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PERMUTATIONS DEFINING CONVEX PERMUTOMINOES

A. BERNINI, F. DISANTO, R. PINZANI, AND S. RINALDI

Abstract. A permutomino of size n is a polyomino determined by particular
pairs (π1, π2) of permutations of size n, such that π1(i) 6= π2(i), for 1 ≤ i ≤

n. Here we determine the combinatorial properties and, in particular, the
characterization for the permutations defining convex permutominoes.

Using such a characterization, these permutations can be uniquely repre-
sented in terms of the so called square permutations, introduced by Mansour
and Severini. Then, we provide a closed formula for the number of these per-
mutations with size n.

1. Convex polyominoes

In the plane Z×Z a cell is a unit square, and a polyomino is a finite connected
union of cells having no cut point. Polyominoes are defined up to translations
(see Figure 1 (a)). A column (row) of a polyomino is the intersection between the
polyomino and an infinite strip of cells lying on a vertical (horizontal) line.

Polyominoes were introduced by Golomb [17], and then they have been studied
in several mathematical problems, such as tilings [2, 16], or games [15] among many
others. The enumeration problem for general polyominoes is difficult to solve and
still open. The number an of polyominoes with n cells is known up to n = 56 [18]
and asymptotically, these numbers satisfy the relation limn (an)

1/n
= µ, 3.96 <

µ < 4.64, where the lower bound is a recent improvement of [1].

In order to simplify enumeration problems of polyominoes, several subclasses
were defined by combining the two simple notions of convexity and directed growth.
A polyomino is said to be column convex (resp. row convex) if every its column
(resp. row) is connected (see Figure 1 (b)). A polyomino is said to be convex, if it
is both row and column convex (see Figure 1 (c)). The area of a polyomino is just
the number of cells it contains, while its semi-perimeter is half the number of edges
of cells in its boundary. Thus, for any convex polyomino the semi-perimeter is the
sum of the numbers of its rows and columns. Moreover, any convex polyomino is
contained in a rectangle in the square lattice which has the same semi-perimeter,
called minimal bounding rectangle.

(a) (c)(b)

Figure 1. (a) a polyomino; (b) a column convex polyomino which
is not row convex; (c) a convex polyomino.
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A significant result in the enumeration of convex polyominoes was first obtained
by Delest and Viennot in [11], where the authors proved that the number ℓn of
convex polyominoes with semi-perimeter equal to n + 2 is:

(1) ℓn+2 = (2n + 11)4n − 4(2n + 1)

(
2n

n

)
, n ≥ 2; ℓ0 = 1, ℓ1 = 2.

This is sequence A005436 in [21], the first few terms being:

1, 2, 7, 28, 120, 528, 2344, 10416, . . . .

During the last two decades convex polyominoes, and several combinatorial ob-
jects obtained as a generalizations of this class, have been studied by various points
of view. For the main results concerning the enumeration and other combinatorial
properties of convex polyominoes we refer to [4, 5, 6, 8].

There are two other classes of convex polyominoes which will be useful in the
paper, the directed convex polyominoes and the parallelogram. A polyomino is said
to be directed when each of its cells can be reached from a distinguished cell, called
the root, by a path which is contained in the polyomino and uses only north and
east unitary steps.

A polyomino is directed convex if it is both directed and convex (see Fig-
ure 2 (a)). It is known that the number of directed convex polyominoes of semi-
perimeter n + 2 is equal to the nth central binomial coefficient, i.e.,

(2) bn =

(
2n

n

)
,

sequence A000984 in [21].

(b)(a)

Figure 2. (a) A directed convex polyomino; (b) a parallelogram polyomino.

Finally, parallelogram polyominoes are a special subset of the directed convex
ones, defined by two lattice paths that use north and east unit steps, and intersect
only at their origin and extremity. These paths are called the upper and the lower
path (see Figure 2 (b)). It is known [22] that the number of parallelogram polyomi-
noes having semi-perimeter n+1 is the n-th Catalan number (sequence A000108 in
[21]),

(3) cn =
1

n + 1

(
2n

n

)
.

2. Convex permutominoes

Let P be a polyomino without holes, having n rows and columns, n ≥ 1; we
assume without loss of generality that the south-west corner of its minimal bounding
rectangle is placed in (1, 1). Let A =

(
A1, . . . , A2(r+1)

)
be the list of its vertices

(i.e., corners of its boundary) ordered in a clockwise sense starting from the lowest
leftmost vertex. We say that P is a permutomino if P1 = (A1, A3, . . . , A2r+1) and
P2 = (A2, A4, . . . , A2r+2) represent two permutations of Sn+1, where, as usual, Sn
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is the symmetric group of size n. Obviously, if P is a permutomino, then r = n,
and n + 1 is called the size of the permutomino. The two permutations defined by
P1 and P2 are indicated by π1(P ) and π2(P ), respectively (see Figure 3).

From the definition any permutomino P has the property that, for each ab-
scissa (ordinate) there is exactly one vertical (horizontal) side in the boundary of P
with that coordinate. It is simple to observe that this property is also a sufficient
condition for a polyomino to be a permutomino. By convention we also consider
the empty permutomino of size 1, associated with π = (1).

1π  = ( 2, 5, 6, 1, 7, 3, 4 ) π  = ( 5, 6, 7, 2, 4, 1, 3 )2

Figure 3. A permutomino and the two associated permutations.

Permutominoes were introduced by F. Incitti in [19] while studying the problem

of determining the R̃-polynomials (related with the Kazhdan-Lusztig R-polynomials)
associated with a pair (π1, π2) of permutations. Concerning the class of polyomi-
noes without holes, our definition (though different) turns out to be equivalent to
Incitti’s one, which is more general but uses some algebraic notions not necessary
in this paper.

Let us recall the main enumerative results concerning convex permutominoes.
In [14], using bijective techniques, it was proved that the number of parallelogram
permutominoes of size n + 1 is equal to cn and that the number of directed-convex
permutominoes of size n + 1 is equal to 1

2 bn, where, throughout all the paper, cn

and bn will denote, respectively, the Catalan numbers and the central binomial
coefficients. Finally, in [13] it was proved, using the ECO method, that the number
of convex permutominoes of size n + 1 is:

(4) 2 (n + 3) 4n−2 − n

2

(
2n

n

)
n ≥ 1.

The first terms of the sequence are

1, 1, 4, 18, 84, 394, 1836, 8468, . . .

(sequence A126020) in [21]). The same formula has been obtained independently
by Boldi et al. in [3]. The main results concerning the enumeration of classes of
convex permutominoes are listed in Table 2, where the first terms of the sequences
are given starting from n = 1, and are taken from [13, 14].

Notation. Throughout the whole paper we are going to use the following notations:

• Cn is the set of convex permutominoes of size n;
• Cn is the cardinality of Cn;
• C(x) is the generating function of the sequence {Cn}n≥2.

Moreover, if π is a permutation of size n, then we define its reversal πR and its
complement πC as follows: πR(i) = π(n + 1− i) and πC(i) = n + 1− π(i), for each
i = 1, . . . , n.
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Class First terms Closed form/rec. relation

convex 1, 1, 4, 18, 84, 394, . . . Cn+1 = 2 (n + 3) 4n−2 − n
2

(
2n
n

)

directed
convex

1, 1, 3, 10, 35, 126, . . . Dn+1 = 1
2 bn

parallelogram 1, 1, 2, 5, 14, 42, 132, . . . Pn+1 = cn

symmetric
(w.r.t. x = y)

1, 1, 2, 4, 10, 22, 54, . . .

Sn+1 = (n + 3)2n−2 − n
( n−1
⌊n−1

2
⌋

)

− (n − 1)
( n−2
⌊n−2

2
⌋

)

centered 1, 1, 4, 16, 64, 256, . . . Qn = 4n−2

bi-centered 1, 1, 4, 14, 48, 164, . . . Tn = 4Tn−1 − 2Tn−2, n ≥ 3

stacks 1, 1, 2, 4, 8, 16, 32, . . . Wn = 2n−2

3. Permutations associated with convex permutominoes

Given a permutomino P , the two permutations we associate with P are denoted
by π1 and π2 (see Figure 3). While it is clear that any permutomino of size n ≥ 2
uniquely determines two permutations π1 and π2 of Sn, with

1: π1(i) 6= π2(i), 1 ≤ i ≤ n,
2: π1(1) < π2(1), and π1(n) > π2(n),

not all the pairs of permutations (π1, π2) of n satisfying 1 and 2 define a permu-
tomino: Figure 4 depicts the two problems which may occur.

In [14] the authors give a simple constructive proof that every permutation of
Sn is associated with at least one column convex permutomino.

Proposition 1. If π ∈ Sn then there is at least one column convex permutomino
P such that π = π1(P ) or π = π2(P ).

For instance, Figure 5 (a) depicts a column convex permutomino associated
with the permutation π1 in Figure 4 (b).

The statement of Proposition 1 does not hold for convex permutominoes.
Therefore, in this paper we consider the class Cn of convex permutominoes of size
n, and study the problem of giving a characterization for the set of permutations
defining convex permutominoes,

{ (π1(P ), π2(P )) : P ∈ Cn } .

Moreover, let us consider the following subsets of Sn:

C̃n = { π1(P ) : P ∈ Cn }, C̃′
n = { π2(P ) : P ∈ Cn }.

It is easy to prove the following properties:
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(a)

2π  = ( 5, 1, 6, 7, 3, 2, 4 )

π  = ( 2, 4, 1, 6, 7, 3, 5 )11π  = ( 2, 1, 3, 4, 5, 7, 6 )

π  = ( 3, 2, 1, 5, 7, 6, 4 )2

(b)

Figure 4. Two permutations π1 and π2 of Sn, satisfying 1 and 2,
do not necessarily define a permutomino, since two problems may
occur: (a) two disconnected sets of cells; (b) the boundary crosses
itself.

π  = ( 4, 6, 2, 7, 3, 5, 1 )
1

π  = ( 7, 3, 2, 6, 5, 4, 1 )

π  = ( 3, 2, 1, 7, 6, 5, 4 )1

2

π  = ( 2, 4, 1, 6, 7, 3, 5 )

(b)(a)
2

Figure 5. (a) a column convex permutomino associated with the
permutation π1 in Figure 4 (b); (b) the symmetric permutomino
associated with the involution π1 = (3, 2, 1, 7, 6, 5, 4).

(1)
∣∣∣C̃n

∣∣∣ =
∣∣∣C̃′

n

∣∣∣,
(2) π ∈ C̃n if and only if πR ∈ C̃′

n.
(3) If P is symmetric according to the diagonal x = y, then π1(P ) and π2(P )

are both involutions of Sn. We recall that an involution is a permutation
where all the cycles have length at most 2 (see for instance Figure 5 (b)).
Figures 6 and 16 show permutominoes where only π1 is an involution, and
this condition is not sufficient for the permutomino to be symmetric.

Given a permutation π ∈ Sn, we say that π is π1-associated (briefly associated)
with a permutomino P , if π = π1(P ). With no loss of generality, we will study the

combinatorial properties of the permutations of C̃n, and we will give a simple way to

recognize if a permutation π is in C̃n or not. Moreover, we will study the cardinality
of this set. In particular, we will exploit the relations between the cardinalities of

Cn and of C̃n.
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For small values of n we have that:

C̃1 = {1},
C̃2 = {12},
C̃3 = {123, 132, 213},
C̃4 = {1234, 1243, 1324, 1342, 1423, 1432, 2143,

2314, 2134, 2413, 3124, 3142, 3214}.

As a main result we will prove that the cardinality of C̃n+1 is

(5) 2 (n + 2) 4n−2 − n

4

(
3 − 4n

1 − 2n

) (
2n

n

)
, n ≥ 1.

defining the sequence 1, 1, 3, 13, 62, 301, 1450, . . ., recently added to [21] as A122122.

For any π ∈ C̃n, let us consider also

[π] = {P ∈ Cn : π1(P ) = π},
i.e., the set of convex permutominoes associated with π. For instance, there are 4
convex permutominoes associated with π = (2, 1, 3, 4, 5), as depicted in Figure 6.

In this paper we will also give a simple way of computing [π], for any given π ∈ C̃n.

Figure 6. The four convex permutominoes associated with
(2, 1, 3, 4, 5).

3.1. A matrix representation of convex permutominoes. Before going on
with the study of convex permutominoes, we would like to point out a simple
property of their boundary, related to reentrant and salient points. Let us briefly
recall the definition of these objects.

Let P be a polyomino; starting from the leftmost point having minimal ordi-
nate, and moving in a clockwise sense, the boundary of P can be encoded as a word
in a four letter alphabet, {N, E, S, W}, where N (resp., E, S, W ) represents a north
(resp., east, south, west) unit step. Any occurrence of a sequence NE, ES, SW , or
WN in the word encoding P defines a salient point of P , while any occurrence of
a sequence EN , SE, WS, or NW defines a reentrant point of P (see for instance,
Figure 7).

In [10] and successively in [7], in a more general context, it was proved that in
any polyomino the difference between the number of salient and reentrant points is
equal to 4.

In a convex permutomino of size n + 1 the length of the word coding the
boundary is 4n, and we have n+3 salient points and n−1 reentrant points; moreover
we observe that a reentrant point cannot lie on the minimal bounding rectangle.
This leads to the following remarkable property:

Proposition 2. The set of reentrant points of a convex permutomino of size n + 1
defines a permutation matrix of dimension n − 1, n ≥ 1.



PERMUTATIONS DEFINING CONVEX PERMUTOMINOES 7

A

NNENESSENNNESSEESWSWSWSWNWNW

Figure 7. The coding of the boundary of a polyomino, starting
from A and moving in a clockwise sense; its salient (resp. reentrant)
points are indicated by black (resp. white) squares.

For simplicity of notation, we agree to group the reentrant points of a convex
permutomino in four classes; in practice we choose to represent the reentrant point
determined by a sequence EN (resp. SE, WS, NW ) with the symbol α (resp. β,
γ, δ).

0 0 0 0 γ
0 0 0 β 0

0 0 δ 0 0

α 0 0 0 0
0 α 0 0 0

δ

γ

β

α

Figure 8. The reentrant points of a convex permutomino uniquely
define a permutation matrix in the symbols α, β, γ and δ.

Using this notation we can state the following simple characterization for con-
vex permutominoes:

Proposition 3. A convex permutomino of size n ≥ 2 is uniquely represented by
the permutation matrix defined by its reentrant points, which has dimension n − 2,
and uses the symbols α, β, γ, δ, and such that for all points A, B, C, D, of type α,
β, γ and δ, respectively, we have:

(1) xA < xB , xD < xC , yA > yD, yB > yC;
(2) ¬(xA > xC ∧ yA < yC) and ¬(xB < xD ∧ yB < yD),
(3) the ordinates of the α and of γ points are strictly increasing, from left to

right; the ordinates of the β and of δ points are strictly decreasing, from left
to right.

where x and y denote the abscissa and the ordinate of the considered point.

Just to give a more informal explanation, on a convex permutomino, let us
consider the special points

A = (1, π1(1)), B = (π−1
1 (n), n), C = (n, π1(n)), D = (π−1

1 (1), 1).

The path that goes from A to B (resp. from B to C, from C to D, and from D
to A) in a clockwise sense is made only of α (resp. β, γ, δ) points, thus it is called
the α-path (resp. β-path, γ-path, δ-path) of the permutomino. The situation is
schematically sketched in Figure 9.
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(1,1)

C

x+y=n+1

x=y

α

α
α

β

β

γ

γ

γδ

δ
δ

β

A

B

D

Figure 9. A sketched representation of the α, β, γ and δ paths in
a convex permutomino.

From the characterization given in Proposition 3 we have the following two proper-
ties:

(z1): the α points are never below the diagonal x = y, and the γ points are
never above the diagonal x = y.

(z2): the β points are never below the diagonal x+y = n+1, and the δ points
are never above the diagonal x + y = n + 1.

3.2. Characterization and combinatorial properties of C̃n. Let us consider
the problem of establishing, for a given permutation π ∈ Sn, if there is at least a
convex permutomino P of size n such that π1(P ) = π.
Let π be a permutation of Sn, we define µ(π) (briefly µ) as the maximal upper
unimodal sublist of π (µ retains the indexing of π).

Specifically, if µ is denoted by (µ(i1), . . . , n, . . . , µ(im)) , then we have the following:

(1) µ(i1) = µ(1) = π(1);
(2) if n /∈ {µ(i1), . . . , µ(ik)}, then µ(ik+1) = π(ik+1) such that

i: ik < i < ik+1 implies π(i) < µ(ik), and
ii: π(ik+1) > µ(ik);

(3) if n ∈ {µ(i1), . . . , µ(ik)}, then µ(ik+1) = π(ik+1) such that
i: ik < i < ik+1 implies π(i) < π(ik+1), and
ii: π(ik+1) < µ(ik).

Summarizing we have:

µ(i1) = µ(1) = π(1) < µ(i2) < . . . < n > . . . µ(im) = µ(n) = π(n).

Moreover, let σ(π) (briefly σ) denote (σ(j1), . . . , σ(jr)) where:

(1) σ(j1) = σ(1) = π(1), σ(jr) = σ(n) = π(n), and
(2) if 1 < jk < jr, then σ(jk) = π(jk) if and only if

π(jk) /∈ {µ(i1), . . . , µ(im)}.

We note that the sequence µ can be defined in terms of left-right and right left-
maxima. A left-right maximum (resp. right-left maximum) of a given permutation
τ is an entry τ(j) such that τ(j) > τ(i) for each i < j (for each i > j). Let u =
(ui1 , ui2 , . . . , uis

) be the sequence of the left-right maxima of π with ui1 = π(1) <
ui2 < . . . < uis

= n, and let v = (vj1 , vj2 , . . . , vjt
) be the sequence of the right-left

maxima (read from the left) with vj1 = n > vj2 > . . . > vjt
= π(n). The sequence µ
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π
  = (8, 6, 1, 9, 11, 14, 2, 16, 15, 13, 12, 10, 7, 3, 5, 4)

  = (9, 8, 6, 11, 14, 16, 1, 15, 13, 12, 10, 7, 5, 2, 4, 3)

π
1

β

δ

δ

γ
γ

β
β

β

β

β

ββ
α

α

α

2

Figure 10. A convex permutomino and the associated permutations.

coincides with the sequence obtained by connecting u with v, observing that, clearly,
uis

= vj1 = n. In other words it is µ = (ui1 , ui2 , . . . , uis
(= vj1), vj1 , vj2 , . . . , vjt

).

Example 1. Consider the convex permutomino of size 16 represented in Fig. 10.
We have

π1 = (8, 6, 1, 9, 11, 14, 2, 16, 15, 13, 12, 10, 7, 3, 5, 4),

and we can determine the decomposition of π into the two subsequences µ and σ:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
µ 8 - - 9 11 14 - 16 15 13 12 10 7 - 5 4
σ 8 6 1 - - - 2 - - - - - - 3 - 4

For the sake of brevity, when there is no possibility of misunderstanding, we
use to represent the two sequences omitting the empty spaces, as

µ = (8, 9, 11, 14, 16, 15, 13, 12, 10, 7, 5, 4), σ = (8, 6, 1, 2, 3, 4).

While µ is upper unimodal by definition, here σ turns out to be lower unimodal.
In fact from the characterization given in Proposition 3 we have that

Proposition 4. If π is associated with a convex permutomino then the sequence σ
is lower unimodal.

In this case, similarly to the sequence µ, also the sequence σ can be defined
in terms of left-right and right-left minima. A left-right minimum (resp. right-left
minimum) of a given permutation τ is an entry τ(j) such that τ(j) < τ(i) for each
i < j (for each i > j). If σ is lower unimodal, then it is easily seen to be the
sequence of the left-right minima followed by the sequence of the right-left minima
(read from the left), recalling that the entry 1 is both a left-right minimum and a
right-left minimum.

The conclusion of Proposition 4 is a necessary condition for a permutation π to
be associated with a convex permutomino, but it is not sufficient. For instance, if
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we consider the permutation π = (5, 9, 8, 7, 6, 3, 1, 2, 4), then µ = (5, 9, 8, 7, 6, 4), and
σ = (5, 3, 1, 2, 4) is lower unimodal, but as shown in Figure 11 (a) there is no convex
permutomino associated with π. In fact any convex permutomino associated with
such a permutation has a β point below the diagonal x+y = 10 and, correspondingly,
a δ point above this diagonal. Thus the β and the δ paths cross themselves.

β

δ

D

C

B

A

’θ

θ

(b)(a)

Figure 11. (a) there is no convex permutomino associated with
π = (5, 9, 8, 7, 6, 3, 1, 2, 4), since σ is lower unimodal but the β path
passes below the diagonal x + y = 10. The β point below the
diagonal and the corresponding δ point above the diagonal are en-
circled. (b) The permutation π = (5, 9, 8, 7, 6, 3, 1, 2, 4) is the direct
difference π = (1, 5, 4, 3, 2)⊖ (3, 2, 1, 4).

In order to give a necessary and sufficient condition for a permutation π to

be in C̃n, let us recall that, given two permutations θ = (θ1, . . . , θm) ∈ Sm and
θ′ = (θ′1, . . . , θ

′
m′) ∈ Sm′ , their direct difference θ ⊖ θ′ is a permutation of Sm+m′

defined as
(θ1 + m′, . . . , θm + m′, θ′1, . . . , θ

′
m′).

A pictorial description is given in Figure 11 (b), where θ = (1, 5, 4, 3, 2), θ′ =
(3, 2, 1, 4), and their direct difference is θ ⊖ θ′ = (5, 9, 8, 7, 6, 3, 1, 2, 4) .

Finally the following characterization holds.

Theorem 1. Let π ∈ Sn be a permutation. Then π ∈ C̃n if and only if:

(1) σ is lower unimodal, and
(2) there are no two permutations, θ ∈ θm , and θ′ ∈ θ′m, such that m+m′ = n,

and π = θ ⊖ θ′.

(Proof.) Before starting, we need to observe that in a convex permutomino all the
α and γ points belong to the permutation π1, thus by (z1) they can also lie on the
diagonal x = y; on the contrary, the β and δ points belong to π2, then by (z2)
all the β (resp. δ) points must remain strictly above (resp. below) the diagonal
x + y = n + 1.

(=⇒) By Proposition 4 we have that σ is lower unimodal. Then, we have to prove
that π may not be decomposed into the direct difference of two permutations,
π = θ ⊖ θ′.
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If π(1) < π(n) the property is straightforward. Let us consider the case π(1) >
π(n), and assume that π = θ ⊖ θ′ for some permutations θ and θ′. We will prove
that if the vertices of polygon P define the permutation π, then the boundary of P
crosses itself, hence P is not a permutomino.

Let us assume that P is a convex permutomino associated with π = θ⊖ θ′. We
start by observing that the β and the δ paths of P may not be empty. In fact, if
the β path is empty, then π(n) = n > π(1), against the hypothesis. Similarly, if the
δ path is empty, then π(1) = 1 < π(n). Essentially for the same reason, both θ and
θ′ must have more than one element.

F

’G θ’

G

F

θ

’

Figure 12. If π = θ ⊖ θ′ then the boundary of every polygon
associated with π crosses itself.

As we observed, the points of θ (resp. θ′) in the β path of P , are placed strictly
above the diagonal x+y = n+1. Let F (resp. F ′) be the rightmost (resp. leftmost)
of these points. Similarly, there must be at least one point of θ (resp. θ′) in the δ
path of P , placed strictly below the diagonal x+y = n+1. Let G (resp. G′) be the
rightmost (resp. leftmost) of these points. The situation is schematically sketched
in Figure 12.

Since F and F ′ are consecutive points in the β path of P , they must be con-
nected by means of a path that goes down and then right, and, similarly, since G′

and G are two consecutive points in the δ path, they must be connected by means
of a path that goes up and then left. These two paths necessarily cross in at least
two points, and their intersections must be on the diagonal x + y = n + 1.

(⇐=) Clearly condition 2. implies that π(1) < n and π(n) > 1, which are necessary

conditions for π ∈ C̃n. We start building up a polygon P such that π1(P ) = P , and
then prove that P is a permutomino. As usual, let us consider the points

A = (1, π(1)), B = (π−1(n), n), C = (n, π(n)), D = (π−1(1), 1).

The α path of P goes from A to B, and it is constructed connecting the points of µ
increasing sequence; more formally, if µ(il) and µ(il+1) are two consecutive points
of µ, with µ(il) < µ(il+1) ≤ n, we connect them by means of a path

1µ(il+1)−µ(il) 0il+1−il ,

(where 1 denotes the vertical, and 0 the horizontal unit step). Similarly we construct
the β path, from B to C, the γ path from C to D, and the δ path from D to A.
Since the subsequence σ is lower unimodal the obtained polygon is convex (see
Figure 13).
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B

δ
γ

βα

B

A

D

C C

D

A

Figure 13. Given the permutation π = (3, 1, 6, 8, 2, 4, 7, 5) satis-
fying conditions 1. and 2., we construct the α, β, γ, and δ paths.

α

γ

δ

β

(b)

(r,s)

i

j

r

(a)

θ

θ

’

Figure 14. (a) The α path and the γ path may not cross; (b) The
β path and the δ path may not cross.

Now we must prove that the four paths we have defined may not cross them-
selves. First we show that the α path and the γ path may not cross. In fact, if this
happened, there would be a point (r, π(r)) in the path γ, and two points (i, π(i))
and (j, π(j)) in the path α, such that i < r < j, and π(i) < π(r) > π(j) (see Figure
14 (a)). In this case, according to the definition, π(r) should belong to µ, and then
(r, π(r)) should be in the path α, and not in γ.

Finally we prove that the paths β and δ may not cross. In fact, if they cross,
their intersection should necessarily be on the diagonal x+ y = n+1; if (r, s) is the
intersection point having minimum abscissa, then the reader can easily check, by
considering the various possibilities, that the points (i, π(i)) of π satisfy:

i ≤ r if and only if π(i) ≥ s

(see Figure 14 (b)). Therefore, setting

θ = {(i, π(i) − s + 1) : i ≤ r}
we have that θ is a permutation of Sr, and letting

θ′ = { (i, π(i) : i > r }
we see that π = θ ⊖ θ′, against the hypothesis. �

There is an interesting refinement of the previous general theorem, which ap-
plies to a particular subset of the permutations of Sn.
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Corollary 1. Let π ∈ Sn, such that π(1) < π(n). Then π ∈ C̃n if and only if σ is
lower unimodal.

(a)

D

C

B

A

D

C

B

A

(b)

Figure 15. (a) a square permutation and the associated 4-face
polygon; (b) a 4 face polygon defined by a non square permutation.

At the end of this section we would like to point out an interesting connection
between the permutations associated with convex permutominoes and another kind
of combinatorial objects treated in some recent works. We are referring to the so
called k-faces permutation polygons defined by T. Mansour and S. Severini in [20].
In order to construct a polygon from a given permutation π in an unambiguous way,
they find the set of left-right minima and the set of right-left minima. An entry
which is neither a left-right minimum nor a right-left minimum is said to be a source,
together with the first and the last entry (which are also a left-right minimum and
a right-left minimum, respectively). Finally, two entries of π are connected with an
edge if they are two consecutive left-right minima or right-left minima or sources.
A maximal path of increasing or decreasing edges defines a face. If the obtained
polygon has k faces, than it is said to be a k-faces polygon. A permutation is
said to be square if the sequence of the sources lies in at most two faces. The set
of the square permutations of length n is denoted by Qn. We note that a square
permutation has at most four faces, but the inverse statement does not hold: the
permutation (1, 5, 8, 2, 7, 3, 9, 10, 6, 4) has four faces and it is not square. Figure 15
depicts an example.

Connecting all pairs of consecutive points of the sequences µ and σ we ob-
tain a polygon which may not coincide with the polygon obtained from the defini-
tion of Mansour and Severini, as the reader can easily check with the permutation
(1, 2, 4, 3). It is however simple to state the following

Proposition 5. Given a permutation π ∈ Sn, then π ∈ Qn if and only if σ(π) is
lower unimodal.

We point out that the square permutations coincide with the of the convex
permutations, introduced by Waton [23]. In his PhD thesis the author characterizes
the convex permutations in terms of forbidden patterns. More precisely, he proves
that the convex permutations are all the permutations avoiding the following sixteen
patterns of length five:

{52341, 52314, 51342, 51324, 42351, 42315, 41352, 41325
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25341, 25314, 15342, 15324, 24351, 24315, 14352, 14325}.

All the relations between Qn, Cn and C′
n are exploited in the next section, where,

in particular, it is proved that, given a permutation π, then π ∈ Qn if and only if
π ∈ Cn ∪ C′

n.
Mansour and Severini [20] (and independently Waton [23]) prove that the num-

ber Qn+1 of square permutation of size n + 1 is

(6) Qn+1 = 2(n + 3)4n−2 − 4(2n− 3)

(
2(n − 2)

n − 2

)
,

defining the sequence 1, 2, 6, 24, 104, 464, 2088, . . . (A128652 in [21]).

3.3. The relation between the number of permutations and the number

convex permutominoes. Let π ∈ C̃n, and µ and σ defined as above. Let F(π)
(briefly F) denote the set of fixed points of π lying in the increasing part of the
sequence µ and which are different from 1 and n. We call the points in F the free
fixed points of π.

For instance, concerning the permutation π = (2, 1, 3, 4, 7, 6, 5) we have µ =
(2, 3, 4, 7, 6, 5), σ = (2, 1, 5), and F(π) = {3, 4}; here 6 is a fixed point of π but
it is not on the increasing sequence of µ, then it is not free. By definition, a

permutation in C̃n can have no free fixed points (e.g., the permutation associated
with the permutomino in Figure 10), and at most n − 2 free fixed points (as the
identity (1, . . . , n)).

Theorem 2. Let π ∈ C̃n, and let F(π) be the set of free fixed points of π. Then we
have:

| [ π ] | = 2|F(π)|.

(Proof.) Since π ∈ C̃n there exists a permutomino P associated with π. If we look
at the permutation matrix defined by the reentrant points of P , we see that all the
free fixed points of π can be only of type α or γ, while the type of all the other
reentrant points of π is established. It is easy to check that in any way we set the
typology of the free fixed points in α or γ we obtain, starting from the matrix of P ,
a permutation matrix which defines a convex permutomino associated with π, and
in this way we get all the convex permutominoes associated with the permutation
π. �

Applying Theorem 2 we have that the number of convex permutominoes associated
with π = (2, 1, 3, 4, 7, 6, 5) is 22 = 4, as shown in Figure 16. Moreover, Theorem 2
leads to an interesting property.

α
γ

γ
γ

α
α

γ

α

Figure 16. The four convex permutominoes associated with the
permutation π = (2, 1, 3, 4, 7, 6, 5). The two free fixed points are
encircled.

Proposition 6. Let π ∈ C̃n, with π(1) > π(n). Then there is only one convex
permutomino associated with π, i.e., | [ π ] | = 1.
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(Proof.) If π(1) > π(n) then all the points in the increasing part of µ are strictly
above the diagonal x = y, then π cannot have free fixed points. The thesis is then
straightforward. �

Let us now introduce the sets C̃n,k of permutations having exactly k free fixed
points, with 0 ≤ k ≤ n − 2. We easily derive the following relations:

(7) C̃n =

n−2∑

k=0

∣∣∣C̃n,k

∣∣∣ Cn =

n−2∑

k=0

2k
∣∣∣C̃n,k

∣∣∣ .

4. The cardinality of C̃n

In order to find a formula to express C̃n, it is now sufficient to count how
many permutations of Qn can be decomposed into the direct difference of other
permutations. We say that a square permutation is indecomposable if it is not the
direct difference of two permutations. For any k ≥ 2, let

Bn,k = {π ∈ Qn : π = θ1 ⊖ . . . ⊖ θk, θi indecomposable, 1 ≤ i ≤ k }
be the set of square permutations which are direct difference of exactly k indecom-
posable permutations, and

Bn =
⋃

k≥2

Bn,k.

For any n, k ≥ 2, let Tn,k be the class of the sequences (P1, . . . , Pk) such that:

i: P1 and Pk are (possibly empty) directed convex permutominoes,
ii: P2, . . . , Pk−1 are (possibly empty) parallelogram permutominoes,

and such that the sum of the dimensions of P1, . . . , Pk is equal to n.

Proposition 7. There is a bijective correspondence between the elements of Bn,k

and the elements of Tn,k, so that the two classes have the same cardinality.

(Proof.) Let us consider (P1, . . . , Pk) ∈ Tn,k, we construct the corresponding
permutation π = δ1 ⊖ · · · ⊖ δk as follows. For any 1 ≤ i ≤ k, if Pi is the empty
permutomino, then δi = (1), otherwise:

i: for all i with 1 ≤ i ≤ k−1, δi is the reversal of π2(Pi) (i.e., the permutation
π1 associated with the symmetric permutomino of Pi with respect to the y-
axis).

ii: δk is the complement of π2(Pk) (i.e., it is the permutation π1 associated
with the symmetric permutomino of Pk with respect to the x-axis).

3 4
P

P
1

2
P

1
P

4
P

2
π (   ) = (2,1)

2
π (   ) = (2,4,5,1,3)π (   ) = (3,5,4,1,2) empty 

permutomino
2

P

P
3

P
5

P
52π (   ) = (4,6,1,2,5,3)

Figure 17. An element of T19,5, constituted of a sequence of five
permutominoes, and the associated permutations.
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For example, starting from the sequence of permutominoes in Figure 17 we
obtain the following permutations: δ1 = (2, 1, 4, 5, 3) is obtained from the permu-
tomino P1 such that π2(P1) = (3, 5, 4, 1, 2); δ2 = (1) is obtained from the empty per-
mutomino P2; δ3 = (1, 2) is obtained from P3; δ4 = (3, 1, 5, 4, 2) is obtained from the
permutomino P4 such that π2(P4) = (2, 4, 5, 1, 3). Moreover, δ5 = (3, 1, 6, 5, 2, 4)
is the complement of τ = (4, 6, 1, 2, 5, 3) which is such that π2(P5) = τ . Then, as
showed in Figure 18 we obtain the permutation π = δ1 ⊖ δ2 ⊖ δ4 ⊖ δ4 ⊖ δ5,

π = (16, 15, 18, 19, 17, 14, 12, 13, 9, 7, 11, 10, 8, 3, 1, 6, 5, 2, 4)

We note that the points in the increasing part of µ(π) are precisely the points of
the increasing part of µ(δ1); the points in the increasing part of σ(π) are the points
of the increasing part of σ(δk); the points in the decreasing part of µ(π) are given
by the sequence of points of the decreasing parts of µ(δ1), . . . , µ(δk); finally, the
points in the decreasing part of σ(π) are given by the sequence of the points of the
decreasing parts of σ(δ1), . . . , σ(δk). Then, we have that π ∈ Qn and then π ∈ Bn,k.

Conversely, let π ∈ Bn,k, with π = δ1⊖· · ·⊖δk. By the previous considerations
we have that π ∈ Qn, and then it is clear that, for each component δi, the sequence
µ(δi) is upper unimodal, and σ(δi) is lower unimodal.

If δi is the one element permutation, then it is associated with the empty
permutomino. Otherwise, if a permutation δi is indecomposable and has dimension
greater than 1 it is clearly associated with a polygon with exactly one side for every
abscissa and ordinate and with the border which does not intersect itself. These two
conditions are sufficient to state that δi is associated with a convex permutomino,
and in particular the reader can easily observe the following properties, due to its
the indecomposability:

(1) there is exactly one directed convex permutomino P1 corresponding to δ1,
and it is the reflection according to the y-axis of a permutomino associated
with δ1;

(2) for any 2 ≤ i ≤ k − 1, there is exactly one parallelogram permutomino
Pi corresponding to δi, and it is the reflection according to the y-axis of a
permutomino associated with δi;

(3) there is exactly one directed convex permutomino Pk corresponding to δk,
and it is the reflection according to the x-axis of a permutomino associated
with δk.

We have thus the sequence (P1, . . . , Pk) ∈ Tn,k. �

If we denote by Bn (resp. Bn,k) the cardinality of Bn (resp. Bn,k), by Propo-
sition 5 we have

C̃n = Qn − Bn.

Let us pass to generating functions, denoting by:

(1) P (x) (resp. D(x)) the generating function of parallelogram permutominoes
(resp. P (x)), hence

P (x) =
1 −

√
1 − 4x

2
= x + x2 + 2x3 + 5x4 + 14x5 + . . .

D(x) =
x

2

(
1√

1 − 4x
+ 1

)
= x + x2 + 3x3 + 10x4 + 35x5 + . . . ;

(2) Bk(x) (resp. B(x)) the generating function of the numbers {Bk,n}n≥0,
k ≥ 2 (resp. {Bn}n≥0).

Due to Proposition 7, for any k ≥ 2, we have that Bk(x) = D2(x)P k−2(x) and then

B(x) =
∑

k≥0

D2(x)P k−2(x) =
D2(x)

1 − P (x)
=

1

2

(
x2

1 − 4x
+

x2

√
1 − 4x

)
.
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(b)(a)

δ

δ

δ

δ

δ

5

4

3

2

1

5

4

3

2

P

P

P

P

P

1

Figure 18. (a) a square permutation which can be decomposed
into the direct difference of five indecomposable permutations; (b)
the five permutominoes associated with them. For each permu-
tomino Pi, we denote by P̄i the corresponding reflected permu-
tomino.

Therefore

Bn+2 =
1

2

(
4n +

(
2n

n

))
=

n∑

i=0

(
2n

i

)
.

Now it is easy to determine the cardinality of C̃n. For simplicity of notation we will
express most of the following formulas in terms of n + 1 instead of n.

Proposition 8. The number of permutations of C̃n+1 is

(8) 2 (n + 2) 4n−2 − n

4

(
3 − 4n

1 − 2n

) (
2n

n

)
, n ≥ 1.

(Proof.) In fact, for any n ≥ 2, we have C̃n = Qn − Bn, then the result is
straightforward. �

For the sake of completeness, in Table 1 we list the first terms of the sequences
involved in the preceding formulas.

sequence 1 2 3 4 5 6 7 8 . . .

Qn 1 2 6 24 104 464 2088 9392 . . .

Bn 1 3 11 42 163 638 2510 . . .

C̃n 1 1 3 13 62 301 1450 6882 . . .

Table 1. The first terms of the sequences Qn, Bn, C̃n, starting
with n = 1.
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In ending the paper we would like to point out some other results that directly
come out from the one stated in Proposition 8. First we observe that the number

of permutations π ∈ C̃n for which π(1) < π(n) is equal to 1
2Qn, while the number

of those for which π(1) > π(n) is equal to

1

2
Qn − Bn = C̃n − 1

2
Qn,

and the (n + 1)th term of this difference is equal to

(9) (n + 1)4n−2 − n

2

(
2n + 1

n − 1

)
,

whose first terms are 1, 10, 69, 406, 2186, 11124, . . ., (sequence A038806 in [21]).

Moreover, it is also possible to consider the set C̃n ∩ C̃′
n, i.e., the set of the permuta-

tions π for which there is at least one convex permutomino P such that π1(P ) = π
and one convex permutomino P ′ such that π2(P

′) = π. For instance, we have:

C̃3 ∩ C̃′
3 = ∅,

C̃4 ∩ C̃′
4 = {(2, 4, 1, 3), (3, 1, 4, 2)}.

We start by recalling that π ∈ C̃n if and only if πR ∈ C̃′
n .

Proposition 9. A permutation π ∈ Qn if and only if π ∈ C̃n ∪ C̃′
n.

(Proof.) (⇐) If π is a square permutation but it is not in C̃n, then necessarily

π(1) > π(n). Hence, if we consider πM , we have πM (1) < πM (n), and πM ∈ C̃n,

then π ∈ C̃′
n.

(⇒) Trivial. �

Finally, since
∣∣∣C̃′

n

∣∣∣ =
∣∣∣C̃n

∣∣∣, and Qn = 2C̃n −
∣∣∣ C̃n ∩ C̃′

n

∣∣∣, we can state the follow-

ing.

Proposition 10. For any n ≥ 2, we have

(10)
∣∣∣ C̃n ∩ C̃′

n

∣∣∣ = C̃n − Bn = Qn − 2Bn.

The reader can easily recognize that the numbers defined by (10) are the double
of the ones expressed by the formula in (9), so that

(11)
∣∣∣ C̃n+1 ∩ C̃′

n+1

∣∣∣ = 2(n + 1)4n−2 −
(

2n − 1

n − 1

)
.

5. Further work

Here we outline the main open problems and research lines on the class of
permutominoes.

(1) It would be natural to look for a combinatorial proof of the formula (4)
for the number of convex permutominoes and (8) for the number of per-
mutations associated with convex permutominoes. These proofs could be
obtained using the matrix characterization for convex permutominoes pro-
vided in Section 3.1.

(2) The main results of the paper have been obtained in an analytical way.
In particular from (4) and (8) we have a direct relation between convex
permutominoes and permutations, obtaining

(12) Cn+2 = C̃n+2 +
1

2

(
4n −

(
2n

n

))
,
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which requires a combinatorial explanation. In particular, recalling that

Cn =
∑

π∈eCn

|[π]| ,

the right term of (12) is the number of convex permutominoes which are
determined by the permutations having at least one free fixed point.

Moreover, from (8) and (12) we get that

Qn+2 = Cn+2 +

(
2n

n

)
,

and also this identity cannot be clearly explained using the combinatorial
arguments used in the paper.

From (11) we have that the generating function of the permutations in

C̃n ∩ C̃′
n is

2

(
x2c(x)

1 − 4x

)2

,

where c(x) denotes the generating function of Catalan numbers. While the

factor 2 can be easily explained, since for any π ∈ C̃n ∩ C̃′
n, also πM ∈

C̃n ∩ C̃′
n, and clearly π 6= π′, the convolution of Catalan numbers and the

powers of four begs for a combinatorial interpretation.
(3) We would like to consider the characterization and the enumeration of the

permutations associated with other classes of permutominoes, possibly in-
cluding the class of convex permutominoes. For instance, if we take the
class of column convex permutominoes, we observe that Proposition 2 does
not hold. In particular, one can see that, if the permutomino is not convex,
then the set of reentrant points does not form a permutation matrix (Figure
19).

Figure 19. The four column convex permutominoes associated
with the permutation (1, 6, 2, 5, 3, 4); only the leftmost is convex

Moreover, it might be interesting to determine an extension of Theorem
2 for the class of column convex permutominoes, i.e., to characterize the set
of column convex permutominoes associated with a given permutation. For
instance, we observe that while there is one convex permutomino associ-
ated with π = (1, 6, 2, 5, 3, 4), there are four column convex permutominoes
associated with π (Figure 19).
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