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7 ON THE LINK PATTERN DISTRIBUTION OF QUARTER-TURN

SYMMETRIC FPL CONFIGURATIONS

PHILIPPE DUCHON

Abstract. We present new conjectures on the distribution of link patterns for
fully-packed loop (FPL) configurations that are invariant, or almost invariant,
under a quarter turn rotation, extending previous conjectures of Razumov
and Stroganov and of de Gier. We prove a special case, showing that the
link pattern that is conjectured to be the rarest does have the prescribed
probability. As a byproduct, we get a formula for the enumeration of a new
class of quasi-symmetry of plane partitions.

1. Introduction

In this paper, we study configurations in the fully packed loop model, or, equiv-
alently, alternating-sign matrices, that are invariant or almost invariant under a
rotation of 90 degrees. While the enumeration of this symmetry class of alternating-
sign matrices was conjectured by Robbins [15] and proved by Kuperberg [10] and
Razumov and Stroganov [14], their refined enumeration according to the link pat-
terns of the corresponding fully packed loop configurations seems to have avoided
notice so far. We conjecture very close connections between this refined enumera-
tion and the corresponding enumeration for half-turn invariant configurations, as
studied by de Gier [5]. This is yet another example of a “Razumov-Stroganov-like”
conjecture, suggesting a stronger combinatorial connection between fully-packed
loop configurations and their link patterns than originally conjectured in [13].

The paper is organized as follows. In Section 2, we recall a number of definitions
and conjectures on FPLs and their link patterns, and define a new class of “quasi-
quarter-turn-invarriant” FPLs when the size is an even integer of the form 4n + 2.
We formulate a conjecture on the enumeration of these qQTFPLs. In Section 3, we
give new conjectures on the distribution of link patterns of QTFPLs and qQTFPLs;
these can be seen as natural extensions of the previously known Razumov-Stroganov
and de Gier conjectures on general and half-turn symmetric FPLs, respectively.
We prove special cases of our conjectures in Section 4; in the qQTFPL case this is
achieved by making an explicit connection with the enumeration of some new class
of plane partitions.

Key words and phrases. fully packed loop model, rhombus tilings, plane partitions, noninter-
secting lattice paths.
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2 PHILIPPE DUCHON

2. Fully-packed loops and link patterns

2.1. Fully-packed loop configurations. A fully-packed loop configuration (FPL
for short) of size N is a subgraph of the N ×N square lattice1, where each internal
vertex has degree exactly 2, forming a set of closed loops and paths ending at
the boundary vertices. The boundary conditions are the alternating conditions:
boundary vertices also have degree 2 when boundary edges (edges that connect the
finite square lattice to the rest of the Z

2 lattice) are taken into account, and these
boundary edges, when going around the grid, are alternatingly “in” and “out” of the
FPL. For definiteness, we use the convention that the top edge along the left border
is always “in”. Thus, exactly 2N boundary edges act as endpoints for paths, and
the FPL consists of N noncrossing paths and an indeterminate number of closed
loops.

000 0 −1 (even)1 (even)

−1 (odd) 1 (odd)

(d)

0 0 0 0 0 1 0 0

0 0 0 0 0 0 01

0 0 0 01 10 −1

0 0 0 0 011 −1

1 0000000

1 −1 0 0 0 0 01

0 1 0 0 0 0 0 0

1000 0 0 0 0

(b)(a)

2n

1

2

(c)

Figure 1. (a) boundary conditions; (b) example FPL of size 8
and (c) corresponding ASM; (d) correspondence rules

FPLs are in bijection with several different families of discrete objects, the most
prominent in the mathematics literature being alternating-sign matrices of the same
size. An alternating-sign matrix has entries 0, 1 and −1, with the condition that, in
each line and column, nonzero entries alternate in sign, starting and ending with a
1 (changing the boundary conditions for the FPL would correspond to changing the
conditions on the first and last nonzero entries for some or all lines and columns).
This correspondence is sketched in Figure 1; the “even” and “odd” rules refer to the
parity of the sum of line and colum indices. Other objects include configurations
of the square ice or 6-vertex model [12].

1Here N refers to the number of vertices on each side; vertices are given matrix-like coordinates
(i, j) with 0 ≤ i, j ≤ N − 1, the top left vertex having coordinates (0, 0)
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The enumeration formula for alternating-sign matrices of size n was proved in [18,
9]:

(1) A(n) =

n−1
∏

i=0

(3i + 1)!

(n + i)!
;

together with A(1) = 1, this is equivalent to the recurrence

(2)
A(n + 1)

A(n)
=

n!(3n + 1)!

(2n)!(2n + 1)
.

The group of isometries of the square acts naturally on alternating-sign matrices
and on FPLs (with the caveat that some isometries, depending on the parity of
N , may exchange the “in” and “out” boundary edges, so that to have a given
isometry act on FPLs one may have to take the complement of the set of edges; for
rotations, this only happens when one performs a quarter-turn on FPLs of odd size).
As a result, for each subgroup of the full group of isometries one may consider a
symmetry class of FPLs, which is the set of FPLs that are invariant under the whole
subgroup. Enumeration formulae have been conjectured [15] for many classes, and
some of them have been proved [10]. In this paper, we are only concerned with two
classes: FPLs that are invariant under a half-turn rotation (HTFPLs), and FPLs
that are invariant under a quarter-turn rotation (QTFPLs).

While HTFPLs of all sizes exist, QTFPLs are a slightly different matter. QTF-
PLs of all odd sizes exist, but because for odd sizes the 90 degree rotation exchanges
the boundary conditions, QTFPLs are actually self-complementary (as edge sets)
rather than invariant under the rotation. QTFPLs of even size N only exist if N is
a multiple of 4, which is easiest seen on the corresponding alternating-sign matrices:
the sum of entries in any quarter of the square has to be exactly a quarter of the
sum of all entries in the matrix, which is equal to N .

For N = 4n + 2, while there are no QTFPLs of size N , we can define the
closest thing to it, which we call “quasi-quarter-turn invariant FPLs” (qQTFPLs),
and define as follows: an FPL of size N = 4n + 2 is a qQTFPL if its symmetric
difference with its image under a 90 degree rotation is reduced to a single 4-cycle
at the center of the grid; furthermore, we require that a qQTFPL contain the two
horizontal edges of this center cycle. This last requirement is purely arbitrary:
accepting the alternative two vertical edges would simply double the number of
qQTFPLs, and not change the distribution of their link patterns as we define them
in Section 3.

The alternating-sign matrices corresponding to qQTFPLs are exactly those which
have quarter-turn invariance except for the four center entries a2n,2n, a2n+1,2n,
a2n,2n+1, a2n1,2n+1, which are bound only by the half-turn invariance rules. It is
easy to see that exactly two of these center entries will be 0. This particular class
of ASMs does not seem to have been considered previously in the literature, and
their enumerating sequence does not appear in the Online Encyclopedia of Integer
Sequences [16].

Robbins [15] conjectured, and Kuperberg [10] proved, among other things, that
the numbers of FPLs of size N , HTFPLs of size 2N , and QTFPLs of size 4N , are
bound by the very intriguing formula

(3) AQT(4N) = AHT(2N)A(N)2;
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based on exhaustive enumeration up to N = 4, we conjecture the following similar
formula:

Conjecture 1. The number of qQTFPLs of size 4N + 2 is

AQT(4N + 2) = AHT(2N + 1)A(N + 1)A(N).

Actually, a refined identity seems to hold, which nicely extends a further conjec-
ture of Robbins:

Conjecture 2. Let A(n; y) (respectively, AHT(n; y), AQT(n; y)) denote the enu-
merating polynomial of FPLs (respectively, HTFPLs, qQTFPLs) of size n; each
object is given weight yk, where k is the index of the column (numbered 0 to n− 1)
containing the single nonzero entry in the first line of the corresponding alternating-
sign matrix; then for any n ≥ 1,

AQT(4n + 2; y) = yAHT(2n + 1; y)A(n + 1; y)A(n; y).

2.2. Link patterns. Any FPL f of size N has a link pattern, which is a partition
of the set of integers 1 to 2N into pairs, defined as follows: first label the endpoints
of the open loops 1 to 2N in clockwise or counterclockwise order (for definiteness,
we use counterclockwise order, starting with the top left endpoint); then the link
pattern will include pair {i, j} if and only if the FPL contains a loop whose two
endpoints are labeled i and j. Because the loops are noncrossing, the link pattern
satisfies the noncrossing condition: if a link pattern contains two pairs {i, j} and
{k, ℓ}, then one cannot have i < k < j < ℓ. The possible link patterns for FPLs of

size N are counted by the Catalan numbers CN = 1
N+1

(

2N
N

)

, and an easy encoding

of link patterns by Dyck words (or well-formed parenthese words) is as follows: if
{i, j} is one of the pairs of the pattern with i < j, the i-th letter of the Dyck word
is an a (which stands for an opening parenthese) while the j-th letter is a b (closing
parenthese).

If an FPL is invariant under a half-turn rotation, then clearly its link pattern π
has a symmetry property: if {i, j} ∈ π, then {i + N, j + N} ∈ π (taking integers
modulo 2N). If N is odd, the partition is into an odd number of pairs, and exactly
one pair will be of the form {i, i + N}; if N is even, no pair of the form {i, i + N}
will be present. This symmetry lets one encode a half-turn-invariant link pattern
with a word w of length N instead of 2N , as follows: for 1 ≤ i ≤ N ,

• if i is matched with j with i < j < j + N , then the i-th letter is an a;
• if i is matched with i + N (odd N), then the i-th letter is a c;
• otherwise, i is matched with j where j < i or j > i+ N , and the i-th letter

is a b.

It is easy to check that, for even N , the word w has N/2 occurrences of a and
b, and is thus a bilateral Dyck word, while for odd N , it has exactly one occurrence
of c and (N − 1)/2 occurrences of each of a and b, and is of the form w = ucv.
In this case, vu has to be a Dyck word. Overall, the total number of possible link
patterns2 is counted by the unified formula N !

⌊N/2⌋!⌈N/2⌉! .

The 2N generators e1, . . . , e2N of the cyclic Temperley-Lieb algebra act on link
patterns of size N FPLs in the following way: if link pattern π contains pairs {i, j}
and {i + 1, k}, then eiπ = π′, where π′ is obtained from π by replacing the pairs

2It is surprisingly nontrivial to prove that each possible word appears as the link pattern of at
least one HTFPL.
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{i, j} and {i+1, k} by {i, i+1} and {j, k}; if {i, i+1} ∈ π, then π′ = π. One easily
checks that the ei operators satisfy the Templerley-Lieb commutation relations

eiej = ejei when |i − j| > 1
eiei±1ei = ei±1eiei±1 for any i

e2
i = ei

(generator indices, just like integers in the link pattern, are used modulo 2N).
Similarly, the N “symmetrized” operators e′i = eiei+N (for N ≥ 2) act on the link
patterns of HTFPLs of size N , and these N symmetrized operators also satisfy the
commutation relations for the N -generator cyclic Temperley-Lieb algebra.

In both the nonsymmetric and half-turn-symmetric cases, one can define a
Markov chain on link patterns where, at each time step, one of the appropriate
generators is chosen uniformly at random and applied to the current state. In each
case, the Markov chain is easily checked to be irreducible and aperiodic, hence it has
a unique stationary distribution. Recent interest in FPLs and their link patterns
is largely due to the following conjectures:

Conjecture 3 (Razumov, Stroganov [13]). The stationary distribution for link
patterns of size N is

µ(π) =
A(N ; π)

A(N)
.

Conjecture 4 (de Gier [5]). The stationary distribution for half-turn-invariant
link patterns of size N is

µHT(π) =
AHT(N ; π)

AHT(N)
.

By their definitions, the stationary distributions µ and µHT are invariant under
the “rotation” mapping (in the noncrossing partition view) i 7→ i + 1 mod 2N .
Wieland [17] bijectively proved that the distribution of link patterns of FPLs also
has this property; his bijection maps HTFPLs to HTFPLs and (even-sized) QTF-
PLs to QTFPLs, so the same is true of the distributions of their link patterns. It
is easy to check that the same bijection maps qQTFPLs to qQTFPLs (with the
special provision that it might change the edges around the center square from “two
horizontal edges” to “two vertical edges”, so the edges around this center square
might have to be inverted).

3. Link patterns of QTFPLs

Let N = 4n. Any QTFPL f of size N is also a HTFPL, so its link pattern can
be described by a bilateral Dyck word w of length N . But, because f is invariant
under a quarter-turn rotation, ww must be invariant under conjugation with its
left factor w′ of length N/2. This means we must have w = w′.w′, and thus w′ is
also a bilateral Dyck word.

Thus, the link patterns of QTFPLs of size 4n can be described by the same words
that we use to describe link patterns of HTFPLs of size 2n. We use AQT(N ; w)
(where N is divisible by 4, and w is a bilateral Dyck word of length N/2) to denote
the set of all QTFPLs of size N with link pattern w (or link pattern w.w when
viewed as HTFPLs), and AQT(N ; w) to denote its cardinality.

We conjecture the following:
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Conjecture 5. For any n ≥ 0 and bilateral Dyck word w of length 2n,

(4) AQT(4n; w) = AHT(2n; w).A(n)2.

In other words, the link patterns of even-sized QTFPLs are distributed exactly
as those of HTFPLs with half their size.

Conjecture 5 has been checked by exhaustive enumeration up to k = 5 (there are
114640611228QTFPLs of size 20; the next term in the sequence is 10995014015567296,
which makes exhaustive generation unreasonable).

When f ∈ AQT(4n+2) is a qQTFPL, it is also a HTFPL and its link pattern as
such is described by a bilateral Dyck word of length 4N + 2. But, again, the link
pattern is of a special form: because of the rotational symmetry, the paths entering
the center square of the grid by its four corners are rotational images of each other,
and cannot form closed loops. Thus, these paths exit the grid at 4 endpoints, which
form a single orbit under the quarter-turn rotation. Furthermore, the HTFPL link
pattern is necessarily of the form uavubv or ubvuav, where vu is a Dyck word of
length 2n (this implies that the factorization is unique). If we retain only the first
2n+1 letters of this word, and replace the distinguished a or b letter with a c, what
we obtain is exactly the link pattern of a HTFPL of sized 2n + 1; this is what we
hereafter call the link pattern of f . Note that if, in the definition of qQTFPLs, we
required that the center square have vertical edges instead of horizontal edges, this
would only change link patterns as HTFPLs (patterns of the form uavubv would
become ubvuav would become uavubv, and vice versa) but not as qQTFPLs.

As an example, the qQTFPL shown in Figure 2(a) has link pattern babca as a
qQTFPL, babaababba as a HTFPL, and aabaababbababaababbb as a full FPL link
pattern.

With this convention, we have a conjecture for the link patterns of qQTFPLs of
size 4n + 2, relating them to those of HTFPLs of size 2n + 1:

Conjecture 6. For any n ≥ 0 and any half-turn-invariant link pattern w of length
2n + 1,

(5) AQT(4n + 2; w) = AHT(2n + 1; w)A(n + 1)A(n).

Of course, summation over all link patterns gives Conjecture 1, and this can be
interpreted as saying that link patterns of qQTFPLs of size 4n + 2 are distributed
exactly as those of HTFPLs of size 2n + 1.

Conjectures 1, 2 and 6 have been checked by exhaustive enumeration up to n = 4;
the total number of qQTFPLs of size 18 is 39204 · 429 · 42 = 706377672. The next
term in the conjectured sequence, 7422987 · 7436 · 429 = 23679655141428, is out of
reach of exhaustive enumeration programs.

A note on terminology: in the rest of this paper, whenever we mention the link
pattern of a QTFPL or qQTFPL, it should be understood to mean the word with
length half the size of the FPL; if we need to reference the link pattern as an FPL
(which is a Dyck word with length double the size of the FPL), we will write full
link pattern.

4. A special case: the rarest link pattern

In this section, we prove special cases of Conjectures 5 and 6 when the considered
link pattern is a very specific one. When the wanted link pattern is of the form bnan

(for QTFPLs) or bncan (for qQTFPLs), the HTFPLs whose enumeration appear
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in the conjectures have full link pattern a2nb2n or a2n+1b2n+1, respectively. In
each case, there is only one HTFPL with such a full link pattern; in fact, there is
only one FPL with such a link pattern (this has been noticed by many authors;
one easy way to properly prove it is with the fixed edge technique of Caselli and
Krattenthaler which we use below). Thus, to prove the corresponding special cases
of Conjectures 5 and 6, we only need to prove that the corresponding QTFPLs and
qQTFPLs are counted by A(n)2 and A(n)A(n + 1), respectively. Both proofs are
through a bijection with a specific class of plane partitions.

For our purposes, a plane partition of size k is a tiling of the regular hexagon
Hk of side k with rhombi of unit side. When the hexagon is tiled with equilateral
triangles of unit side, the dual graph is a region Rk of the honeycomb lattice, and
rhombus tilings are in natural bijection with perfect matchings of Rk.

A plane partition is said to be cyclically symmetric if the tiling is invariant under
a rotation of 120 degrees, and self-complementary if it is invariant under a central
symmetry (the terminology is somewhat confusing when plane partitions are viewed
as tilings, but it is standard). Thus, cyclically symmetric, self-complementary plane
partitions (CSSCPPs for short) are those that are invariant under a rotation of 60
degrees. It is easy to see that CSSCPPs only exist for even sizes, and it is known
that the number of CSSCPP of size 2n is equal to A(n)2.

(a) (b)

Figure 2. (a) Example qQTFPL of size 10 and (b) Example qC-
SSCPP of size 7

We define a quasi-cyclically symmetric, self-complementary plane partition (qC-
SSCPP) of size 2n + 1 as a rhombus tiling, invariant under rotation of 60 degrees,
of the regular hexagon of size 2n + 1 with the central unit side hexagon removed.
Such tilings do not appear to have been previously studied in the literature.

We will prove the following:

Theorem 7. For any n ≥ 1, there is a bijection between AQT(4n; bnan) and the
set of CSSCPPs of size 2n, and a bijection between AQT(4n + 2; bncan) and the set
of qCSSCPPs of size 2n + 1.

The known enumeration of CSSCPPs then concludes the proof of (4) for pattern
bnan; to prove (5) for pattern bncan, we will need our last theorem:

Theorem 8. The number of qCSSCPPs of size 2n + 1 is A(n)A(n + 1).

of Theorem 7. We rely on the technique of “fixed edges” as used by Caselli and
Krattenthaler in [1] (see also [2]). The technique uses the fact that, for a given
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link pattern, there may be a large set of edges which appear in all FPLs with this
particular link pattern. In some cases, this makes it possible to find a bijection
between the target set of FPLs and the perfect matchings of some particular planar
graph, typically a region of the hexagonal lattice.

QTFPLs with link pattern bnan have the full link pattern an(anbn)3bn, which
consists of 4 sets of n nested arches each. This means that, on each of the grid sides,
all n outgoing links are forbidden from connecting to each other; thus, by Lemma 3.1
of [2], the following edges are fixed in every FPL f ∈ A(4n; an(anbn)3bn):

• each horizontal edge whose left endpoint has odd sum of coordinates, inside
the triangle whose vertices have coordinates (0, 0), (4n − 2, 0) and (2n −
1, 2n − 1) (triangle ABC on Figure 3(a));

• their orbits under the action of the 90 degree rotation centered at (2n −
1/2, 2n− 1/2).

(b)(a)

A

C

B

Figure 3. Fixed edges for (a) AQT(12, bbbaaa) (b) AQT(14, bbbcaaa)

Similarly, qQTFPLs with link pattern bncan have as their full link pattern
a2n+1bnan+1bn+1anb2n+1 (four sets of nested arches, with alternatingly n + 1, n,
n + 1 and n arches each). Again, the same fixed edges appear, as shown in Fig-
ure 3(b).

In a QTFPL of size 4n, the four “center” edges joining vertices C and its ro-
tational images must either all be included, or all excluded; with these vertices
already having one incident fixed edge each, they must be excluded. This in turn
forces the presence of four more fixed edges, as shown in Figure 3(a). (The sym-
metry conditions also force additional edges in the corners, but it is slightly more
convenient to not mention them now.)

To prove that we indeed have a bijection, we need to check that all QTFPLs (re-
spectively, qQTFPLs) sharing the above-mentioned edges have link pattern bnan)
(respectively, bncan). We do this in detail for the QTFPL case; the proof for
qQTFPL is similar.

Consider the 2n paths starting from endpoints along segment AB. The horizontal
fixed edges inside triangle ABC prevent them from connecting with each other, so
that each of them will exit triangle ABC either to the top (through segment AC,
including C but excluding A) or to the bottom (through segment CB, including
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(a) (b)

Figure 4. Graphs of non-fixed edges for (a) AQT(12, bbbaaa) (b)
AQT(14, bbbcaaa)

B but excluding C. Any path exiting through segment AC will be connected
to one from the top border, while any path exiting through segment CB will be
connected to one from the bottom border. Thus, the link pattern will be of the
form bka2n−k, where k is the number of paths exiting along segment AC. But
quarter-turn symmetry implies that the number of paths exiting triangle ABC
through segment AC is equal to the number of paths entering triangle ABC from
the bottom triangle; thus, k = 2n − k, and the link pattern is indeed bnan.

(a) G6 (b) G7

Figure 5. Quotients under rotation of the nonfixed edge graphs in Figure 4

Note that in both the QTFPL and qQTFPL cases, each vertex in the grid is
incident to either 1 or 2 fixed edges. Thus, if we delete from the grid the fixed
edges and the “forbidden” edges (those non-fixed edges that are incident to at
least one vertex with two incident fixed edges), we get a graph whose rotationally
invariant perfect matchings are in bijection with the considered symmetric FPLs.
These two graphs, shown on Figure 4, naturally have a rotational symmetry of
order 4, so we need only consider the perfect matchings of their orbit graphs under
this rotational symmetry, which are shown on Figure 5 (the dashed lines in Figure 4
show where to “cut” to obtain the quotients). For QTFPLs, this quotient graph is
exactly the orbit graph, under rotational symmetry of order 6, of the honeycomb
graph R2n; for qQTFPLs, it is the orbit graph, under rotational symmetry of order
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6, of the “holed” honeycomb graph R′
2n+1. Putting all pieces together, we have the

required bijections between FPLs and plane partitions. �

of Theorem 8. We now turn to the enumeration of qCSSCPPs of size 2n + 1, for
which we know that they are in bijection with the perfect matchings of the quo-
tiented honeycomb lattice region G2n+1.

Notice that G2n+1, as shown in Figure 5, has a reflective symmetry, with 2n
vertices on the symmetry axis. Thus, we can use Ciucu’s Matching Factorization
Theorem [3] (or, rather, the slight generalization proved in Section 7 of [3], and
used, in a very similar context to ours, in [4]), and we get that the number of
perfect matchings of G2n+1 is 2nM∗(G′

2n+1), where G′
2n+1 is G2n+1 with all edges

incident to the symmetry axis, and lying below it, removed, and edges lying on
the symmetry axis weighted 1/2; and M∗(G) denotes the weighted enumeration of
perfect matchings of G, that is, the sum over perfect matchings of the product of
weights of selected edges.

(a)
1/2 1/2

(b) (c)

1/2

1/2

A0

A1

A2

B0

B1

B2

Figure 6. (a) Honeycomb region G′
7, (b) Triangular lattice R′

7

and (c) corresponding square lattice points

G′
2n+1, when redrawn as a region of the honeycomb lattice, is the dual of region

R′
2n+1 of the triangular lattice (shown on Figure 6(b), with the weight 1/2 rhombi

greyed), on which we need to count rhombi tilings. n + 1 rhombi on the right
border of R′

2n+1 are fixed (will appear in all tilings). Using a classical correspon-
dence between rhombi tilings and weighted configurations of nonintersecting lattice
paths, we are left with counting the number of nonintersecting (square) lattice path
configurations, where the paths, using East and South unit steps, collectively join
vertices Ai, 0 ≤ i ≤ n−1, to vertices Bj , 0 ≤ j ≤ n−1, with respective coordinates
(i, 2i + 2) and (2j, j); the horizontal edges with right endpoints Bj carry a weight
1/2, so that the weighted enumeration of paths joining vertices Ai and Bj is

w(Ai, Bj) =
1

2

(

i + j + 1

2j − i

)

+

(

i + j + 1

2j − i − 1

)

=
1

2

((

i + j + 1

2j − i

)

+

(

i + j + 2

2j − i

))

=
1

2
(3i + 4)

(i + j + 1)!

(2j − i)!(2i − j + 2)!
.
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The Lindström-Gessel-Viennot theorem [11, 7] now expresses M∗(G′
2n+1) as the

determinant

(6) M∗(G′
2n+1) = det (w(Ai, Bj))0≤i,j≤n−1

;

factoring out 3i+4
2

in line i of the matrix, we get the number of perfect matchings
of G2n+1 as

(7) M(G2n+1) =

(

n−1
∏

i=0

3i + 4

)

det

(

(i + j + 1)!

(2j − i)!(2i − j + 2)!

)

0≤i,j≤n−1

.

The determinant in (7) happens to be the special case x = 2, y = 0 of [8,
Theorem 40] (the enumeration of CSSCPPs of size 2n by the same method, as in
[4], corresponds to x = 1, y = 0), and evaluates to

∏

0≤i≤n−1

i!(i + 1)!(3i + 3)!(3i + 1)!

(2i + 2)!(2i)!(2i + 3)!(2i + 1)!
,

so that the number of qCSSCPP of size 2n + 1 is

(8) p2n+1 =

n−1
∏

i=0

i!(i + 1)!(3i + 1)!(3i + 4)!

(2i)!(2i + 1)!(2i + 2)!(2i + 3)!
.

To finish the proof that p2n+1 = A(n)A(n + 1), we need only check that the
ratio of two consecutive enumerations is as predicted (the case n = 1 corresponds
to checking that there are only 2 qCSSCPPs of size 3):

p2n+1

p2n−1

=
(n − 1)!n!(3n − 2)!(3n + 1)!

(2n − 2)!(2n − 1)!(2n)!(2n + 1)!

=
(n − 1)!(3n − 2)!

(2n − 2)!(2n − 1)!
.

n!(3n + 1)!

(2n)!(2n + 1)!

=
A(n)

A(n − 1)
.
A(n + 1)

A(n)
.

�

5. Further comments

The starting point and first motivation for this paper, as the title suggests,
was Conjecture 5, which nicely complements the previous conjectures of Razumov-
Stroganov and de Gier. This suggests that a combinatorial proof of one of the
conjectures might be adapted to yield proofs of all of them, possibly by explicitly
devising operators on FPLs that project to the ei operators on link patterns, while
having suitable bijective properties.

The definitions of qQTFPLs and qCSSCPPs evolved out of an attempt to de-
vise a general framework for the random generation of symmetric FPLs and plane
partitions [6]; their enumerative properties came as a total surprise. It might be
possible to prove Conjecture 1 by adapting Kuperberg’s methods [10], thus bringing
one more (quasi-)symmetry class under the same roof; the author’s first attempts
in this direction were unsuccessful.

To the author’s knowledge, Theorem 7 is one of the first explicit bijections be-
tween classes of FPLs (or alternating-sign matrices) and plane partitions, even
though there are many known (proved or conjectured) enumerative formulae link-
ing the two families of combinatorial objects.
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