
ar
X

iv
:0

80
1.

27
78

v3
 [

m
at

h.
N

T
]

 2
0

M
ay

 2
00

8

Computing L-series of hyperelliptic curves

Kiran S. Kedlaya⋆ and Andrew V. Sutherland

Department of Mathematics
Massachusetts Institute of Technology

77 Massachusetts Avenue
Cambridge, MA 02139

(kedlaya|drew)@math.mit.edu

Abstract. We discuss the computation of coefficients of the L-series
associated to a hyperelliptic curve over Q of genus at most 3, using point
counting, generic group algorithms, and p-adic methods.

1 Introduction

For C a smooth projective curve of genus g defined over Q, the L-function
L(C, s) is conjecturally (and provably for g = 1) an entire function containing
much arithmetic information about C. Most notably, according to the conjecture
of Birch and Swinnerton-Dyer, the order of vanishing of L(C, s) at s = 1 equals
the rank of the group J(C/Q) of rational points on the Jacobian of C.

It is thus natural to ask to what extent we are able to compute with the
L-function. This splits into two subproblems:

1. For appropriate N , compute the first N coefficients of the Dirichlet series
expansion L(C, s) =

∏

p Lp(p
−s)−1 =

∑∞

n=1 cnn−s.

2. From the Dirichlet series, compute L(C, s) at various values of s to suitable
numerical accuracy. (The Dirichlet series converges for Real(s) > 3/2.)

In this paper, we address problem 1 for hyperelliptic curves of genus g ≤ 3 with
a distinguished rational Weierstrass point. This includes in particular the case
of elliptic curves, and indeed we have something new to say in this case; we can
handle significantly larger coefficient ranges than other existing implementations.
We say nothing about problem 2; we refer instead to [5].

Our methods combine efficient point enumeration with generic group algo-
rithms as discussed in the second author’s PhD thesis [23]. For g > 2, we also
apply p-adic cohomological methods, as introduced by the first author [12] and
refined by Harvey [9]. Since what we need is adequately described in these papers,
we focus our presentation on the point counting and generic group techniques
and use an existing p-adic cohomological implementation provided by Harvey.
(The asymptotically superior Schoof-Pila method [16, 15] only becomes practi-
cally better far beyond the ranges we can hope to handle.)

⋆ Kedlaya was supported by NSF CAREER grant DMS-0545904 and a Sloan Research
Fellowship.

http://arXiv.org/abs/0801.2778v3

As a sample application, we compare statistics for Frobenius eigenvalues of
particular curves to theoretical predictions. These include the Sato-Tate conjec-
ture for g = 1, and appropriate analogues in the Katz-Sarnak framework for
g > 1; for the latter, we find little prior numerical evidence in the literature.

2 The Problem

Let C be a smooth projective curve over Q of genus g . We wish to determine the
polynomial Lp(T) appearing in L(C, s) =

∏

Lp(p
−s)−1, for p ≤ N . We consider

only p for which C is defined and nonsingular over Fp (almost all of them),
referring to [17, 4] in the case of bad reduction. The polynomial Lq(T) appears
as the numerator of the local zeta function

Z(C/Fq; T) = exp

(

∞
∑

k=1

NkT k/k

)

=
Lq(T)

(1− T)(1− qT)
, (1)

where Nk counts the points on C over Fqk . Here q is any prime power, however we
are primarily concerned with q = p an odd prime. The rationality of Z(C/Fq; T)
is part of the well known theorem of Weil [25], which also requires

Lq(T) =

2g
∑

i=0

ajT
j (2)

to have integer coefficients satisfying a0 = 1 and a2g−j = pg−jaj, for 0 ≤ j < g.
To determine Lq(T), it suffices to compute a1, . . . , ag.

For reasons of computational efficiency we restrict ourselves to curves which
may be described by an affine equation of the form y2 = f(x), where f(x) is a
monic polynomial of degree d = 2g+1 (hyperelliptic curves with a distinguished
rational Weierstrass point). We denote by J(C/Fq) the group of Fq-rational
points on the Jacobian variety of C over Fq (the Jacobian of C over Fq), and

use J(C̃/Fq) to denote the Jacobian of the quadratic twist of C over Fq.

We consider three approaches to determining Lp(T) for g ≤ 3:

1. Point counting: Compute N1,. . . ,Ng of (1) by enumerating the points on C
over Fp, Fp2 , . . . , Fpg . The coefficients a1, . . . , ag can then be readily derived
from (1) [3, p. 135]. This requires O(pg) field operations.

2. Group computation: Use generic algorithms to compute Lp(1) = #J(C/Fp),

and, for g > 1, compute Lp(−1) = #J(C̃/Fp). Then use Lp(1) and Lp(−1)
to determine Lp(T) [22, Lemma 4]. This involves a total of O(p(2g−1)/4)
group operations.

3. p-adic methods: Apply extensions of Kedlaya’s algorithm [12, 9] to com-
pute (modulo p) the characteristic polynomial χ(T) = T−2gLp(T) of the
Frobenius endomorphism on J(C/Fp), then use generic algorithms to com-

pute the exact coefficients of Lp(T). The asymptotic complexity is Õ(p1/2).1

1 For fixed g ≥ 4, one works modulo p⌊g/2−1⌋ to obtain the same complexity.

Computing the coefficients of Lp(T) for all p ≤ N necessarily requires time
and space exponential in lg N , since the output contains Θ(N) bits. In practice,
we are limited to N of moderate size: on the order of 240 in genus 1, 228 in genus
2, and 226 in genus 3 (larger in parallel computations). We expect to compute
Lp(T) for a large number of relatively small values of p. Constant factors will
have considerable impact, however we first consider the asymptotic situation.

The O(pg) complexity of point counting makes it an impractical method to
compute a1, . . . , ag unless p is very small. However, point counting over Fp is
an efficient way to compute a1 = N1 − p − 1 for a reasonably large range of
p when g > 1, requiring only O(p) field operations. Knowledge of a1 aids the
computation of #J(C/Fp), reducing the complexity of the baby-steps giant-steps
search to O(p1/4) in genus 2 and O(p) in genus 3. The optimal strategy then
varies (c.f. [6, pp. 32-33]), according to genus and range of p:

Genus 1 The O(p1/4) complexity of generic group computation makes it the
compelling choice, easily outperforming point counting for p > 210.

Genus 2 There are three alternatives: (i) O(p) field operations followed by
O(p1/2) group operations, (ii) O(p3/4) group operations, or (iii) an Õ(p1/2) p-
adic computation. We find the range in which (iii) becomes optimal to be past
the feasible values of N .

Genus 3 The choice is between (i) O(p) field operations followed by O(p) group
operations and (ii) an Õ(p1/2) p-adic computation followed by O(p1/4) group
operations. Here the p-adic algorithm plays the major role once p > 215.

3 Point Counting

Counting points on C over Fp plays a key role in our strategy for genus 2 and 3
curves. Moreover, it is a useful tool in its own right. If one wishes to study the
distribution of #J(C/Fp) = Lp(1), or to simply estimate Lp(p

−s), the value a1

may be all that is required.
Given C in the form y2 = f(x), the simplest approach is to build a table of the

quadratic residues in Fp (typically stored as a bit-vector), then evaluate f(x) for
all x ∈ Fp. If f(x) = 0, there is a single point on the curve, and otherwise either
two points (if f(x) is a residue) or none. Additionally, we add a single point at
infinity (recall that f has odd degree). A not-too-näıve implementation computes
the table of quadratic residues by squaring half the field elements, then uses d
field multiplications and d field additions for each evaluation of f(x), where d is
the degree of f . A better approach uses finite differences, requiring only d field
additions (subtractions) to compute each f(x).

Let f(x) =
∑

fjx
j be a degree d polynomial over a commutative ring R. Fix

a nonzero δ ∈ R and define the linear operator ∆ on R[x] by

(∆f)(x) = f(x + δ)− f(x). (3)

For any x0 ∈ R[x], given f(x0), we may enumerate the values f(x0 + nδ) via

f(x0 + (n + 1)δ) = f(x0 + nδ) + ∆f(x0 + nδ). (4)

To enumerate f(x0 + nδ) it suffices to enumerate ∆f(x0 + nδ), which we also
do via (4), replacing f with ∆f . Since ∆d+1f = 0, each step requires only d
additions in R, starting from the initial values ∆kf(x0) for 0 ≤ k ≤ d.

When R = Fp, this process enumerates f(x) over the entire field and we
simply set δ = 1 and x0 = 0. As subtraction modulo p is typically faster than
addition, instead of (4) we use

f(x0 + (n + 1)δ) = f(x0 + nδ)− (−∆f)(x0 + nδ). (5)

The necessary initial values are then (−1)k∆f(0).

Algorithm 1 (Point Counting over Fp) Given a polynomial f(x) over Fp of
odd degree d and a vector M identifying nonzero quadratic residues in Fp:

1. Set tk ← (−1)k∆kf(0), for 0 ≤ k ≤ d, and set N ← 1.

2. For i from 1 to p:

(a) If t0 = 0, set N ← N + 1, and if M [t0], set N ← N + 2.
(b) Set t0 ← t0 − t1, t1 ← t1 − t0, . . . , and td−1 ← td−1 − td.

Output N .

The computation tk = tk − tk+1 is performed using integer subtraction,
adding p if the result is negative. The map M is computed by enumerating the
polynomial f(x) = x2 for x from 1 to (p− 1)/2 and setting M [f(x)] = 1, using
a total of p subtractions (and no multiplications).

The size of M may be cut in half by only storing residues less than p/2. One
then uses M [min(t0, p− t0)], inverting M [p− t0] when p ≡ 3 mod 4. This slows
down the algorithm, but is worth doing if M exceeds the size of cache memory.

It remains only to compute ∆kf(0). We find that

∆kf(0) =
∑

j

k!

{

j
k

}

fj =
∑

j

Tj,kfj , (6)

where the bracketed coefficient denotes a Stirling number of the second kind.
The triangle of values Tj,k is represented by sequence A019538 in the OEIS [18].
Since (6) does not depend on p, it is computed just once for each k ≤ d.

In the process of enumerating f(x), we can also enumerate f(x) + g(x) with
e+1 additional field subtractions, where e is the degree of g(x). The case where
g(x) is a small constant is particularly efficient, since nearby entries in M are
used. The last two columns in Table 1 show the amortized cost per point of
applying this approach to the curves y2 = f(x), f(x) + 1, . . . , f(x) + 31.

4 Group Computations

The performance of generic group algorithms is typically determined by two
quantities: the time required to perform a group operation, and the number of
operations performed. We briefly mention two techniques that reduce the former,
then consider the latter in more detail.

Polynomial Finite Finite
Evaluation Differences Differences ×32

p ≈ Genus 2 Genus 3 Genus 2 Genus 3 Genus 2 Genus 3

216 195.1 257.2 6.1 7.8 1.1 1.1
217 196.3 262.6 6.0 6.9 1.1 1.1
218 192.4 259.8 6.0 6.8 1.1 1.1
219 186.3 251.1 6.0 6.8 1.1 1.1
220 187.3 244.1 7.2 8.0 1.1 1.3
221 172.3 240.8 8.8 9.4 1.2 1.3

222 197.9 233.9 12.1 13.4 1.2 1.3
223 229.2 285.8 12.8 14.6 2.6 2.7
224 258.1 331.8 41.2 44.0 3.5 4.7

225 304.8 350.4 53.6 55.7 4.8 4.9
226 308.0 366.9 65.4 67.8 4.8 4.6
227 318.4 376.8 70.5 73.1 4.9 5.0
228 332.2 387.8 74.6 76.5 5.1 5.2

Table 1. Point counting y2 = f(x) over Fp (CPU nanoseconds/point)

The middle rows of Table 1 show the transition of M from L2 cache to general memory.

The top section of the table is the most relevant for the algorithms considered here, as

asymptotically superior methods are used for larger p.

4.1 Faster Black Boxes

The performance of the underlying finite field operations used to implement the
group law on the Jacobian can be substantially improved using a Montgomery
representation to perform arithmetic modulo p [14]. Another optimization due
to Montgomery that is especially useful for the algorithms considered here is
the simultaneous inversion of field elements (see [3, Alg. 11.15]).2 With an affine
representation of the Jacobian each group operation requires a field inversion,
but uses fewer multiplications than alternative representations. To ameliorate the
high cost of field inversions, we then modify our algorithms to perform group
operations “in parallel”.

In the baby-steps giant-steps algorithm, for example, we fix a small constant
n, compute n “babies” β, β2, . . . , βn, then march them in parallel using steps
of size n (the giant steps are handled similarly). In each parallel step we execute
n group operations to the point where a field inverse is required, perform all the
field inversions together for a cost of 3n − 3 multiplications and one inversion,
then use the results to complete the group operations. Exponentiation can also
benefit from parallelization, albeit to a lesser extent.

These two optimizations are most effective when applied in combination, as
may be seen in Table 2.

2 This algorithm can be applied to any group.

Standard Montgomery

g p ×1 ×10 ×100 ×1 ×10 ×100

1 220 + 7 501 245 215 239 89 69
1 225 + 35 592 255 216 286 93 69
1 230 + 3 683 264 217 333 98 69

2 220 + 7 1178 933 902 362 216 196
2 225 + 35 1269 942 900 409 220 197
2 230 + 3 1357 949 902 455 225 196

3 220 + 7 2804 2556 2526 642 498 478
3 225 + 35 2896 2562 2528 690 502 476
3 230 + 3 2986 2574 2526 736 506 478

Table 2. Black box performance (CPU nanoseconds/group operation)

The heading ×n indicates n group operations performed “in parallel”. All times are

for a single thread of execution.

4.2 Generic Order Computations

Our approach to computing #J(C/Fq) = Lq(1) is based on a generic algorithm
to compute the structure of an arbitrary abelian group [23]. We are aided both
by absolute bounds on Lq(1) derived from the Weil conjectures (theorems), as
well as predictions regarding its distribution within these bounds based on a
generalized form of the Sato-Tate conjecture (proven for most genus 1 curves
over Q in [7]). We first consider the general algorithm.

We assume we have a black box for an abelian group G (written multiplica-
tively) that can generate uniformly random group elements. For Jacobians, these
can be obtained via decompression techniques [3, 14.1-2].3 We also suppose we
are given bounds M0 and M1 such that M0 ≤ |G| ≤M1.

The first (typically only) step is to compute the group exponent, λ(G), the
least common multiple of the orders of all the elements of G. This is accomplished
by initially setting E = 1, and for a random α ∈ G, computing the order of
β = αE using a baby-steps giant-steps search on the interval [M0/E, M1/E].
We then update E ← |β|E and repeat the process until either (1) there is only
one multiple of E in the interval [M0, M1], or (2) we have generated c random
elements, where c is a confidence parameter. In the former case we must have
|G| = E, and in the latter case E = λ(G), with probability greater than 1−22−c

[23, Proposition 8.3]. For large Jacobians, (1) almost always applies, however for
the relatively small groups considered here, (2) arises more often, particularly
when g > 1. Fortunately, this does not present undue difficulty.

Proposition 2. Given λ(G) and M0 such that M0 ≤ |G| < 2M0, the value of
|G| can be computed using O(|G|1/4) group operations.

3 This becomes costly when g > 2, where we use the simpler approach of [3, p. 307].

Proof (sketch). The bounds on |G| imply that it is enough to know the order of
all but one of the p-Sylow subgroups of G (the p dividing |G| are obtained from
λ(G)). Following Algorithm 9.1 of [23], we use λ(G) to compute the order of
each p-Sylow subgroup H ⊆ G using O(|H |1/2) group operations; however, we
abandon the computation for any p-Sylow subgroup that proves to be larger than
√

|G|. This can happen at most once, and the remaining successful computations
uniquely determine |G| within the interval [M0, 2M0). �

From the Weil interval (see (8) in section 4.4) we find that M1 < 2M0 for all
q > 300 and g ≤ 3. Proposition 2 implies that group structure computations will
not impact the complexity of our task. Indeed, computing #J(C/Fq) is almost
always dominated by the first computation of |β|.

Given β ∈ G and the knowledge that the interval [M0, M1] contains an integer
M for which βM = 1G, a baby-steps giant-steps search may be used to find such
an M . This is not necessarily the order of β, it is a multiple of it. We can then
factor M and compute |β| using Õ(lg M) group operations [23, Ch. 7]. The time
to factor M is negligible in genus 2 and 3 (compared to the group computations),
and in genus 1 we note that if a sieve is used to enumerate the primes up to
N , the factorization of every M in the interval [M0, M1] can be obtained at
essentially no additional cost, using O(

√
N) bytes of memory.

An alternative approach avoids the computation of |β| from M by attempting
to prove that M is the only multiple of |β| in the interval. Write [M0, M1] as
[C − R, C + R], and suppose the search to find M = C ± r has shown βn 6= 1G

for all n in (C − r, C + r). If M is not the only multiple of |β| in [C −R, C + R],
then |β| is a divisor of M satisfying 2r ≤ |β| ≤ R + r. In particular, if P is
the largest prime factor of M and P > R + r and M/P < 2r, then M must
be unique. When R = O(M1/2) this happens fairly often (about half the time).
When it does not happen, one can avoid an Õ(lg M) order computation at the
cost of O(R1/2) group operations by searching the remainder of the interval on
the opposite side of M . This is only worthwhile when R is quite small, but can
be helpful in genus 1.4

4.3 Optimized Baby-Steps Giant-Steps in the Jacobian - Part I

The Mumford representation of J(C/Fq) uniquely represents a reduced divisor
of the curve y2 = f(x) by a pair of polynomials (u, v). The polynomial u is
monic, with degree at most g, and divides v2−f [3, p. 307]. The inverse of (u, v)
is simply (u,−v), which makes two facts immediate:

1. The cost of group inversions is effectively zero.
2. The element (u, v) has order 2 if and only if v = 0 and u divides f .

Fact 1 allows us to apply the usual optimization for fast inverses [2, p. 250],
reducing the number of group operations by a factor of

√
2 (we no longer count

inversions). Fact 2 gives us a bijection between the 2-torsion subgroup of J(C/Fq)

4 These ideas were sparked by a conversation with Mark Watkins, who also credits
Geoff Bailey.

and polynomials dividing f of degree at most g (exactly half the polynomials
dividing f). If k counts the irreducible polynomials in the unique factorization
of f , then the 2-rank of J(C/Fq) is k − 1 and 2k−1 divides #J(C/Fq).

5

When k > 1, we start with E = 2k−1 in our computation of λ(G) above,
reducing the number of group operations by a factor of 2(k−1)/2. Otherwise, we
know #J(C/Fq) is odd and can reduce the number of group operations by a
factor of

√
2. The total expected benefit of fast inversions and knowledge of 2-

rank is at least a factor of 2.10 in genus 1, 2.31 in genus 2, and 2.48 in genus 3.

4.4 Optimized Baby-Steps Giant-Steps in the Jacobian - Part II

We come now to the most interesting class of optimizations, those based on the
distribution of #J(C/Fq). The Riemann hypothesis for curves (proven by Weil)
states that Lq(T) has roots lying on a circle of radius q−1/2 about the origin of
the complex plane. As Lq(T) is a real polynomial of even degree with Lq(0) = 1,
these roots may be grouped into conjugate pairs.

Definition 3. A unitary symplectic polynomial p(z) is a real polynomial of even
degree with roots α1, ...αg, ᾱ1, ...ᾱg all on the unit circle.

The unitary symplectic polynomials are precisely those arising as the char-
acteristic polynomial of a unitary symplectic matrix. The Riemann hypothesis
for curves implies that p(z) = Lq(zq−1/2) is a unitary symplectic polynomial.
The coefficients of p(z) =

∑

ajz
j may be bounded by

|aj | ≤
(

2g

j

)

. (7)

The corresponding bounds on the coefficients of Lq(T) constrain the value of
Lq(1) = #J(C/Fq), yielding the Weil interval

(
√

q − 1)2g ≤ #J(C/Fq) ≤ (
√

q + 1)2g. (8)

For the aj with j odd, the well known bounds in (7) are tight, however for even
j they are not. We are particularly interested in the coefficient a2.

Proposition 4. Let p(z) =
∑

ajz
j be a unitary symplectic polynomial of degree

2g. For fixed a1, a2 is bounded by an interval of radius at most g. In fact

a2 ≤ g +

(

g − 1

2g

)

a2
1; (9)

a2 ≥ −g + 2 +
(

a2
1 − δ2

)

/2. (10)

The value δ ≤ 2 is the distance from a1 to the nearest integer congruent to
0 mod 4 (when g is odd), or 2 mod 4 (when g is even).

5 Computing k requires only a distinct-degree factorization of f , see [2, Alg. 3.4.3].

Proof. Define βj = αj + ᾱj for 1 ≤ j ≤ g, where the αj are the roots of p(z).
Then a1 =

∑

βj and a2 = g + (a2
1 − t2)/2, where t2 =

∑

β2
j . For fixed a1, t2 is

minimized by βj = a1/g, yielding (9), and t2 is maximized by βj = ±2 for j < g
and βg = δ, yielding (10) (note that |βj | ≤ 2). The proposition follows. �

We have as a corollary, independent of a1, the bound a2 ≥ −g, and for g
odd, a2 ≥ 2−g. In genus 2, the proposition reduces to Lemma 1 of [13], however
we are especially interested in the genus 3 case, where our estimate of a2 will
determine the leading constant factor in the time to compute #J(C/Fq). In
genus 3, Proposition 4 constrains a2 to an interval of radius 3 once a1 is known,
whereas (7) would give a radius of 15.

Having bounded the interval as tightly as possible, we consider the search
within. We suppose we are seeking the value of a random variable X with some
distribution over [M0, M1]. We assume that we start from an initial estimate
M and search outward in both directions using a standard baby-steps giant-
steps search with all baby steps taken first (see [20] for a more general analysis).
Ignoring the boundaries, the cost of the search is

c = s + 2|X −M |/s (11)

group operations. As our cost function is linear in |X −M |, we minimize the
mean absolute error in our estimate by setting M to the median value of X and
s =
√

2E, where E is the expectation of |X−M |. This holds for any distribution
on X , we simply need the median value of X and its expected distance from it.

If we consider p(z) = Lq(zq−1/2) as a “random” unitary symplectic poly-
nomial, a natural distribution for p(z) can be derived from the Haar measure
on the compact Lie group USp(2g) (the group of 2g × 2g matrices over C that
are both unitary and symplectic). Each p(z) corresponds to a conjugacy class
of matrices with p(z) as their characteristic polynomial. Let the eigenvalues of
a random matrix in USp(2g) be e±iθ1 , . . . , e±iθg , with θj ∈ [0, π). The joint
probability density function on the θj given by the Haar measure on USp(2g) is

µ(USp(2g)) =
1

g!

∏

j<k

(2 cos θj − 2 cos θk)

2
∏

j

2

π
sin2 θjdθj . (12)

This distribution is derived from the Weyl integration formula [26, p. 218] and
can be found in [11, p. 107]. For g = 1, this simplifies to (2/π) sin2 θdθ, which
corresponds to the Sato-Tate distribution. We may apply (12) to compute various
statistical properties of random unitary symplectic polynomials. The coefficient
a1 is simply the negative sum of the eigenvalues,

a1 = −
g
∑

j=1

2 cos θj , (13)

and we find that the median (and expectation) of a1 is 0. In genus 1, the expected
distance of a1 from its median is

E [|a1|] =
2

π

∫ π

0

|2 cos θ| sin2 θdθ =
8

3π
. (14)

The value 8/(3π) ≈ 0.8488 is not much smaller than 1, which corresponds to
a uniform distribution, so the potential benefit is small in genus 1. In genus 2,
however, the expected distance of a1 from its median is 4096/(625π2) ≈ 0.7905,
versus an expected distance of 2 for the uniform distribution. The corresponding
values for genus 3 are ≈ 0.7985 and 3.

Given the value of a1 we can take this approach further, computing the
median and expected distance for a2 conditioned on a1. Applying (12), we pre-
compute a table of median and expected distance values for a2 for various ranges
of a1. In genus 3, we find that the largest expected distance for a2 given a1 is
about 0.66, much smaller than the value 7.5 for a uniform distribution of a2 over
the interval given by (7).

Of course such optimizations are effective only when the polynomials Lp(T)
for a particular curve and relatively small values of p actually correspond to
(apparently) random unitary symplectic polynomials. For g > 1, it is not known
whether this occurs at all, even as p → ∞.6 In genus 1, while the Sato-Tate
conjecture is now largely proven over Q [7], the convergence rate remains the
subject of conjecture. Indeed, the investigation of such questions was one moti-
vation for undertaking these computations. It is only natural to ask whether our
assumptions are met.

Histogram of actual a2 values Distribution of a2 given by (12)

The figure on the left is a histogram of a2 coefficient values obtained by com-
puting Lp(T) for p ≤ 224 for an arbitrarily chosen genus 3 curve (see Table 6).
The figure on the right is the distribution of a2 predicted by the Haar measure
on USp(2g), obtained by numerically integrating

a2 = g +
∏

j<k

4 cos θj cos θk (15)

over the distribution in (12). The dotted lines show the height of the uniform
distribution. Similarly matching graphs are found for the other coefficients.

This remarkable degree of convergence is typical for a randomly chosen curve.
We should note, however, that the generalized form of the Sato-Tate conjecture
considered here applies only to curves whose Jacobian over Q has a trivial en-
domorphism ring (isomorphic to Z), so there are exceptional cases. In genus 1
these are curves with complex multiplication. In higher genera, other exceptional
cases occur, such as the genus 2 QM-curves considered in [10].

6 Results are known for certain universal families of curves, e.g. [11, Thm. 10.8.2].

5 Results

To compare different methods for computing Lp(T) and to assess the feasible
range of L-series computations, we conducted extensive performance tests. Our
test platform consisted of eight networked PCs, each equipped with a 2.5GHz
AMD Athlon processor running a 64-bit Linux operating system. The point-
counting and generic group algorithms were implemented using the techniques
described in this paper, and we incorporated David Harvey’s source code for
the p-adic computations (the algorithm of [9], including recent improvements
described in [8]). All code was compiled with the GNU C/C++ compiler using
the options “-O2 -m64 -mtune=k8” [19].

In genus 1 there are several existing implementations of the computation
contemplated here: given an elliptic curve defined over Q, determine the coef-
ficient a1 of Lp(T) = pT 2 + a1T + 1 for all p ≤ N . We were able to compare
our implementation with two software packages specifically optimized for this
purpose: Magma [1], and the PARI library [24] as incorporated in SAGE [21].
The range of N we could use in this comparison was necessarily limited; results
for larger N may be found in Table 5.

N PARI Magma smalljac

216 0.26 0.29 0.07
217 0.55 0.59 0.15
218 1.17 1.24 0.30
219 2.51 2.53 0.62
220 5.46 5.26 1.29
221 11.67 11.09 2.65
222 25.46 23.31 5.53
223 55.50 49.22 11.56
224 123.02 104.50 24.31
225 266.40 222.56 51.60
226 598.16 476.74 110.29
227 1367.46 1017.55 233.94
228 3152.91 2159.87 498.46
229 7317.01 4646.24 1065.28
230 17167.29 10141.28 2292.74

Table 3. L-series computations in genus 1 (CPU seconds)

Each row lists CPU times for a single thread of execution to compute the coefficient a1

of Lp(T) for all p ≤ N , using the elliptic curve y2 = x3 + 314159x + 271828. In SAGE,

the function aplist(N) performs this computation via the PARI function ellap(N).

The corresponding function in Magma is TracesOfFrobenius(N). The column labeled

“smalljac” list times for our implementation.

Before undertaking similar computations in genus 2 and 3, we first deter-
mined the appropriate algorithm to use for various ranges of p using Table 4.

Each row gives timings for the algorithms considered here, averaged over a small
sample of primes of similar size.

Genus 2 – Lp(T) Genus 3 – Lp(T) Genus 3 – a1

p ≈ 2k pts/grp group p-adic pts/grp p-adic/grp points

214
0.22 0.55 4 10 15 0.12

215
0.34 0.88 6 21 23 0.23

216
0.56 1.33 8 43 31 0.45

217
0.98 2.21 11 82 40 0.89

218
1.82 3.42 17 51 1.78

219
3.44 5.87 27 67 3.57

220
7.98 10.1 40 97 8.48

221 18.9 17.9 66 148 19.7

222 52 35 104 212 56

223
54 176 355 123

224
104 288 577 738

225
173 494 995 1870

226
306 871 1753 4550

227
505 1532 3070 9800

Table 4. Lp(T) computations (CPU milliseconds)

Random curves of the appropriate genus were generated with coefficients uniformly

distributed over [1, 2k). The polynomial Lp(T) was then computed for 100 primes

≈ 2k, with the average CPU time listed. Columns labeled “pts/grp” compute a1 by

point counting over Fp, followed by a group computation to obtain Lp(T). The column

“p-adic/grp” computes Lp(T) mod p, then applies a group computation to get Lp(T).

The rightmost column computes just the coefficient a1, via point counting over Fp.

The task of computing L-series coefficients is well-suited to parallel computa-
tion. We implemented a simple distributed program which partitions the range
[1, N] into subintervals I1, I2, . . . , Im, distributes the task of computing Lp(T)
for p ∈ Im to n CPUs on a network, then collects and collates the results. This
is useful even on a single computer whose microprocessor may have two or more
cores. On our 8 node test platform we had 16 CPUs available for computation.
Tables 5 and 6 lists elapsed times for L-series computations in single and 8-node
configurations.

For practical reasons, we limited the duration of any single test. Larger com-
putations could be undertaken with additional time and/or computing resources,
without requiring software modifications. As they stand, the results extend to
values of N substantially larger than any we could find in the literature.

Source code for the software can be freely obtained under a GNU General
Public License (GPL) and is expected to be incorporated into SAGE. It is a
pleasure to thank William Stein for access to the SAGE computational resources
at the University of Washington, and especially David Harvey for providing the
code used for the p-adic computations.

Genus 1 Genus 1

N ×1 ×8 N ×1 ×8

221 1.5 0.5 230 20:43 2:41
222 3.1 0.7 231 45:13 5:52
223 6.3 1.1 232 1:45:45 13:12
224 13.3 2.0 233 4:24:50 32:51
225 28.2 4.2 234 10:16:11 1:16:18
226 59.2 8.1 235 23:15:58 2:52:47
227 126.2 16.6 236 6:29:46
228 271.3 35.1 237 14:44:33
229 578.0 74.5 238 33:11:08

Table 5. L-series computations in genus 1 (elapsed times)

For the elliptic curve y2 = x3 + 314159x + 271828, the coefficients of Lp(T) were

computed for all p ≤ N . Columns labeled ×n list total elapsed times (seconds or

hh:mm:ss) for a computation performed on n nodes (two cores per node), including

communication overhead and time spent collating responses.

Genus 2 Genus 3 Genus 3 - a1 only

N ×1 ×8 ×1 ×8 ×1 ×8

216 1 < 1 43 13 1 < 1
217 4 2 1:49 18 5 1
218 12 3 4:42 41 11 2
219 40 7 12:43 1:47 41 6
220 2:32 24 36:14 4:52 2:41 21
221 10:46 1:38 1:45:36 13:40 11:33 1:27
222 40:20 5:38 5:23:31 41:07 53:26 6:38
223 2:23:56 19:04 16:38:11 2:05:40 4:33:26 33:00
224 8:00:09 1:16:47 6:28:25 38:51:07 4:42:43
225 26:51:27 3:24:40 20:35:16 20:35:16
226 11:07:28
227 36:48:52

Table 6. L-series computations in genus 2 and 3 (elapsed times)

The coefficients of Lp(T) were computed for the genus 2 and 3 hyperelliptic curves

y
2 = x

5 + 31419x
3 + 271828x

2 + 1644934x + 57721566;

y
2 = x

7 + 314159x
5 + 271828x

4 + 1644934x
3 + 57721566x

2 + 1618034x + 141421,

for all p ≤ N where the curves had good reduction. Columns labeled ×n list total

elapsed wall times (hh:mm:ss) for a computation performed on n nodes, including all

overhead. The last two columns give times to compute just the coefficient a1.

References

[1] J.J. Cannon and W. Bosma (Eds.), Handbook of Magma functions, 2.14 ed., 2007,
available at http://magma.maths.usyd.edu.au/magma/htmlhelp/MAGMA.htm.

[2] Henri Cohen, A course in computational algebraic number theory, Springer, 1996.
[3] Henri Cohen (Ed.) et al., Handbook of elliptic and hyperelliptic curve cryptography,

Chapman and Hall, 2006.
[4] Christopher Deninger and Anthony J. Scholl, The Beilinson conjectures, L-

functions and Arithmetic (Durham 1989), London Math. Soc. Lecture Note Series,
vol. 153, Cambridge University Press, 1991, pp. 173–209.

[5] Tim Dokchitser, Computing special values of motivic L-functions, Experimental
Mathematics 13 (2004), no. 2, 137–149.

[6] Noam D. Elkies, Elliptic and modular curves over finite fields and related com-
putational issues, Computational perspectives in number theory: Proceedings of
a conference in honor of A.O.L. Atkin (D.A. Buell and J.T. Teitelbaum, eds.),
AMS, 1998, pp. 21–76.

[7] Michael Harris, Nick Shepherd-Barron, and Richard Taylor, A family of Calabi-
Yau varieties and potential automorphy, May 2006, preprint.

[8] David Harvey, Faster polynomial multiplication via multipoint Kronecker substi-
tution, 2007, preprint, http://arxiv.org/abs/0712.4046.

[9] , Kedlaya’s algorithm in larger characteristic, Int Math Res Notices (2007).
[10] Ki Ichiro Hashimoto and Hiroshi Tsunogai, On the Sato-Tate conjecture for QM-

curves of genus two, Mathematics of Computation 68 (1999), no. 228, 1649–1662.
[11] Nicholas M. Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues,

and monodromy, American Mathematical Society, 1999.
[12] Kiran Kedlaya, Counting points on hyperelliptic curves using Monsky-Washnitzer

cohomology, Journal of the Ramanujan Mathematical Society 16 (2001), 332–338.
[13] Kazuto Matsuo, Jinhui Chao, and Shigeo Tsujii, An improved baby step giant step

algorithm for point counting of hyperelliptic curves over finite fields, Algorithmic
Number Theory Symposium–ANTS V, LNCS, vol. 2369, 2002, pp. 461–474.

[14] Peter L. Montgomery, Modular multiplication without trial division, Mathematics
of Computation 44 (1985), no. 170, 519–521.

[15] J. Pila, Frobenius maps of abelian varieties and finding roots of unity in finite
fields, Mathematics of Computation 55 (1990), no. 102, 745–763.

[16] René Schoof, Counting points on elliptic curves over finite fields, Jounral de
Théorie des Nombres de Bordeaux 7 (1995), 219–254.

[17] J.Silverman, Advanced topics in the arithmetic of elliptic curves, Springer, 1999.
[18] N. J. A. Sloane, The on-line encyclopedia of integer sequences, 2007, www.

research.att.com/∼njas/sequences/.
[19] Richard Stallman et al., GNU compiler collection 4.1.2, February 2007, available

at http://gcc.gnu.org/index.html.
[20] Andreas Stein and Edlyn Teske, Optimized baby step-giant step methods, Journal

of the Ramanujan Mathematical Society 20 (2005), no. 1, 1–32.
[21] William Stein and David Joyner, SAGE: System for Algebra and Geometry Ex-

perimentation, Communications in Computer Algebra (SIGSAM Bulletin) (2005),
version 2.8.5 (September 2007), available at http://sage.sourceforge.net/.

[22] Andrew V. Sutherland, A generic approach to searching for Jacobians, Math.
Comp. (to appear), http://arxiv.org/abs/0708.3168.

[23] , Order computations in generic groups, PhD thesis, M.I.T., 2007, http:
//groups.csail.mit.edu/cis/theses/sutherland-phd.pdf.

[24] The PARI Group, Bordeaux, PARI/GP, version 2.3.2, 2007, available from http:

//pari.math.u-bordeaux.fr/.
[25] André Weil, Numbers of solutions of equations in finite fields, Bulletin of the

American Mathematical Society 55 (1949), 497–508.
[26] Hermann Weyl, Classical groups, second ed., Princeton University Press, 1946.

