Decompostion of natural numbers into weight \times level + jump and application to a new classification of prime numbers

Rémi Eismann
reismann@free.fr

Abstract

In this article we introduce a decomposition of elements a_{n} of an increasing sequence of natural numbers $\left(a_{n}\right)_{n \in \mathbb{N}^{*}}$ into weight \times level + jump which we use to classify the numbers a_{n} either by weight or by level. We then show that this decomposition can be seen as a generalization of the Eratosthenes sieve (which is the particular case of the whole sequence of natural numbers). Finally, we apply this decomposition to prime numbers in order to obtain a new classification of primes, and we analyze a few properties of this classification to make a series of conjectures based on numerical data.

1 Introduction

We start this paper by introducing a decomposition algorithm of the elements a_{n} of an increasing sequence of natural numbers $\left(a_{n}\right)_{n \in \mathbb{N}^{*}}$ into weight \times level $+j u m p$. We then show that a necessary and sufficient condition for this decomposition to hold is

$$
a_{n+1}<\frac{3}{2} a_{n} .
$$

We use this decomposition to classify the numbers a_{n} either by weight or by level by introducing a classification principle.

By applying this algorithm to the whole sequence of natural numbers we find that it reduces to the Eratosthenes sieve (shifted by one unit).

In section 4 we consider this decomposition algorithm on the sequence of prime numbers and prove that such a decomposition is also in that case possible, except for $p_{1}=2, p_{2}=3$ and $p_{4}=7$. Moreover we show that the smallest member of a twin prime pair (except 3) always have a weight equal to 3 .

We then use this decomposition to establish a new classification of prime numbers by weight and by level and we define levels of type $(1 ; i)$. Furthermore, we provide some related results as well as a series of precise and non-trivial conjectures on prime numbers.

Finally we show how composite numbers and 2 -almost primes behave under the decomposition.

2 Decomposition algorithm of numbers into weight \times level $+j u m p$ and application to a classification scheme

We introduce an algorithm whose input is an increasing sequence of positive integers $\left(a_{n}\right)_{n \in \mathbb{N}^{*}}$ and whose output is a sequence of unique triplets of positive integers $\left(k_{n}, L_{n}, d_{n}\right)_{n \in \mathbb{N}^{*}}$.

We define the jump of a_{n} by

$$
d_{n}:=a_{n+1}-a_{n} .
$$

Then let l_{n} be defined by

$$
l_{n}:=\left\{\begin{array}{l}
a_{n}-d_{n} \text { if } a_{n}-d_{n}>d_{n} \\
0 \text { otherwise } .
\end{array}\right.
$$

The weight of a_{n} is defined to be

$$
k_{n}:=\left\{\begin{array}{l}
\min \left\{k \in \mathbb{N}^{*} \text { s.t. } k>d_{n}, k \mid l_{n}\right\} \text { if } l_{n} \neq 0 \\
0 \text { otherwise. }
\end{array}\right.
$$

Finally we define the level of a_{n} by

$$
L_{n}:=\left\{\begin{array}{l}
\frac{l_{n}}{k_{n}} \text { if } k_{n} \neq 0 ; \\
0 \text { otherwise } .
\end{array}\right.
$$

We then have a decomposition of a_{n} into weight \times level + jump: $a_{n}=l_{n}+d_{n}=k_{n} \times L_{n}+d_{n}$ when $l_{n} \neq 0$.

In the Euclidian division of a_{n} by its weight k_{n}, the quotient is the level L_{n}, and the remainder is the jump d_{n}.

Lemma 2.1. A necessary and sufficient condition for the decomposition of a number a_{n} belonging to an increasing sequence of positive integers $\left(a_{n}\right)_{n \in \mathbb{N}^{*}}$ into weight \times level $+j u m p$ to hold is that

$$
a_{n+1}<\frac{3}{2} a_{n} .
$$

Proof. The decomposition is possible if $l_{n} \neq 0$, that is if $a_{n}-d_{n}>d_{n}$, which can be rewritten as $a_{n+1}<\frac{3}{2} a_{n}$.

In order to use this algorithm to classify the numbers a_{n} we introduce the following rule (whose meaning will become clearer in the next section): if for a_{n} we have $k_{n}>L_{n}$ then a_{n} is said to be classified by level, if not then a_{n} is said to be classified by weight.

3 Application of the algorithm to the sequence of natural numbers

In this situation we have $a_{n}=n$ et $d_{n}=1$. The decomposition is impossible for $n=1$ and $n=2\left(l_{1}=l_{2}=0\right)$. Apart from those two cases, we have the decomposition of n into weight \times level + jump: $n=k_{n} \times L_{n}+1$ when $n>2$ and we also have the following relations

$$
\begin{aligned}
& L_{n}=1 \\
\Leftrightarrow & k_{n}=l_{n}=n-1 \\
\Leftrightarrow & l_{n}=n-1 \text { is prime }, \\
& L_{n} \neq 1 \\
\Leftrightarrow & k_{n} \times L_{n}=l_{n}=n-1 \\
\Leftrightarrow & l_{n}=n-1 \text { is composite. }
\end{aligned}
$$

Furthermore, we remark that they do not exist natural numbers except the numbers $\left(p_{n}+1\right)$ for which $k_{n}>L_{n}$. Indeed, since we have $n-1=l_{n}=k_{n} \times L_{n}$ then according to the definitions of k_{n} and L_{n} if $n-1$ is not prime we necessarily have $k_{n} \leq L_{n}$. We can thus characterize the fact that a number $l_{n}=n-1$ is prime by the fact that n is classified by level, (or equivalently here by the fact that n is of level 1).

Since there is an infinity of prime numbers, there is an infinity of natural numbers of level 1. Similarly there is an infinity of natural numbers with a weight equal to k with k prime.

The algorithm allows to separate prime numbers (l_{n} or weights of natural numbers of level 1) from composite numbers, and is then indeed a reformulation of the Eratosthenes sieve. Thus applying this algorithm to any other increasing sequence of positive integers, for example to the sequence of prime numbers itself, can be seen as an extension of that sieve.

$n \underline{\mathrm{~A} 000027}$	$k_{n} \underline{\mathrm{~A} 020639}(n-1)$	$L_{n} \underline{\mathrm{~A} 032742}(n-1)$	d_{n}	l_{n}
1	0	0	1	0
2	0	0	1	0
3	2	1	1	2
4	3	1	1	3
5	2	2	1	4
6	5	1	1	5
7	2	3	1	6
8	7	1	1	7
9	2	4	1	8
10	3	3	1	9
11	2	5	1	10
12	11	1	1	11
13	2	6	1	12

Table 1: The 13 first terms of the sequences of weights, levels, jumps, and l_{n} in the case of the sequence of natural numbers.

Figure 1: Plot of natural numbers in $\log \left(k_{n}\right)$ vs. $\log \left(L_{n}\right)$ coordinates (with $n \leq 10000$). The Eratosthenes sieve.

4 Application of the algorithm to the sequence of primes

We can wonder what happens if we try to apply the decomposition to the sequence of primes itself: for any $n \in \mathbb{N}^{*}$ we have $a_{n}=p_{n}$ and $d_{n}=g_{n}$ (the prime gap). The algorithm of section 1 can then be rewritten with these new notations as follows.

The jump (gap) of p_{n} is

$$
g_{n}:=p_{n+1}-p_{n} .
$$

Let l_{n} be defined by

$$
l_{n}:=\left\{\begin{array}{l}
p_{n}-g_{n} \text { if } p_{n}-g_{n}>g_{n} \\
0 \text { otherwise }
\end{array}\right.
$$

The weight of p_{n} is then

$$
k_{n}:=\left\{\begin{array}{l}
\min \left\{k \in \mathbb{N}^{*} \text { s.t. } k>g_{n}, k \mid l_{n}\right\} \text { if } l_{n} \neq 0 \\
0 \text { otherwise } .
\end{array}\right.
$$

The level of p_{n} is

$$
L_{n}:=\left\{\begin{array}{l}
\frac{l_{n}}{k_{n}} \text { if } k_{n} \neq 0 ; \\
0 \text { otherwise }
\end{array}\right.
$$

So the decomposition of p_{n} into weight \times level + jump reads $p_{n}=k_{n} \times L_{n}+g_{n}$ when $l_{n} \neq 0$. So one should investigate for which n we have $l_{n} \neq 0$, which is provided by the following result.

Theorem 4.1. This decomposition is always possible except for $p_{1}=2, p_{2}=3$ and $p_{4}=7$ (i.e., $p_{n+1} \geq \frac{3}{2} p_{n}$ holds only for $n=1, n=2$ and $n=4$).

Proof. The decomposition if possible if, and only if, l_{n} is not equal to zero. But $l_{n} \neq 0$ if and only if $p_{n+1}<\frac{3}{2} p_{n}$, that is $p_{n}-g_{n}>g_{n}(*)$ by lemma 2.1. Let us now apply results of Pierre Dusart on the prime counting function π to show that this is always true except for $n=1, n=2$ and $n=4$.

Indeed this last equation $(*)$ can be rewritten in terms of π as $\pi\left(\frac{3}{2} x\right)-\pi(x)>1$ (i.e., there is always a number strictly included between x and $\frac{3}{2} x$ for any $x \in \mathbb{R}^{+}$). But Dusart has shown [1, 2] that on the one hand for $x \geq 599$ we have

$$
\pi(x) \geq \frac{x}{\log x}\left(1+\frac{1}{\log x}\right)
$$

and on the other hand for $x>1$ we have

$$
\pi(x) \leq \frac{x}{\log x}\left(1+\frac{1.2762}{\log x}\right)
$$

So for $x \geq 600$ we have

$$
\pi\left(\frac{3}{2} x\right)-\pi(x)>\frac{900}{\log 900}\left(1+\frac{1}{\log 900}\right)-\frac{600}{\log 600}\left(1+\frac{1.2762}{\log 600}\right)
$$

and since the right hand side of this inequality is approximately equal to 39.2 we indeed have that $\pi\left(\frac{3}{2} x\right)-\pi(x)>1$, so the inequality $(*)$ holds for any prime greater than 600 . We check numerically that it also holds in the remaining cases when $x<600$, except for the aforementioned exceptions $n=1, n=2$ and $n=4$ which ends the proof.

Let us now state a few direct results. For any p_{n} different from $p_{1}=2, p_{2}=3$ and $p_{4}=7$ we have

$$
\begin{gathered}
\operatorname{gcd}\left(g_{n}, 2\right)=2 \\
\operatorname{gcd}\left(p_{n}, g_{n}\right)=\operatorname{gcd}\left(p_{n}-g_{n}, g_{n}\right)=\operatorname{gcd}\left(l_{n}, g_{n}\right)=\operatorname{gcd}\left(L_{n}, g_{n}\right)=\operatorname{gcd}\left(k_{n}, g_{n}\right)=1 \\
3 \leq k_{n} \leq l_{n} \\
1 \leq L_{n} \leq \frac{l_{n}}{3} \\
2 \leq g_{n} \leq k_{n}-1 \\
2 \times g_{n}+1 \leq p_{n}
\end{gathered}
$$

Lemma 4.1. p is a prime such that $p>3$ and $p+2$ is also prime if and only if p has a weight equal to 3.

Proof. The primes $p>3$ such that $p+2$ is also prime are of the form $6 n-1$, so $p-2$ is of the form $6 n-3$. The smallest divisor greater than 2 of a number of the form $6 n-3$ is 3 . If p_{n} has a weight equal to 3 then $p_{n}>3$ and the jump g_{n} is equal to 2 since we know that $2 \leq g_{n} \leq k_{n}-1$ and $2 \times g_{n}+1 \leq p_{n}$.

n	$p_{n} \mathrm{~A} 000040$	$k_{n} \underline{\mathrm{~A} 117078}$	$L_{n} \underline{\mathrm{~A} 117563}$	$d_{n} \underline{\mathrm{~A} 001223}$	$l_{n} \mathrm{~A} 118534$
1	2	0	0	1	0
2	3	0	0	2	0
3	5	3	1	2	3
4	7	0	0	4	0
5	11	3	3	2	9
6	13	9	1	4	9
7	17	3	5	2	15
8	19	5	3	4	15
9	23	17	1	6	17
10	29	3	9	2	27
11	31	25	1	6	25
12	37	11	3	4	33
13	41	3	13	2	39
14	43	13	3	4	39
15	47	41	1	6	41
16	53	47	1	6	47
17	59	3	19	2	57

Table 2: The 17 first terms of the sequences of weights, levels, jumps and l_{n} in the case of the sequence of primes.

Figure 2: Plot of prime numbers in $\log \left(k_{n}\right)$ vs. $\log \left(L_{n}\right)$ coordinates (with $n \leq 10000$).

5 Classification of prime numbers

We introduce the following classification principle:

- if for p_{n} we have $k_{n}>L_{n}$ then p_{n} is classified by level, if not p_{n} is classified by weight; - furthermore if for p_{n} we have that l_{n} is equal to some prime p_{n-i} then p_{n} is of level $(1 ; i)$.

For $n \leq 5.10^{7}, 17,11 \%$ of the primes p_{n} are classified by level and $82,89 \%$ are classified by weight.

We have the following direct results:
If p_{n} is classified by weight then

$$
g_{n}+1 \leq k_{n} \leq \sqrt{l_{n}} \leq L_{n} \leq \frac{l_{n}}{3} .
$$

If p_{n} is classified by level then

$$
L_{n}+2 \leq g_{n}+1 \leq k_{n} \leq l_{n} .
$$

Number of primes	which have a weight equal to	$\% /$ total of primes classified by weight	$\% /$ total
3370444	3	8.132	6.741
1123714	5	2.711	2.247
1609767	7	3.884	3.219
1483560	9	3.579	2.967
1219514	11	2.942	2.439
1275245	13	3.077	2.550
1260814	15	3.042	2.522
1048725	17	2.530	2.097
1051440	19	2.546	2.103
1402876	21	3.385	2.806
893244	23	2.155	1.786

Table 3: Distribution of primes for the 11 smallest weights (with $n \leq 5.10^{7}$).

Number of primes	which are of level	$\% /$ total of primes classified by level	$\% /$ total
2664810	1	31.15	5.330
2271894	3	26.56	4.544
963665	5	11.27	1.927
444506	7	5.197	0.8890
640929	9	7.493	1.282
254686	11	2.978	0.5094
155583	13	1.819	0.3112
351588	15	4.110	0.7032
115961	17	1.356	0.2319
78163	19	0.9138	0.1563
148285	21	1.734	0.297

Table 4: Distribution of primes for the 11 smallest levels (with $n \leq 5.10^{7}$).

If p_{n} is of level $(1 ; i)$ then

$$
\begin{gathered}
L_{n}=1 \text { and } l_{n}=k_{n}=p_{n-i} \\
p_{n}=p_{n-i}+g_{n} \text { or } p_{n+1}-p_{n}=p_{n}-p_{n-i} .
\end{gathered}
$$

If p_{n} is of level $(1 ; 1)$ then

$$
\begin{gathered}
L_{n}=1 \text { and } l_{n}=k_{n}=p_{n-1}, \\
g_{n}=g_{n-1} \text { or } p_{n+1}-p_{n}=p_{n}-p_{n-1}, \\
p_{n}=\frac{p_{n+1}+p_{n-1}}{2} .
\end{gathered}
$$

Primes of level $(1 ; 1)$ are the so-called "balanced primes" (A006562).

Number of primes	which are of level $(1 ; i)$ i
1307356	1
746381	2
345506	3
153537	4
65497	5
27288	6
11313	7

Table 5: Distribution of primes of level $(1 ; i)$ (with $n \leq 5.10^{7}, i \leq 7$).

One can wonder whether the notion of level $(1 ; i)$ can be generalized to primes classified by level themselves (level $(3 ; i)$, level $(5 ; i)$ for exemple). We shall not address this issue in this paper.

6 Conjectures on primes

From our numerical data on the decomposition of primes p_{n} until $n=5.10^{7}$ we make the following conjectures.

Since we have shown previously that the smallest number of each twin prime pair (except 3) has a weight equal to 3 , the well-known conjecture on the existence of an infinity of twin primes can be rewritten as

Conjecture 1. The number of primes with a weight equal to 3 is infinite.

To extend this conjecture, and by analogy with the decomposition of natural numbers for which we know that for any prime k there exist an infinity of natural numbers with a weight equal to k and that there exist an infinity of natural numbers of level 1 , we make this two conjectures

Conjecture 2. The number of primes with a weight equal to k is infinite for any $k \geq 3$ which is not a multiple of 2 .

Conjecture 3. The number of primes of level L is infinite for any $L \geq 1$ which is not a multiple of 2 .

Now, based on our numerical data and again by analogy with the decomposition of natural numbers for which we know that the natural numbers which are classified by level have a l_{n} or a weight which is always prime we conjecture

Conjecture 4. Except for $p_{6}=13, p_{11}=31, p_{30}=113$, $p_{32}=131$ et $p_{154}=887$, primes which are classified by level have a weight which is itself a prime.

Finally, we make the following conjectures, for which we have no rigorous arguments yet
Conjecture 5. The number of primes of level $(1 ; i)$ is infinite pour for any $i \geq 1$.
Conjecture 6. If the jump g_{n} is not a multiple of 6 then l_{n} is a multiple of 3 .
Conjecture 7. If the l_{n} is not a multiple of 3 then jump g_{n} is a multiple of 6 .
Furthermore, we do wonder whether one could generalize the concept of primes in this setting, namely find an n-ary composition law \star and a subset of the primes $\mathbb{P}_{\star} \subset \mathbb{P}$ or a subset of the integers $\mathbb{N}_{\star} \subset \mathbb{N}$ such that any prime would uniquely decompose into a \star-composition of elements of \mathbb{P}_{\star} or \mathbb{N}_{\star}.

7 Decomposition of composite numbers and of 2-almost primes.

In this section we only provide the plots of the distribution of composite numbers and of 2 -almost primes in $\log \left(k_{n}\right)$ vs. $\log \left(L_{n}\right)$ coordinates.

Figure 3: Plot of composite numbers ($\underline{\text { A002808 }}^{\text {) }}$ in $\log \left(k_{n}\right)$ vs. $\log \left(L_{n}\right)$ coordinates (with $n \leq 9999$).

The sequence of weights of composite numbers is A130882.

Figure 4: Plot of 2 -almost primes (A001358) in $\log \left(k_{n}\right)$ vs. $\log \left(L_{n}\right)$ coordinates (with $n \leq 9999$).

The sequence of weights of 2 -almost primes is A130533.

8 Acknowledgements

The author wishes to thank Thomas Sauvaget for the proof of theorem 4.1, his advices and translating the text into English. The author whishes to thank Fabien Sibenaler for developping programs in Java and Assembly implementing the decomposition algorithm and for his encouragements. The author also whishes to thank Jean-Paul Allouche for his advices and for his encouragements and N. J. A. Sloane for its help through the OEIS.

References

[1] Pierre Dusart, Autour de la fonction qui compte le nombre de nombres premiers. Thèse, Université de Limoges, 1998, page 36.
[2] Pierre Dusart, The $k^{\text {th }}$ prime is greater than $k(\ln k+\ln \ln k-1)$ pour $k \geq 2$. Math. Comp. 68 (1999), 411 - 415.
[3] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at www.research.att.com/ \sim njas/sequences.

2000 Mathematics Subject Classification: Primary 11B83; Secondary 11P99.
Keywords: integer sequences, Eratosthenes, sieve, primes, prime gaps, balanced primes.
(Concerned with sequences $\underline{A 000027}, \underline{A 020639}, \underline{A 032742}, \underline{A 000040}, \underline{A 117078}, \underline{A 117563}, \underline{A 001223}$, $\underline{A 118534}, \underline{A 001359}, \underline{A 006562}, \underline{A 125830}, \underline{A 117876}, \underline{A 074822}, \underline{A 002808}, \underline{A 130882}, \underline{A 001358}$ and A130533.)

Submitted to Journal of Integer Sequences.

Return to Journal of Integer Sequences home page.

