}^{\nu_{i}}\right)$. If $p_{i} \nmid a$, then using Euler's theorem, $a^{\phi(n)+1} \equiv a\left(a^{\phi\left(p_{i}^{\nu_{i}}\right)}\right)^{\phi(n) / \phi\left(p_{i}^{\nu_{i}}\right)} \equiv a\left(\bmod p_{i}^{\nu_{i}}\right)$. Therefore $a^{\phi(n)+1} \equiv a\left(\bmod p_{i}^{\nu_{i}}\right)$ for every i and $a^{\phi(n)+1} \equiv a(\bmod n)$.
$\mathrm{v}) \Rightarrow$ i) $([1])$ If $a^{\phi(n)+1} \equiv a(\bmod n)$, then $a^{2} a^{\phi(n)-1} \equiv a(\bmod n)$, hence $a^{2} x \equiv a(\bmod n)$ is verified for $x=a^{\phi(n)-1}$ (which is the von Neumann inverse of a in \mathbb{Z}_{n}).
$\mathrm{v}) \Rightarrow \mathrm{vi})$ Immediate by taking $k=\phi(n)$.
vi) \Rightarrow i) If $a^{k+1} \equiv a(\bmod n)$ for an integer $k \geq 1$, then $a^{2} x \equiv a(\bmod n)$ holds for $x=a^{k-1}$, finishing the proof.

Note that the proof of i) \Leftrightarrow v) given in [8] uses Dirichlet's theorem on arithmetic progressions, which is unnecessary.

Theorem 2. The function $\varrho(n)$ is multiplicative and $\varrho\left(p^{\nu}\right)=p^{\nu}-p^{\nu-1}+1$ for every prime power $p^{\nu}(\nu \geq 1)$. For every $n \geq 1$,

$$
\varrho(n)=\sum_{d \| n} \phi(d) .
$$

Proof. By Theorem 1, a is regular $(\bmod n)$ iff for every $i \in\{1, \ldots, r\}$ either $p_{i} \nmid a$ or $p_{i}^{\nu_{i}} \mid a$.
Let $a \in \operatorname{Reg}_{n}$. If $p_{i} \nmid a$ for every i, then $(a, n)=1$, the number of these integers a is $\phi(n)$. Suppose that $p_{i}^{\nu_{i}} \mid a$ for exactly one value i and that for all $j \neq i,\left(p_{j}, a\right)=1$. Then $a=b p_{i}^{\nu_{i}}$, where $1 \leq b \leq n / p_{i}^{\nu_{i}}$ and $\left(b, n / p_{i}^{\nu_{i}}\right)=1$. The number of such integers a is $\phi\left(n / p_{i}^{\nu_{i}}\right)$. Now suppose that $p_{i}^{\nu_{i}}\left|a, p_{j}^{\nu_{j}}\right| a, i<j$, and for all $k \neq i, k \neq j,\left(p_{i}, a\right)=\left(p_{j}, a\right)=1$. Then $a=c p_{i}^{\nu_{i}} p_{j}^{\nu_{j}}$, where $1 \leq c \leq n /\left(p_{i}^{\nu_{i}} p_{j}^{\nu_{j}}\right)$ and $\left(c, n /\left(p_{i}^{\nu_{i}} p_{j}^{\nu_{j}}\right)\right)=1$. The number of such integers a is $\phi\left(n /\left(p_{i}^{\nu_{i}} p_{j}^{\nu_{j}}\right)\right)$, etc. We obtain

$$
\varrho(n)=\phi(n)+\sum_{1 \leq i \leq r} \phi\left(n / p_{i}^{\nu_{i}}\right)+\sum_{1 \leq i<j \leq r} \phi\left(n / p_{i}^{\nu_{i}} p_{j}^{\nu_{j}}\right)+\ldots+\phi\left(n /\left(p_{1}^{\nu_{1}} \cdots p_{r}^{\nu_{r}}\right)\right) .
$$

Let $y_{i}=\phi\left(p_{i}^{\nu_{i}}\right), 1 \leq i \leq r$, and $y=y_{1} \cdots y_{r}$. Then $\phi(n)=y$ and

$$
\begin{aligned}
& \varrho(n)=y+\sum_{1 \leq i \leq r} \frac{y}{y_{i}}+\sum_{1 \leq i<j \leq r} \frac{y}{y_{i} y_{j}}+\ldots+\frac{y}{y_{1} \cdots y_{r}}= \\
& =\left(y_{1}+1\right) \cdots\left(y_{r}+1\right)=\left(\phi\left(p_{1}^{\nu_{i}}\right)+1\right) \cdots\left(\phi\left(p_{r}^{\nu_{r}}\right)+1\right) .
\end{aligned}
$$

The given representation of $\varrho(n)$ now follows at once taking into account that the unitary convolution preserves the multiplicativity of functions, see for example [5].

Another method, see [7]: Group the integers $a \in\{1,2, \ldots, n\}$ according to the value (a, n). Here $(a, n)=d$ if and only if $(j, n / d)=1$, where $a=j d, 1 \leq j \leq n / d$, hence the number of integers a with $(a, n)=d$ is $\phi(n / d)$. According to Theorem $1, a$ is regular $(\bmod n)$ if and only if $d=(a, n) \| n$, and obtain that

$$
\varrho(n)=\sum_{d \| n} \phi(n / d)=\sum_{d \| n} \phi(d)
$$

Now the multiplicativity of $\varrho(n)$ is a direct consequence of this representation.
Let $S(n)$ denote the sum of regular integers $a \in \operatorname{Reg}_{n}$. We give a simple formula for $S(n)$, not considered in the cited papers, which is analogous to $\sum_{1 \leq a \leq n,(a, n)=1} a=n \phi(n) / 2(n>1)$.

Theorem 3. For every $n \geq 1$,

$$
S(n)=\frac{n(\varrho(n)+1)}{2}
$$

Proof. Similar to the counting procedure of above or by grouping the integers $a \in\{1,2, \ldots, n\}$ according to the value (a, n) :

$$
\begin{aligned}
& S(n)=\sum_{a \in \operatorname{Reg}_{n}} a=\sum_{\substack{d \| n}} \sum_{\substack{a \in \operatorname{Reg}_{n} \\
(a, n)=d}} a=\sum_{d \| n} d \sum_{\substack{j=1 \\
(j, n / d)=1}}^{n / d} j= \\
&=n+\sum_{\substack{d \| n \\
d<n}} d \frac{n \phi(n / d)}{2 d}=n+\frac{n}{2} \sum_{\substack{d \| n \\
d<n}} \phi(n / d)=\frac{n(\varrho(n)+1)}{2} .
\end{aligned}
$$

3. Average orders

Theorem 4. For the quotient $\varrho(n) / \phi(n)$ we have

$$
\sum_{n \leq x} \frac{\varrho(n)}{\phi(n)}=B x+O\left(\log ^{2} x\right)
$$

where $B=\pi^{2} / 6 \approx 1.6449$.
Proof. By Theorem 2, $\varrho\left(p^{\nu}\right) / \phi\left(p^{\nu}\right)=1+1 / \phi\left(p^{\nu}\right)$ for every prime power $p^{\nu}(\nu \geq 1)$. Hence, taking into account the multiplicativity, for every $n \geq 1$,

$$
\frac{\varrho(n)}{\phi(n)}=\sum_{d \| n} \frac{1}{\phi(d)}
$$

Using this representation (given also in [1]) we obtain

$$
\begin{gathered}
\sum_{n \leq x} \frac{\varrho(n)}{\phi(n)}=\sum_{\substack{d e \leq x \\
(d, e)=1}} \frac{1}{\phi(d)}=\sum_{d \leq x} \frac{1}{\phi(d)} \sum_{\substack{e \leq x / d \\
(e, d)=1}} 1= \\
=\sum_{d \leq x} \frac{1}{\phi(d)}\left(\frac{\phi(d) x}{d^{2}}+O\left(2^{\omega(d)}\right)\right)=x \sum_{d \leq x} \frac{1}{d^{2}}+O\left(\sum_{d \leq x} \frac{2^{\omega(d)}}{\phi(d)}\right),
\end{gathered}
$$

where $\omega(d)$ denotes, as usual, the number of distinct prime factors of d. Furthermore, let $\tau(n)$ and $\sigma(n)$ denote the number and the sum of divisors of n, respectively. Using that $\phi(n) \sigma(n) \gg$ n^{2}, we have $2^{\omega(d)} / \phi(d) \ll \tau(d) \sigma(d) / d^{2}$. Here $\sum_{d \leq x} \tau(d) \sigma(d) \ll x^{2} \log x$, according to a result of Ramanujan, and obtain by partial summation that the error term is $O\left(\log ^{2} x\right)$.

Consider now the quotient $f(n)=\phi(n) / \varrho(n)$, where $f(n) \leq 1$. According to a well-known result of H. Delange, $f(n)$ has a mean value given by

$$
C=\prod_{p}\left(1-\frac{1}{p}\right)\left(1+\sum_{\nu=1}^{\infty} \frac{f\left(p^{\nu}\right)}{p^{\nu}}\right)=\prod_{p}\left(1-\frac{1}{p}\right)\left(1+\left(1-\frac{1}{p}\right) \sum_{\nu=1}^{\infty} \frac{1}{p^{\nu}-p^{\nu-1}+1}\right)
$$

Here $C \approx 0.6875$, which can be obtained using that for every $k \geq 1$,

$$
C=\prod_{p}\left(1-\frac{1}{p}\right)\left(1+\left(1-\frac{1}{p}\right) \sum_{\nu=1}^{k} \frac{1}{p^{\nu}-p^{\nu-1}+1}+\frac{1}{p^{k} r_{p}}\right)
$$

where $p-1<r_{p}<p$ for each prime p.
An asymptotic formula can be given as follows.
Theorem 5. For every $\varepsilon>0$,

$$
\sum_{n \leq x} \frac{\phi(n)}{\varrho(n)}=C x+O\left(x^{\varepsilon}\right)
$$

Proof. Write $g=\mu * f$ in terms of the Dirichlet convolution, where μ is the Möbius function. Then for every prime $p, g(p)=-1 / p$ and for every prime power $p^{\nu}, \nu \geq 2$,

$$
g\left(p^{\nu}\right)=\frac{p^{\nu-2}}{\left(p^{\nu-1}+(p-1)^{-1}\right)\left(p^{\nu-2}+(p-1)^{-1}\right)}
$$

Since $\left|g\left(p^{\nu}\right)\right|<1 / p^{\nu-1}$ for every $\nu \geq 2$, the Dirichlet series $G(s)=\sum_{n=1}^{\infty} g(n) / n^{s}$ is absolutely convergent for $\operatorname{Re} s>0$, and we obtain by usual arguments,

$$
\sum_{n \leq x} \frac{\phi(n)}{\varrho(n)}=\sum_{d \leq x} g(d)\left(\frac{x}{d}+O(1)\right)=x \sum_{d \leq x} \frac{g(d)}{d}+O\left(\sum_{d \leq x}|g(d)|\right)=G(1) x+O\left(x^{\varepsilon}\right)
$$

where $G(1)=C$ of above.

Theorem 6.

$$
\sum_{n \leq x} \frac{1}{\varrho(n)}=D \log x+E+O\left(\frac{\log ^{9} x}{x}\right)
$$

where D and E are constants,

$$
D=\frac{\zeta(2) \zeta(3)}{\zeta(6)} \prod_{p}\left(1-\frac{p(p-1)}{p^{2}-p+1} \sum_{\nu=1}^{\infty} \frac{1}{p^{\nu}\left(p^{\nu}-p^{\nu-1}+1\right)}\right)
$$

Proof. Write

$$
\frac{1}{\varrho(n)}=\sum_{\substack{d e=n \\(d, e)=1}} \frac{h(d)}{\phi(e)}
$$

where h is multiplicative and for every prime power p^{ν},

$$
\frac{1}{\varrho\left(p^{\nu}\right)}=h\left(p^{\nu}\right)+\frac{1}{\phi\left(p^{\nu}\right)}, \quad h\left(p^{\nu}\right)=-\frac{1}{\phi\left(p^{\nu}\right)\left(\phi\left(p^{\nu}\right)+1\right)}
$$

therefore $h(n) \ll 1 / \phi^{2}(n)$. We need the following known result, cf. for example [6], p. 43,

$$
\sum_{\substack{n \leq x \\(n, k)=1}} \frac{1}{\phi(n)}=K a(k)(\log x+\gamma+b(k))+O\left(2^{\omega(k)} \frac{\log x}{x}\right)
$$

where γ is Euler's constant,

$$
\begin{gathered}
K=\frac{\zeta(2) \zeta(3)}{\zeta(6)}, a(k)=\prod_{p \mid k}\left(1-\frac{p}{p^{2}-p+1}\right) \leq \frac{\phi(k)}{k} \\
b(k)=\sum_{p \mid k} \frac{\log p}{p-1}-\sum_{p \nmid k} \frac{\log p}{p^{2}-p+1} \ll \frac{\psi(k) \log k}{\phi(k)}, \text { with } \psi(k)=k \prod_{p \mid k}\left(1+\frac{1}{p}\right) .
\end{gathered}
$$

We have

$$
\begin{gathered}
\sum_{n \leq x} \frac{1}{\varrho(n)}=\sum_{d \leq x} h(d) \sum_{\substack{e \leq x / d \\
(e, d)=1}} \frac{1}{\phi(e)}= \\
=K\left((\log x+\gamma) \sum_{d \leq x} h(d) a(d)+\sum_{d \leq x} h(d) a(d)(b(d)-\log d)\right)+O\left(\frac{\log x}{x} \sum_{d \leq x} d|h(d)| 2^{\omega(d)}\right)
\end{gathered}
$$

and we obtain the given result with the constants

$$
D=K \sum_{n=1}^{\infty} h(n) a(n), E=K \gamma \sum_{n=1}^{\infty} h(n) a(n)+K \sum_{n=1}^{\infty} h(n) a(n)(b(n)-\log n)
$$

these series being convergent taking into account the estimates of above. For the error terms,

$$
\begin{aligned}
\sum_{n>x}|h(n)| a(n) & \ll \sum_{n>x} \frac{1}{n \phi(n)} \ll \sum_{n>x} \frac{\sigma(n)}{n^{3}} \ll \frac{1}{x}, \sum_{n>x}|h(n)| a(n) \log n \ll \frac{\log x}{x}, \\
& \sum_{n>x}|h(n) a(n) b(n)| \ll \sum_{n>x} \frac{\tau^{3}(n) \log n}{n^{2}} \ll \frac{\log ^{8} x}{x},
\end{aligned}
$$

using that $\sum_{n \leq x} \tau^{3}(n) \ll x \log ^{7} x$ (Ramanujan), and

$$
\sum_{n \leq x} n|h(n)| 2^{\omega(n)} \ll \sum_{n \leq x} \frac{\tau^{3}(n)}{n} \ll \log ^{8} x
$$

4. Extremal orders

Since $\varrho(n) \leq n$ for every $n \geq 1$ and $\varrho(p)=p$ for every prime p, it is immediate that $\lim \sup _{n \rightarrow \infty} \varrho(n) / n=1$. The minimal order of $\varrho(n)$ is also the same as that of $\phi(n)$, namely,

Theorem 7.

$$
\liminf _{n \rightarrow \infty} \frac{\varrho(n) \log \log n}{n}=e^{-\gamma}
$$

Proof. We apply the following result ([11], Corollary 1): If f is a nonnegative real-valued multiplicative arithmetic function such that for each prime p,
i) $\rho(p):=\sup _{\nu \geq 0} f\left(p^{\nu}\right) \leq(1-1 / p)^{-1}$, and
ii) there is an exponent $e_{p}=p^{o(1)} \in \mathbb{N}$ satisfying $f\left(p^{e_{p}}\right) \geq 1+1 / p$, then

$$
\limsup _{n \rightarrow \infty} \frac{f(n)}{\log \log n}=e^{\gamma} \prod_{p}\left(1-\frac{1}{p}\right) \rho(p)
$$

Take $f(n)=n / \varrho(n)$, where $f\left(p^{\nu}\right)=\left(1-1 / p+1 / p^{\nu}\right)^{-1}<(1-1 / p)^{-1}=\rho(p)$, and for $e_{p}=3$,

$$
f\left(p^{3}\right)>1+\frac{p^{2}-1}{p^{3}-p^{2}+1}>1+\frac{1}{p}
$$

for every prime p.
It is immediate that $\liminf _{n \rightarrow \infty} \varrho(n) / \phi(n)=1$. The maximal order of $\varrho(n) / \phi(n)$ is given by
Theorem 8.

$$
\limsup _{n \rightarrow \infty} \frac{\varrho(n)}{\phi(n) \log \log n}=e^{\gamma}
$$

Proof. Now let $f(n)=\varrho(n) / \phi(n)$ in the result given above. Here

$$
f\left(p^{\nu}\right)=1+\frac{1}{p^{\nu}-p^{\nu-1}} \leq 1+\frac{1}{p-1}=\left(1-\frac{1}{p}\right)^{-1}=\rho(p)
$$

and for $e_{p}=1, f(p)>1+1 /(p-1)>1+1 / p$ for every prime p.

References

[1] O. Alkam, E. A. Osba, On the regular elements in \mathbb{Z}_{n}, Turk. J. Math., 31 (2007), 1-9.
[2] S. Finch, Idempotents and nilpotents modulo n, 2006, Preprint available online at http://arxiv.org/abs/math.NT/0605019v1.
[3] J. Herzog, P. R. Smith, Lower bounds for a certain class of error functions, Acta Arith., 60 (1992), 289-305.
[4] V. S. Joshi, Order-free integers $(\bmod m)$, Number theory (Mysore, 1981), Lecture Notes in Math., 938, Springer, 1982. pp. 93-100.
[5] P. J. McCarthy, Introduction to Arithmetical Functions, Springer, 1986.
[6] H. L. Montgomery, R. C. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge University Press, 2007.
[7] J. Morgado, Inteiros regulares módulo n, Gazeta de Matematica (Lisboa), 33 (1972), no. 125-128, 1-5.
[8] J. Morgado, A property of the Euler φ-function concerning the integers which are regular modulo n, Portugal. Math., 33 (1974), 185-191.
[9] G. Niklasch, P. Moree, Some number-theoretical constants, 2002, webpage, see http://www.gn-50uma.de/alula/essays/Moree/Moree.en.shtml\#r11-classno
[10] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, see http://www.research.att.com/~njas/sequences
[11] L. Tóth, E. Wirsing, The maximal order of a class of multiplicative arithmetical functions, Annales Univ. Sci. Budapest., Sect. Comp., 22 (2003), 353-364.
[12] Zhao Hua Yang, A note for order-free integers $(\bmod m)$, J. China Univ. Sci. Tech. 16 (1986), no. 1, 116-118, MR855194 (88e:11006).

László Tóth

University of Pécs
Institute of Mathematics and Informatics
Ifjúság u. 6
7624 Pécs, Hungary
ltoth@ttk.pte.hu

