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SPOTLIGHT TILING

BRIDGET EILEEN TENNER

Abstract. This article introduces spotlight tilings of rectilinear regions. Spot-
light tiling differs from the customary methods of tiling, and is defined induc-
tively as follows: a tile begins in a northwest corner of a region, and extends
as far south or east as possible. Some distinguishing aspects of spotlight tiling
include that the order in which tiles are placed in a region affects what tiles
may be placed subsequently, and the number of tiles in a spotlight tiling of a
particular region is not fixed. A thorough examination of spotlight tilings of
rectangles is presented, including the distribution of such tilings using a fixed
number of tiles, and how the directions of the tiles themselves are distributed.
The spotlight tilings of several other regions are studied, and suggest that
further analysis of spotlight tilings will continue to yield elegant results and
enumerations.

1. Introduction

The study of tilings of a region (or, dually, of perfect matchings of a region) is
a well studied topic in combinatorics and statistical mechanics. Customarily, there
is a finite set S of distinct tiles which may be used repeatedly to tile a particular
region or family of regions. The natural questions to ask are: what regions may be
tiled by the elements of the set S? how many ways are there to tile a region R by
elements of S? how do these answers change if more restrictions are imposed on S?
For example, the number of domino tilings of an m × n rectangle, where m is the
number of rows and n is the number of columns, was computed by Kasteleyn in
[1]. This formula is quite complicated, and its generating function is shown below,
where m is assumed to be even (since at least one dimension must be even):

Zm,n(x, y) =

m/2
∏

i=1

n
∏

j=1

[

2

(

x2 cos2
iπ

m + 1
+ y2 cos2

jπ

n + 1

)1/2
]

.

The number of tilings of an m × n rectangle can become much simpler if a few
restrictions are made on S and R. For example, suppose the region R is colored as
a checkerboard having a black upper-left square, with alternating black and white
squares in each column or row. Restrict the set S to contain vertical dominos of
both colorings (one with a white top square and one with a black top square), and
only the horizontal domino with a black left square. Then, with these definitions,
the number of tilings of an m × n region R by elements of S is







0 : m and n are both odd;
1 : m is even;

(

m+1
2

)n/2
: m is odd and n is even.
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These numbers are sequence A133300 of [2].
Additionally, tiling results typically do not depend on the order in which the

tiles are placed. Because the set S of allowable tiles does not change as each tile is
placed in the region, tiles may be considered to be placed simultaneously.

This article introduces a new type of tiling, and provides a sample of results
answering the most basic questions about this method. In this paper, tiles are
placed in the region sequentially, and after each placement the set of allowable tiles
may change. To be specific, first a particular corner direction is specified (northwest

for the duration of this article). At each stage a tile is placed with one end point
in a “corner,” as defined by the chosen direction, and the tile must extend as far as
possible from this corner either horizontally or vertically. This type of tiling is called
a spotlight tiling, in reference to the fact that the method of tiling is like placing
a spotlight in one of the specified corners and turning it to point horizontally or
vertically so that it shines as far as possible until it reaches an obstruction.

Spotlight tilings of rectangles are examined thoroughly below, including a de-
scription of various statistics, such as the number of tiles (spotlights) needed and
the average number of tiles used in a spotlight tilings of the rectangle. Addition-
ally, the spotlight tilings of certain other regions which are similar to rectangles are
studied. The nature of spotlight tiling means that many of the results obtained
below are recursive in nature.

The most basic rectilinear region is an m×n rectangle. Therefore, in the analysis
of this new type of tiling, attention is primarily focused on tilings of rectangles, in
terms of their enumeration and their properties. This will be the substance of
Section 3. For example, in addition to determining the number of spotlight tilings
of an m × n rectangle, more detailed statistics about these tilings will be studied.
Unlike other sorts of tilings, where the number of tiles required to cover a region
is fixed, the number of spotlight tiles used in a particular spotlight tiling depends
on the tiling itself. The distribution of the number of these tiles will be part of the
discussion in Section 3. Following this discussion, in Section 4, attention will be
turned to spotlight tilings of rectilinear regions which are formed from rectangles
by removing squares at the corners. The recursive nature of these tilings leads
naturally to recursive enumeration formulae. In some cases, these equations will
be left in a recursive format, as it is simpler to read them in this manner. In other
situations, when a closed form itself is quite elegant, both the recursive and the
closed formulae will be given. Finally, in Section 5, the spotlight tilings of a certain
family of frame-like regions is explored. The paper concludes with a brief discussion
of how spotlight tilings may be studied further in Section 6.

2. Definitions

The basic definitions and notation of this article are outlined below.

Definition 2.1. A region is the dual of a finite connected induced subgraph of Z
2.

As mentioned in the introduction, the spotlight tilings discussed in this paper rely
on the choice of a particular direction and type of corner, in this case a northwest
corner.

Definition 2.2. A northwest corner in a region is a square that is bound above
and on the left by the boundary edge of the region.
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For example, the four northwest corners of the region in Figure 1 have been
shaded.

Figure 1. A region with four northwest corners, which are marked
by shading.

As discussed in the introduction, the tilings in this paper are of a different nature
from those usually studied. Instead of choosing form a finite set of tiles, the possible
tiles themselves are defined by the region.

Definition 2.3. A spotlight tile with an endpoint in square s extends as far east
horizontally or south vertically from s as possible, terminating at the boundary of
the region, or when it encounters a tile that has already been placed.

Definition 2.4. Given a region R, a spotlight tiling of R is defined recursively as
follows. Each connected component of a region is tiled individually, so suppose
that R is connected. Choose any northwest corner s ∈ R. Place a spotlight tile
with an endpoint in s, extending either horizontally (east) or vertically (south) as
far as possible. If R′ is the region remaining after placing this spotlight, then the
spotlight tiling of R is completed by finding a spotlight tiling of R′.

A spotlight tiling of a 3×4 rectangle is depicted in Figure 2. The complete tiling
is the last image in the figure, having been built successfully from the previous
images.

⇒ ⇒ ⇒ ⇒

Figure 2. The recursive construction of a spotlight tiling of a
3×4 rectangle. The arrows are provided here only to highlight the
direction (horizontal or vertical) of each spotlight tile.

Although spotlight tiles are placed sequentially in a region, two spotlight tilings
are considered distinct only if they look different once all the tiles are in place.
In other words, if there is more than one order in which the tiles can be placed
in the region, this alone does not distinguish one tiling from another. Moreover,
the direction (horizontal or vertical) of a spotlight tile is obvious except in certain
cases of tiles of length one, where the direction of such a tile will not be specified
as uniquely horizontal or vertical.

Definition 2.5. If the last tile placed in a spotlight tiling has length 1, it is a HV-

tile, referring to the fact that the tile’s direction could be considered to be either
horizontal or vertical.
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Figure 3. The seven distinct spotlight tilings of a 2×3 rectangle.
In the third, fifth, and sixth of these, the last (southeast-most) tile
is a HV-tile.

The seven different spotlight tilings of a 2×3 rectangle are depicted in Figure 3.

Definition 2.6. Let Rm,n denote an m × n rectangle. The set of spotlight tilings
of Rm,n is denoted Tm,n, and Tm,n = |Tm,n|.

As depicted in Figure 3, T2,3 = 7.
The recursive definition of spotlight tiling means that

Tm,n = {one (1 × n)-tile together with t | t ∈ Tm−1,n}

∪ {one (m × 1)-tile together with t | t ∈ Tm,n−1} .
(1)

3. Spotlight tilings of rectangles

The first goal of this examination of spotlight tilings is a thorough understanding
of spotlight tilings of rectangles. Since the definition of a spotlight tiling gives
no preference to horizontal or vertical tiles, all results in this section should be
symmetric with respect to m and n. In particular, it should be the case that
Tm,n = Tn,m.

A precise formula for Tm,n is straightforward to compute, based on the recursive
nature of Definition 2.4.

Theorem 3.1. For all m, n ≥ 1,

(2) Tm,n =

(

m + n

m

)

−

(

m + n − 2

m − 1

)

.

Proof. Definition 2.4 gives the recursive formula

(3) Tm,n = Tm−1,n + Tm,n−1

for all m, n > 1. Additionally, if m > 1, then

(4) Tm,1 = Tm−1,1 + 1.

Since T1,1 = 1, equation (4) implies that Tm,1 = m for all m ≥ 1. Therefore (2) is
satisfied for n = 1 and any m. Supposing inductively that the result holds whenever
the dimensions of the rectangle sum to less than k, consider an m × n rectangle
where m + n = k. Then, using equation (3),

Tm,n = Tm−1,n + Tm,n−1

=

(

m + n − 1

m − 1

)

−

(

m + n − 3

m − 2

)

+

(

m + n − 1

m

)

−

(

m + n − 3

m − 1

)

=

(

m + n

m

)

−

(

m + n − 2

m − 1

)

,
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Thus the result holds for all m, n ≥ 1. �

Notice that equation (2) is symmetric in m and n, as required. The values of
Tm,n for small m and n are displayed in Table 1. Additionally, these are sequence
A051597 of [2].

Tm,n n = 1 2 3 4 5 6 7

m = 1 1 2 3 4 5 6 7
2 2 4 7 11 16 22 29
3 3 7 14 25 41 63 92
4 4 11 25 50 91 154 246
5 5 16 41 91 182 336 582
6 6 22 63 154 336 672 1254
7 7 29 92 246 582 1254 2508

Table 1. The number of spotlight tilings of Rm,n, for m, n ≤ 7.

As demonstrated in Figure 3, the number of spotlight tiles in a particular spot-
light tiling of Rm,n is not fixed. For example, a spotlight tiling of R2,3 can consist of
2, 3, or 4 tiles. Therefore, to better understand spotlight tilings of rectangles, it is
important to understand how many tiles may (likewise, “must” and “can”) be used
in a spotlight tiling of Rm,n, and how many spotlight tilings of the rectangle use
exactly r tiles. There are additional aspects of spotlight tilings using the minimal
or maximal number of tiles that are of interest as well.

Definition 3.2. For a spotlight tiling t of a region R, let |t| be the number of
spotlight tiles used in t, known as the size of t.

Definition 3.3. Let t−m,n denote the minimum number of spotlight tiles needed in

a spotlight tiling of Rm,n, and let t+m,n denote the maximum number of spotlight
tiles that can be used in a spotlight tiling of Rm,n. That is,

t−m,n = min
t∈Tm,n

|t|

t+m,n = max
t∈Tm,n

|t|

An element of Tm,n using t−m,n spotlight tiles is a minimal spotlight tiling, while

one that uses t+m,n spotlight tiles is a maximal spotlight tiling.

Proposition 3.4. For all m, n ≥ 1,

t−m,n = min{m, n};(5)

t+m,n = m + n − 1.(6)

Proof. By the definition of spotlight tilings, it is clear that the minimum number of
tiles needed depends on the minimum dimension of Rm,n. Suppose, without loss of
generality, that m ≤ n. If fewer than m tiles are placed in Rm,n, then at least one
row and at least one column are not completely tiled. Thus, t−m,n can be no less
than m. Additionally, one spotlight tiling of the rectangle consists of m horizontal
tiles, so t−m,n = m, which proves equation (5).
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Equation (1) implies that t+m,n = max{1 + t+m−1,n, 1 + t+m,n−1}. Then, since

t+1,1 = 1 and t+m,1 = m, the rest of the proof of equation (6) follows inductively. �

Note that t−m,n = t+m,n if and only if m = n = 1. Therefore, in anything larger
than a 1 × 1 square, there will be variation in the number of spotlight tiles used.

The number of minimal spotlight tilings of an m×n rectangle is necessarily 1 or
2, depending on whether m 6= n or m = n. This will be proved in a more general
argument in Theorem 3.7.

The number of maximal spotlight tilings, on the other hand, is a somewhat more
interesting case and must be treated independently.

Theorem 3.5. The number of maximal spotlight tilings of Rm,n is
(

m + n − 2

m − 1

)

.

Proof. Because of equations (1) and (6), once the first spotlight tile has been placed
in the rectangle, this can (and, in fact, must) be completed to a maximal tiling of
the rectangle by finding a maximal spotlight tiling of the resulting sub-rectangle
(Rm−1,n or Rm,n−1, depending on whether the first tile was horizontal or vertical).
Therefore, whatever the directions of the first k spotlight tiles, a maximal tiling of
the remaining sub-rectangle will yield a maximal tiling of the original rectangle.

There is a single element in the set T1,1, and it consists of a single HV-tile.
Therefore, by induction (specifically, using equation (1)), the last tile placed in a
maximal spotlight tiling must be an HV-tile. In fact, if m and n are not both equal
to 1, then the penultimate tile placed in a maximal spotlight tiling of Rm,n must
also have length 1, although this will not be an HV-tile since its direction must be
specified.

By nature of spotlight tiling, there cannot be more than m horizontal tiles or n

vertical tiles in an element of Tm,n. If the last tile is an HV-tile, than of the previous
m+n−2 tiles in a maximal spotlight tiling, at most m−1 can be horizontal and at
most n− 1 can be vertical. Consequently, of these m+n− 2 spotlight tiles, exactly
m − 1 are horizontal and exactly n − 1 are vertical.

Because any initial set of spotlight tiles in Rm,n can be completed to a maximal
tiling, the number of maximal spotlight tilings depends only on which m− 1 of the
first m + n − 2 tiles are horizontal, and thus is

(

m + n − 2

m − 1

)

.

�

Figure 4. The three maximal spotlight tilings of a 2×3 rectangle.
These are the tilings of Figure 3 which contain HV-tiles.

Definition 3.6. Let trm,n be the number of spotlight tilings of Rm,n that use r

spotlight tiles. That is, trm,n = |{t ∈ Tm,n | |t| = r}|.
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Theorem 3.7. For all integers r ∈ [min{m, n}, m + n − 1),

trm,n =

(

r − 1

m − 1

)

+

(

r − 1

n − 1

)

.

Proof. As with some of the preceding remarks, this proof relies heavily on the
recursive aspect of spotlight tilings. Suppose that k < r spotlight tiles have been
placed in the rectangle, and that the remaining untiled region is an (m−a)×(n−b)
rectangle, where a + b = k. Then this tiling of Rm,n must be completed with an
element of Tm−a,n−b which uses r − k tiles.

Once the remaining untiled region is R1,p or Rp,1, there is exactly one tiling of
it by any number of tiles less than or equal to p, and there are no tilings of it using
more than p tiles. Therefore, consider having already placed k < r tiles in some
way so that what remains is a 1× (m+n−1−k) rectangle or a (m+n−1−k)×1
rectangle. Since r < m + n− 1, and k < r, the inequality m + n− 1− k > 1 holds,
meaning that there is no over-counting. Likewise, because r − k (the number of
spotlight tiles as yet unplaced) is less than m + n − 1 − k (the area of the untiled

rectangle), tr−k
m+n−1−k,1 = tr−k

1,m+n−1−k = 1.
It remains to count the number of ways to place k spotlight tiles in the rectangle

so as to leave an untiled sub-rectangle with dimensions 1 × (m + n − 1 − k) or
(m + n − 1 − k) × 1.

To obtain a 1 × (m + n − 1 − k) untiled sub-rectangle using k spotlight tiles,
without over-counting, the last of the k tiles must be horizontal. Of the preceding
k − 1 tiles, exactly m − 2 must be horizontal, and the horizontal and vertical tiles
can be placed in any order. Therefore, there are

(

k−1
m−2

)

ways to obtain an untiled

sub-rectangle with dimensions 1×(m+n−1−k). Additionally, there are bounds on
the value of k: k ≥ m−1 and k ≤ r−1. Combining this with analogous statements
about obtaining Rm+n−1−k,1, and using elementary binomial identities, yields

trm,n =
r−1
∑

k=m−1

(

k − 1

m − 2

)

+
r−1
∑

k=n−1

(

k − 1

n − 2

)

=

(

r − 1

m − 1

)

+

(

r − 1

n − 1

)

.

�

Therefore, Theorems 3.5 and 3.7 and Proposition 3.4 can be combined in the
following equation:

trm,n =











0 : r < min{m, n} or r > m + n − 1;
(

r−1
m−1

)

+
(

r−1
n−1

)

: min{m, n} ≤ r < m + n − 1;
(

m+n−2
m−1

)

: r = m + n − 1.

In fact, if (m, n) 6= (1, 1), then tm+n−2
m,n = tm+n−1

m,n , and the values trm,n are strictly
increasing on the interval r ∈ [min{m, n}, m + n − 2]. More specifically, for r ∈
[1 + min{m, n}, m + n − 2],

trm,n − tr−1
m,n =

(

r − 1

m − 1

)

+

(

r − 1

n − 1

)

−

(

r − 2

m − 1

)

−

(

r − 2

n − 1

)

=

(

r − 2

m − 2

)

+

(

r − 2

n − 2

)

= tr−1
m−1,n−1.
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Moreover, it is straightforward to check that
∑

r≥1

trm,n =

(

m + n

m

)

−

(

m + n − 2

m − 1

)

,

confirming Theorem 3.1.
Given Theorems 3.5 and 3.7, it is straightforward now to compute the average

number of spotlight tiles used in a tiling of an m × n rectangle.

Corollary 3.8. The average number of tiles used in a spotlight tiling of Rm,n, that

is, the average size of an element of Tm,n, is

(7)
mn(m + n − 1)

(m + n)(m + n − 1) − mn

(

1 +
n − 1

m + 1
+

m − 1

n + 1

)

.

Proof. This average is computed by evaluating

m+n−1
∑

r=1
r · trm,n

(

m+n
m

)

−
(

m+n−2
m−1

) =

(m + n − 1)
(

m+n−2
m−1

)

+
m+n−2

∑

r=1

[

r
(

r−1
m−1

)

+ r
(

r−1
n−1

)

]

(

m+n
m

)

−
(

m+n−2
m−1

)

=
(m + n − 1)

(

m+n−2
m−1

)

+ m
(

m+n−1
m+1

)

+ n
(

m+n−1
n+1

)

(

m+n
m

)

−
(

m+n−2
m−1

)

=
mn(m + n − 1)

(m + n)(m + n − 1) − mn

(

1 +
n − 1

m + 1
+

m − 1

n + 1

)

.

�

Admittedly, the expression in (7) is not particularly elegant, but it gives a closed
formula for the expected number of tiles in a random spotlight tiling, and demon-
strates how this is related to the dimensions of the rectangle.

In a maximal spotlight tiling of Rm,n, there are m − 1 horizontal tiles, n − 1
vertical tiles, and 1 HV-tile. Moreover, a spotlight tiling t ∈ Tm,n contains an HV-
tile if and only if t is maximal. The breakdown of tile directions is immediate for
maximal tilings, but the question is more subtle for non-maximal tilings.

Definition 3.9. For a spotlight tiling t with no HV-tiles, let h(t) be the number
of horizontal tiles in t, and let v(t) be the number of vertical tiles in t.

Definition 3.10. Define the generating function

Gm,n(H, V ) =
∑

non-maximal

t∈Tm,n

Hh(t)V v(t).

Notice that the function G1,1(H, V ) is not defined, since the only tiling of a 1×1
rectangle is maximal.

Theorem 3.11. For all m, n ≥ 1, where (m, n) 6= (1, 1),

Gm,n(H, V ) = Hm
n−2
∑

r=0

(

r + m − 1

m − 1

)

V r + V n
m−2
∑

r=0

(

r + n − 1

n − 1

)

Hr.

Proof. This proof is similar to the proof of Theorem 3.7. Consider a non-maximal
tiling of Rm,n using r tiles. In the successive iterations of the spotlight tiling
procedure, the last untiled sub-rectangle will be covered either by a horizontal or
by a vertical tile. Thus, after placing the first r − 1 tiles, what remains must be a
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rectangle of dimensions 1× (m + n− r) or (m + n− r)× 1. In the former case, the
final tile is horizontal, and in the latter case the final tile is vertical.

In the former case, there are m − 1 of the first r − 1 tiles which are horizontal,
and the remaining r−m are vertical. The recursive nature of spotlight tiling means
that these horizontal and vertical spotlight tiles can occur in any order. Thus there
are

(

r−1
m−1

)

ways for the last tile to be horizontal in a non-maximal element of Tm,n

with r tiles. Similarly, there are
(

r−1
n−1

)

ways for the last tile to be vertical in a
non-maximal element of Tm,n with r tiles.

Therefore,

Gm,n(H, V ) =
∑

non-maximal

t∈Tm,n

Hh(t)V v(t)

=

m+n−2
∑

r=min{m,n}

(

r − 1

m − 1

)

Hm−1V r−m · H

+

m+n−2
∑

r=min{m,n}

(

r − 1

n − 1

)

V n−1Hr−n · V

=

m+n−2
∑

r=m

(

r − 1

m − 1

)

HmV r−m +

m+n−2
∑

r=n

(

r − 1

n − 1

)

V nHr−n

= Hm
n−2
∑

r=0

(

r + m − 1

m − 1

)

V r + V n
m−2
∑

r=0

(

r + n − 1

n − 1

)

Hr.

�

One consequence of Theorem 3.11 is that in any non-maximal spotlight tiling of
Rm,n, there are either exactly m horizontal tiles or exactly n vertical tiles. In the
former case, there can be between 0 and n − 2 vertical tiles, and in the latter case
there can be between 0 and m − 2 horizontal tiles.

Substituting x for both H and V in Gm,n(H, V ) gives the generating function
for the numbers trm,n when r < m+n− 1, and in fact the coefficient [xr]Gm,n(x, x)

is equal to
(

r−1
m−1

)

+
(

r−1
n−1

)

, confirming Theorem 3.7.

4. Spotlight tilings of rectangles with missing corners

The highly recursive nature of spotlight tilings means that enumerating the spot-
light tilings of certain families of regions can be done without difficulty. For the
most part, the regions considered in this section are variations on rectangles, in
particular rectangles missing squares at the corners. Because the northwest corner
is specified in spotlight tilings, the enumeration of the spotlight tilings of these
regions depends on which corner was removed.

It should be noted that it is possible to obtain formulae for the number of
spotlight tilings of other regions as well, due to the iterative definition of this
method of tiling. For example, the number of spotlight tilings of a rectangle with
a single square removed from somewhere in the interior is not difficult to obtain,
particularly if this square is parameterized by its position relative to the southeast
corner of the rectangle, which does not change when spotlight tiles are placed.
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Definition 4.1. Fix integers m, n ≥ 2. Let RNW
m,n (respectively, RNE

m,n, RSW
m,n, and

RSE
m,n) be an m × n rectangle whose northwest (respectively, northeast, southwest,

and southeast) corner has been removed. The set T ∗
m,n consists of all spotlight

tilings of the region R∗
m,n, and T ∗

m,n = |T ∗
m,n|.

The most difficult of these spotlight tilings to enumerate, and the one with the
least elegant answer, is for the region RNW

m,n. That this case differs from the others
is no surprise, since there are two northwest corners in the new region, and thus
spotlight tiles can start from two different squares.

Corollary 4.2. For all m, n ≥ 2,

T NW

m,n = Tm−1,n−1 + (n − 1)Tm−2,n + (m − 1)Tm,n−2

=

(

m + n − 2

m − 1

) [

1 + (m − 1)(n − 1)

(

1

m
+

1

n
−

1

m + n − 2

)]

Just as Corollary 4.2 computes T NW
m,n, the spotlight tilings of RNE

m,n, RSW
m,n, and

RSE
m,n can also be enumerated. In fact, these enumerations are significantly more

elegant, due to the fact that the missing corner does not affect where spotlight tiles
may begin. The proofs of these results are inductive, and use the recursion inherent
to spotlight tilings.

Corollary 4.3. For all m, n ≥ 2, the number of spotlight tilings of an m × n

rectangle missing either its northeast or its southwest corner is

T NE

m,n = T SW

m,n = Tm,n − 1

=

(

m + n

m

)

−

(

m + n − 2

m − 1

)

− 1.

Corollary 4.4. For all m, n ≥ 2, the number of spotlight tilings of an m × n

rectangle missing its southeast corner is

T SE

m,n = Tm,n −

(

m + n − 2

m − 1

)

=

(

m + n

m

)

− 2

(

m + n − 2

m − 1

)

.

The numbers described in Corollary 4.4 are sequence A051601 in [2].
While the symmetry T NE

m,n = T SW
n,m in Corollary 4.3 is not surprising, the fact that

T NE
m,n (and T SW

m,n) is symmetric with respect to m and n is intriguing. Similarly, the
fact that the results of Corollaries 4.3 and 4.4 are so similar to Tm,n indicates that
removing one of these corners does not drastically alter the spotlight tilings of the
original rectangle.

In fact, Corollary 4.3 speaks to a more general trend in spotlight tilings, related
to the northeast and southwest corners of a region.

Definition 4.5. Suppose that R is a region as in the following figure, where the
only requirement of R in the dashed portion is that it have no northwest corners
there.

r

n

r
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Let R[r] be the region obtained from R be removing the top r squares in the
rightmost column specified in R. That is, R[r] is the region displayed below.

n − 1

r r

The column of r squares which gets removed from R to form R[r] is the difference

column.

By this definition, RNE
m,n = Rm,n[1].

Proposition 4.6. Let R and R[r] be regions defined as in Definition 4.5, keeping

the meaning of r and n. Then

#{spotlight tilings of R[r]} = #{spotlight tilings of R} −

r−1
∑

k=0

(

n − 1

k

)

.

Proof. Consider the ways that the difference column might be tiled in R. It can
consist of the ends of r horizontal tiles, or the ends of k horizontal tiles atop a
vertical tile, where 0 ≤ k ≤ r − 1. If a vertical tile is involved, then this spotlight
tile would continue down below the difference column into R[r] ⊂ R. Additionally,
if a vertical tile is used to tile the difference column, then there must be n−1 other
vertical tiles positioned to the left of the difference column in R. The placement of
these n − 1 vertical tiles and the k horizontal tiles can be done in any order.

A given spotlight tiling of R[r] can be extended to a spotlight tiling of R by filling
the difference column with horizontal spotlight tiles (if the tiling of R[r] included
a horizontal terminating at the difference column in some row, then glue an extra
square to the end of this tile). This will yield all spotlight tilings of R except
those which cover some portion of the difference column with a vertical tile. This
concludes the proof. �

Notice that Proposition 4.6 agrees with Corollary 4.3 by setting r = 1.
Also notice that the symmetry of spotlight tilings indicates that Proposition 4.6

would also be true if the figures in Definition 4.5 were reflected across the northwest-
southeast diagonal.

One specific corollary to Proposition 4.6 is presented below, although this could
also have been shown in a straightforward proof using the recursion inherent to
spotlight tilings.

Definition 4.7. Fix integers m, n ≥ 3. Let RNE,SE
m,n be the region obtained from

Rm,n by removing the northeast and southeast corners. Likewise, RNE,SW,SE
m,n is

an m × n rectangle whose northeast, southwest, and southeast corners have been
removed. Other regions are defined analogously, and T ∗

m,n and T ∗
m,n have their

customary definitions.
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Corollary 4.8. For all m, n ≥ 3

T NE,SW

m,n = Tm,n − 2

=

(

m + n

m

)

−

(

m + n − 2

m − 1

)

− 2;

T NE,SE

m,n = T SW,SE

m,n = T SE

m,n − 1

=

(

m + n

m

)

− 2

(

m + n − 2

m − 1

)

− 1;

T NE,SW,SE

m,n = T SE

m,n − 2

=

(

m + n

m

)

− 2

(

m + n − 2

m − 1

)

− 2.

There are several regions R∗
m,n whose spotlight tilings have not yet been enu-

merated. In these, the northwest corner has been removed, along with at at least
one other corner. Six of these seven cases are treated in Corollary 4.9, and the
remaining case (when all four corners have been removed) appears independently.
The results of Corollary 4.9 are not written in closed form, although it would not
be hard to do so.

Corollary 4.9. For m, n ≥ 3,

T NW,SE
m,n = T SE

m−1,n−1 + (n − 1)T SE
m−2,n + (m − 1)T SE

m,n−2;

T NW,NE
m,n = T NW,SW

n,m = Tm−1,n−1 + (n − 2)Tm−2,n + (m − 1)Tm,n−2 − m + 1;

T NW,NE,SE
m,n = T NW,SW,SE

n,m = T SE
m−1,n−1 + (n − 2)T SE

m−2,n + (m − 1)T SE
m,n−2 − m + 1;

T NW,NE,SW
m,n = Tm−1,n−1 + (n − 2)Tm−2,n + (m − 2)Tm,n−2 − m − n + 4.

Definition 4.10. For m, n ≥ 3, let R◦
m,n be the region obtained from Rm,n by

removing the northwest, northeast, southwest, and southeast corner squares. Let
T ◦

m,n be the set of spotlight tilings of R◦
m,n, and T ◦

m,n = |T ◦
m,n|.

The following formula for T ◦
m,n is not difficult to compute, using the inductive

definition of spotlight tilings.

Corollary 4.11. For all m, n ≥ 3,

T ◦
m,n = T SE

m−1,n−1 + (n − 2)T SE

m−2,n + (m − 2)T SE

m,n−2 − m − n + 4.

The similarities between the results in Corollaries 4.9 and 4.11 are striking, and
suggest that the iterative nature of spotlight tiling respects certain substructures
of a region.

5. Spotlight tilings of frame-like regions

This section explores the spotlight tilings of a family of regions that are formed
by making a large hole in the center of a rectangle. To give a flavor for these
results, this discussion studies only those cases where the remaining region has
width 1, although it would not be difficult to generalize to wider frames.
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Definition 5.1. Fix m, n ≥ 3. Let Fm,n be the region formed by removing a
centered (m − 2) × (n − 2) rectangle from the rectangle Rm,n. Let fm,n be the
number of spotlight tilings of Fm,n.

In other words, the region Fm,n looks like an m × n picture frame of width 1.
To understand fm,n, it is helpful first to enumerate the spotlight tilings of some
related regions.

Definition 5.2. Fix m, n ≥ 1. Let CNW
m,n be the region of m+n−1 squares formed

by overlapping the north-most square of a column of length m and the west-most
square of a row of length n. Let cNW

m,n be the number of spotlight tilings of CNW
m,n.

The regions CNE
m,n, CSW

m,n, and CSE
m,n and their enumerations are defined analogously.

Proposition 5.3. For m, n ≥ 1,

cNW

m,n = m + n − 2

cNE

m,n = cSW

n,m = n(m − 1) + 1

cSE

m,n = 2(m − 1)(n − 1) + 1

Proof. Each of these quantities can be computed by careful counting, together with
the fact that T1,p = Tp,1 = p. �

Theorem 5.4. For m, n ≥ 3,

fm,n = 2(m − 2)(n − 2)(m + n − 2) + (m − 2)(m + 1) + (n − 2)(n + 1).

Proof. Initially, there is only one northwest corner in the region Fm,n. This can
be tiled with a horizontal spotlight tile of length n or a vertical spotlight tile of
length m. Either way, the remaining region has two northwest corners, and careful
applications of Proposition 5.3 and the inclusion-exclusion property give the answer.

�

The values of fm,n for small m and n are displayed in Table 2. These values are
sequence A132370 of [2].

fm,n n = 3 4 5 6 7

m = 3 16 34 58 88 124
4 34 68 112 166 230
5 58 112 180 262 358
6 88 166 262 376 508
7 124 230 358 508 680

Table 2. The number of spotlight tilings of Fm,n, for m, n ≤ 7.

6. Further directions

The preceding sections have examined the spotlight tilings of several families
of regions. In each case, the enumeration of these tilings had a concise and often
illuminating form. For the rectangle, more refined analyses were also performed,
and yielded results whose simplicity and elegance may not have been anticipated.

The recursive nature of spotlight tiling means that further enumerations of this
tiling method for other families of regions should not be difficult. The obvious
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analogue of spotlight tiling in higher dimensions may also yield fruitful results.
Additionally, the questions particular to spotlight tiling (such as the distribution
of the number of tiles in a given tiling) may give rise to new aspects of this and
other tilings methods which warrant further study.
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