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(2 + 2)-FREE POSETS, ASCENT SEQUENCESAND PATTERN AVOIDING PERMUTATIONSMIREILLE BOUSQUET-MÉLOU, ANDERS CLAESSON,MARK DUKES, AND SERGEY KITAEVAbstrat. We present bijetions between four lasses of ombinatorial ob-jets. Two of them, the lass of unlabeled (2 + 2)-free posets and a ertainlass of involutions (or hord diagrams), already appeared in the literature, butwere apparently not known to be equinumerous. We present a diret bijetionbetween them. The third lass is a family of permutations de�ned in termsof a new type of pattern. An attrative property of these patterns is that,like lassial patterns, they are losed under the ation of the symmetry groupof the square. The fourth lass is formed by ertain integer sequenes, alledasent sequenes, whih have a simple reursive struture and are shown to en-ode (2 + 2)-free posets and permutations. Our bijetions preserve numerousstatistis.We determine the generating funtion of these lasses of objets, thus reov-ering a non-D-�nite series obtained by Zagier for the lass of hord diagrams.Finally, we haraterize the asent sequenes that orrespond to permutationsavoiding the barred pattern 31̄524̄ and use this to enumerate those permuta-tions, thereby settling a onjeture of Pudwell.1. IntrodutionThis paper presents orrespondenes between three main strutures, seemingly un-related: unlabeled (2 + 2)-free posets on n elements, ertain �xed point free invo-lutions (or hord diagrams) on 2n elements introdued by Stoimenow in onnetionwith Vassiliev invariants of knots [20℄, and a new lass of permutations on n letters.An auxiliary lass of objets, onsisting of ertain sequenes of nonnegative integersthat we all asent sequenes, plays a entral role in some of these orrespondenes.Indeed, we show that both our permutations and (2 + 2)-free posets an be enodedas asent sequenes.A poset is said to be (2 + 2)-free if it does not ontain an indued subposet thatis isomorphi to 2 + 2, the union of two disjoint 2-element hains. Fishburn [11℄showed that a poset is (2 + 2)-free preisely when it is isomorphi to an intervalorder. Amongst other results onerning (2 + 2)-free posets [9, 10, 17, 8℄, thefollowing haraterisation plays an important role in this paper: a poset is (2 + 2)-free if and only if the olletion of strit prinipal down-sets an be linearly orderedby inlusion [4℄. Preise de�nitions will be given in Setions 3 and 7.Date: November 25th, 2009.MBM was supported by the Frenh �Agene Nationale de la Reherhe�, projet SADA ANR-05-BLAN-0372.AC and SK were supported by grant no. 060005012 from the Ielandi Researh Fund.
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(2 + 2)-free posets asent sequenes
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Setion 3Stoimenow's involutions pattern avoiding permutationsΛSetion 2Pn
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AnSetion 7 Ψ

Figure 1. The bijetions of the paper.The lass of permutations we onsider will be de�ned in Setion 2, together withasent sequenes. Essentially, it is a lass of permutations that avoid a partiularpattern of length three. This type of pattern is new in the sense that it doesnot admit an expression in terms of the vinular1 patterns introdued by Babsonand Steingrímsson [3℄. An attrative property of these new patterns is that, likelassial patterns, they are losed under the ation of the symmetry group of thesquare. Vinular patterns do not enjoy this property. We show how to onstrut(and deonstrut) these permutations element by element, and how this gives abijetion Λ with asent sequenes.In Setion 3 we perform a similar task for (2 + 2)-free posets. We present a reursiveonstrution of these posets, more sophistiated than that of permutations, whihgives a bijetion Ψ with asent sequenes.In Setion 4 we present a simple algorithm that, given an asent sequene x, om-putes what we all the modi�ed asent sequene, denoted x̂. Some of the propertiesof the permutation and the poset orresponding to x are more easily read from x̂than from x. We also explain how to go diretly between a given poset and theorresponding permutation as opposed to via the asent sequene. As an additionalappliation of our mahinery we show that the �xed points under x 7→ x̂ are in one-to-one orrespondene with permutations avoiding the barred pattern 31̄524̄. Weuse this haraterization to ount these permutations, thus proving a onjeture ofPudwell [16℄.In Setion 5 we prove that the bijetions Λ and Ψ respet numerous natural statis-tis.In Setion 6 we determine the generating funtion of asent sequenes, and thus, of
(2 + 2)-free posets and pattern avoiding permutations. Several authors have triedto ount these posets before [12, 8, 13℄, but did not obtain a losed expression forthe generating funtion, whih turns out to be a rather ompliated, non-D-�niteseries. That our approah sueeds probably relies on the simple struture of asentsequenes.The generating funtion we obtain for (2 + 2)-free posets has, however, already ap-peared in the literature: it was shown by Zagier [23℄ to ount ertain involutions (or1Babson and Steingrímsson all these patterns �generalized� rather than �vinular�, but wewish to promote a hange of terminology here, sine vinular is more desriptive. The adjetivevinular is derived from the Latin noun vinulum (�bond� in English).



POSETS, SEQUENCES AND PERMUTATIONS 3hord diagrams) introdued by Stoimenow to give upper bounds on the dimensionof the spae of Vassiliev's knot invariants of a given degree [20℄. In Setion 7 wepresent an alternative proof of Zagier's result by giving a diret bijetion Ω between
(2 + 2)-free posets and Stoimenow's involutions.Finally, in Setion 8 we state some natural questions.Let us onlude with a few words on the genesis of this paper: we started with aninvestigation of permutations avoiding our new type of pattern. Patterns of length 2being trivial, we moved to length 3, and disovered that the numbers ounting one ofour permutation lasses formed the rather mysterious sequene A022493 of the on-line Enylopedia of Integer Sequenes [15℄. From this arose the uriosity to larifythe onnetions between this lass of permutations and (2 + 2)-free posets, but alsobetween these posets and Stoimenow's involutions, as this had apparently not beendone before. We hope that the study of these new pattern-avoiding permutationswill lead to other onnetions with interesting objets.2. Asent sequenes and pattern avoiding permutationsLet (x1, . . . , xi) be an integer sequene. The number of asents of this sequene is

asc(x1, . . . , xi) = |{ 1 ≤ j < i : xj < xj+1 }|.Let us all a sequene x = (x1, . . . , xn) ∈ Nn an asent sequene of length n if itsatis�es x1 = 0 and xi ∈ [0, 1 + asc(x1, . . . , xi−1)] for all 2 ≤ i ≤ n. For instane,(0, 1, 0, 2, 3, 1, 0, 0, 2) is an asent sequene. The length (number of entries) of asequene x is denoted |x|.Let Sn be the symmetri group on n elements. Let V = {v1, v2, . . . , vn} with v1 <
v2 < · · · < vn be any �nite subset of N. The standardisation of a permutation π on
V is the permutation std(π) on [n] := {1, 2, . . . , n} obtained from π by replaingthe letter vi with the letter i. As an example, std(19452) = 15342. Let Rn be thefollowing set of permutations:

Rn = { π1 . . . πn ∈ Sn : if std(πiπjπk) = 231 then j 6= i+ 1 or πi 6= πk + 1 }.Equivalently, if πiπi+1 forms an asent, then πi − 1 is not found to the right of thisasent. This lass of permutations ould be more desriptively written as Rn =

Sn

( ), the set of permutations avoiding the pattern in the diagram. Dark linesindiate adjaent entries (horizontally or vertially), whereas lighter lines indiatean elasti distane between the entries. Conversely, π ontains this pattern if thereexists i < k suh that πk + 1 = πi < πi+1. As illustrated below, the permutation31524 avoids the pattern while the permutation 32541 ontains it.
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Clearly, this example an be generalized to any pattern onsisting of a permutationplus some dark (vertial and horizontal) lines. Vertial lines represent a onstraint



4 M. BOUSQUET-MÉLOU, A. CLAESSON, M. DUKES, AND S. KITAEVof adjaeny of the positions, while horizontal lines represent a onstraint of adja-eny of the values. When there is no dark line, we reover the standard notionof ontainment of a permutation. When only vertial lines are allowed, that is,onstraints on the positions, we reover the vinular (or generalized) patterns ofBabson and Steingrímsson [3℄. For symmetry reasons, it seems natural to allowonstraints on values as well, and this is preisely what our bivinular patterns,de�ned formally below, ahieve.Let us now give a formal de�nition of bivinular patterns. This is not needed forthe rest of this paper, and the reader may, without loss of ontinuity, skip the nextthree paragraphs. We de�ne a bivinular permutation (or bivinular pattern) to bea triple p = (σ,X, Y ), where σ is a permutation on [k] and X and Y are subsetsof [0, k]. An ourrene of p in a permutation π = π1 . . . πn on [n] is subsequene
o = πi1 . . . πik

suh that std(o) = σ and
∀x ∈ X, ix+1 = ix + 1 and ∀y ∈ Y, jy+1 = jy + 1,where {πi1 , . . . , πik

} = {j1, . . . , jk} and j1 < j2 < · · · < jk; by onvention, i0 = j0 =
0 and ik+1 = jk+1 = n+ 1. With this de�nition we have Rn = Sn

(
(231, {1}, {1})

).Note also that the number of bivinular permutations of length n is 4n+1n!.The lassial patterns are those of the form p = (σ, ∅, ∅). Vinular patterns areof the form p = (σ,X, ∅). Let p = (σ,Xp, Yp) and q = (τ,Xq, Yq) be any twopatterns. If σ and τ have the same length, we de�ne their omposition, or produt,by p◦q = (σ◦τ, Xp∆Yq, Yp∆Xq ), where A∆B = (A−B)∪(B−A) is the symmetridi�erene. This operation is not assoiative, but it admits a right identity, (id, ∅, ∅),and every element p = (σ,X, Y ) has an inverse p−1 = (σ−1, Y,X); this turns theset of bivinular permutations of length n into a quasigroup with right identity.Also, reverse is de�ned by pr = (σr , n + 1 − X,Y ) and omplement is de�ned by
pc = (σc, X, n+ 1 − Y ), in whih k −A denotes the set {k − a : a ∈ A}. Thus theset of bivinular patterns has the full symmetry of a square.One simple instane of bivinular pattern avoidane that has already appeared inthe literature is the set of irreduible permutations [1℄, that is, permutations suhthat πi+1 6= πi − 1 for all i. With our terminology, these are the permutationsavoiding (21, {1}, {1}). Similarly, the strongly irreduible permutations of [2℄ arethe (21, {1}, {1})- and (12, {1}, {1})-avoiding permutations.Let us now return to the set R := ∪nRn of permutations avoiding (231, {1}, {1}).Let π be a permutation of Rn, with n > 0. Let τ be obtained by deleting the entry
n from π. Then τ ∈ Rn−1. Indeed, if τiτi+1τj is an ourrene of the forbiddenpattern in τ (but not in π), then this implies that πi+1 = n. But then πiπi+1πj+1would form an ourrene of the forbidden pattern in π.This property allows us to onstrut the permutations of Rn indutively, startingfrom the empty permutation and adding a new maximal value at eah step. (This isthe generating tree approah, systematized by West [21℄.) Given τ = τ1 . . . τn−1 ∈
Rn−1, the sites where n an be inserted in τ so as to produe an element of Rnare alled ative. It is easily seen that the site before τ1 and the site after τn−1 arealways ative. The site between the entries τi and τi+1 is ative if and only if τi = 1or τi − 1 is to the left of τi. Label the ative sites, from left to right, with labels 0,



POSETS, SEQUENCES AND PERMUTATIONS 51, 2 and so on. Observe that the site immediately to the left of the maximal entryof τ is always ative.Our bijetion Λ between permutations of Rn and asent sequenes of length nis de�ned reursively on n as follows. For n = 1, we set Λ(1) = (0). Now let
n ≥ 2, and suppose that π ∈ Rn is obtained by inserting n in the ative sitelabeled i of a permutation τ ∈ Rn−1. Then the sequene assoiated with π is
Λ(π) := (x1, . . . , xn−1, i), where (x1, . . . , xn−1) = Λ(τ).Example 1. The permutation π = 61832547 orresponds to the sequene x =
(0, 1, 1, 2, 2, 0, 3, 1), sine it is obtained by the following insertions (the subsriptsindiate the labels of the ative sites):

011
x2=17−−−→ 01122

x3=17−−−→ 0113 22

x4=27−−−→ 0113 2243

x5=27−−−→ 0113 225 43

x6=07−−−→ 06 113 225 43

x7=37−−−→ 06 113 225 4374

x8=17−−−→ 6 1 8 3 2 5 4 7.Theorem 1. The map Λ is a bijetion from Rn to the set of asent sequenes oflength n.Proof. Sine the sequene Λ(π) enodes the onstrution of π, the map Λ is injetive.We want to prove that the image of Rn is the set An of asent sequenes of length
n. Let s(π) denote the number of ative sites of the permutation π. Our reursivedesription of the map Λ tells us that x = (x1, . . . , xn) ∈ Λ(Rn) if and only if

x′ = (x1, . . . , xn−1) ∈ Λ(Rn−1) and 0 ≤ xn ≤ s
(
Λ−1(x′)

)
− 1 (1)(reall that the leftmost ative site is labeled 0, so that the rightmost one is s(π)−1).We will prove by indution on n that for all π ∈ Rn, with assoiated sequene

Λ(π) = x = (x1, . . . , xn), one has
s(π) = 2 + asc(x) and b(π) = xn, (2)where b(π) is the label of the site loated just before the maximal entry of π.Clearly, this will onvert the above desription (1) of Λ(Rn) into the de�nition ofasent sequenes, thus onluding the proof.So let us fous on the properties (2). They obviously hold for n = 1. Now assumethey hold for some n − 1, with n ≥ 2, and let π ∈ Rn be obtained by inserting nin the ative site labeled i of τ ∈ Rn−1. Then Λ(π) = x = (x1, . . . , xn−1, i) where

Λ(τ) = x′ = (x1, . . . , xn−1). Every entry of π smaller than n is followed in π byan ative site if and only if it was followed in τ by an ative site. The leftmostsite also remains ative. Consequently, the label of the ative site preeding n in
π is i = xn, whih proves the seond property. Thus, in order to determine s(π),the only question is whether the site following n is ative in π. There are two



6 M. BOUSQUET-MÉLOU, A. CLAESSON, M. DUKES, AND S. KITAEVases to onsider. Reall that, by the indution hypothesis, s(τ) = 2 + asc(x′) and
b(τ) = xn−1.Case 1: If 0 ≤ i ≤ b(τ) = xn−1 then asc(x) = asc(x′) and the entry n in π is tothe left of n− 1. So the number of ative sites remains unhanged: s(π) = s(τ) =
2 + asc(x′) = 2 + asc(x).Case 2: If i > b(τ) = xn−1 then asc(x) = 1 + asc(x′) and the entry n in π is tothe right of n − 1. The site that follows n is thus ative, and s(π) = 1 + s(τ) =
3 + asc(x′) = 2 + asc(x). This onludes the proof. �3. Asent sequenes and unlabeled (2 + 2)-free posetsLet Pn be the set of unlabeled (2 + 2)-free posets on n elements. In this setionwe shall give a bijetion between Pn and the set An of asent sequenes of length
n. As in the previous setion, this bijetion enodes a reursive way of onstrut-ing (2 + 2)-free posets by adding one new (maximal) element. There is of oursea orresponding removal operation, but it is less elementary than in the ase ofpermutations. Before giving these operations we need to de�ne some terminology.Let D(x) be the set of predeessors of x (the strit down-set of x). Formally,

D(x) = { y : y < x }.It is well-known�see for example Bogart [4℄�that a poset is (2 + 2)-free if and onlyif its sets of predeessors, {D(x) : x ∈ P}, an be linearly ordered by inlusion. Forompleteness we prove this result here.Lemma 2. A poset P is (2 + 2)-free if and only if the set of strit downsets of Pan be linearly ordered by inlusion.Proof. If the set of strit downsets of P annot be linearly ordered by inlusion,then there are two inomparable elements x, y ∈ P suh that both D(x)\D(y) and
D(y) \D(x) are non-empty. Let x′ ∈ D(x) \D(y) and y′ ∈ D(y) \D(x). Then theindued subposet on the elements {x, x′, y, y′} is isomorphi to (2 + 2). Conversely,if P ontains an indued subposet {x > x′, y > y′} isomorphi to (2 + 2), then D(x)and D(y) are suh that both D(x) \D(y) and D(y) \D(x) are non-empty. �Let

D(P ) = {D0, D1, . . . , Dk}with ∅ = D0 ⊂ D1 ⊂ · · · ⊂ Dk. In this ontext we de�ne Di(P ) = Di and wewrite ℓ(P ) = k. We say the element x is at level i in P if D(x) = Di and we write
ℓ(x) = i . The set of all elements at level i we denote Li(P ) = { x ∈ P : ℓ(x) = i } =
{ x ∈ P : D(x) = Di }. For instane, L0(P ) is the set of minimal elements. All theelements of Lk(P ) are maximal, but there may be maximal elements of P at levelless than k. If Li(P ) ontains a maximal element, we say that the level i ontains amaximal element. Let ℓ⋆(P ) be the minimum level ontaining a maximal element.



POSETS, SEQUENCES AND PERMUTATIONS 7Example 2. Consider the following (2 + 2)-free poset P , whih we have labeledfor onveniene:
a

c

f

db

g

h

e

=
c

f

d

g

h

e

b

a

0

1

2

3

The diagram on the right shows the poset redrawn aording to the levels of theelements. We have D(a) = {b, c, d, f, g, h}, D(b) = ∅, D(c) = D(d) = {f, g, h},
D(e) = D(f) = D(g) = {h} and D(h) = ∅. These may be ordered by inlusion as

D(h) = D(b)︸ ︷︷ ︸ ⊂ D(e) = D(f) = D(g)︸ ︷︷ ︸ ⊂ D(c) = D(d)︸ ︷︷ ︸ ⊂ D(a)︸ ︷︷ ︸ .

ℓ(h) = ℓ(b) = 0 ℓ(e) = ℓ(f) = ℓ(g) = 1 ℓ(c) = ℓ(d) = 2 ℓ(a) = 3Thus ℓ(P ) = 3. The maximal elements of P are e and a, and they lie respetively atlevels 3 and 1. Thus ℓ⋆(P ) = 1. In addition, D0 = ∅, D1 = {h}, D2 = {f, g, h} and
D3 = {b, c, d, f, g, h}. With Li = Li(P ) we also have L0 = {h, b}, L1 = {e, f, g},
L2 = {c, d} and L3 = {a}.3.1. Removing an element from a (2 + 2)-free poset. Let us begin with theremoval operation, whih will be the ounterpart of the deletion of the last entry inan asent sequene (or the deletion of the largest entry in a permutation of R). Let
P be a (2 + 2)-free poset of ardinality n ≥ 2, and let i = ℓ⋆(P ) be the minimumlevel of P ontaining a maximal element. All the maximal elements loated at level
i are order-equivalent in the unlabeled poset P . We will remove one of them. Let
Q be the poset that results from applying:(Rem1) If |Li(P )| > 1 then simply remove one of the maximal elements at level i.(Rem2) If |Li(P )| = 1 and i = ℓ(P ) then remove the unique element lying at level

i.(Rem3) If |Li(P )| = 1 and i < ℓ(P ) then set N = Di+1(P ) \ Di(P ). Make eahelement in N a maximal element of the poset by deleting from the orderall relations x < y where x ∈ N . Finally, remove the unique element lyingat level i.Example 3. Let P be the unlabeled (2 + 2)-free poset with this Hasse diagram:
= *

0

1

2

3

4

# #The diagram on the right shows the poset redrawn aording to the levels of theelements. There is a unique maximal element of minimal level, whih is markedwith ∗ and lies at level 2, so that ℓ⋆(P ) = 2. Sine there is a unique element atlevel 2 < ℓ(P ), apply Rem3 to remove it. The elements of N are indiated by #'s.



8 M. BOUSQUET-MÉLOU, A. CLAESSON, M. DUKES, AND S. KITAEVIn order to delete all relations of the form x < y where x ∈ N , one deletes fromthe Hasse diagram all edges orresponding to overings of elements of N , and addsan edge between the elements at level 0 and 3 to preserve their relation. Finally,one removes the element at level 2. This gives a new (2 + 2)-free poset, with levelnumbers shown on the left.
7→

0

1

3

2

=

3

2

0

1 * *There are now two maximal elements of minimal level ℓ⋆ = 1, both marked by ∗.Remove one of them aording to rule Rem1. This gives the poset shown on the leftbelow, for whih ℓ⋆ is still 1. Apply Rem1 again to obtain the poset on the right.
7→

*1

0

2

3

7→
1

0

2

3 *

There is now a single maximal element, lying at maximal level 3, so we apply ruleRem2:
7→ 1

0

2

*

#The maximal element of minimal level is now alone on level ℓ⋆(P ) = 1 < ℓ(P ) soapply Rem3. The set N onsists of the rightmost point at level 0, giving
7→

0

1

*The maximal element of minimal level is not alone at level 0, so apply Rem1:
7→

0

1 *

7→ 0We have thus redued the original poset P to a one element poset by removing theelements in a anonial order.Let us now hek that the removal operation gives a (2 + 2)-free poset, and estab-lish some elementary properties of this operation. If ℓ⋆(P ) = i, and the removaloperation, applied to P , gives Q, we de�ne ψ(P ) = (Q, i).



POSETS, SEQUENCES AND PERMUTATIONS 9Lemma 3. If n ≥ 2, P ∈ Pn and ψ(P ) = (Q, i), then Q ∈ Pn−1 and 0 ≤ i ≤
1 + ℓ(Q). Also,

ℓ(Q) =

{
ℓ(P ) if i ≤ ℓ⋆(Q),

ℓ(P ) − 1 if i > ℓ⋆(Q).Proof. We examine separately the 3 ases desribed above.If |Li(P )| > 1 then one simply removes a maximal element at level i to obtain Q:the set of sets of predeessors is unhanged, and remains linearly ordered. Hene
Q ∈ Rn−1. Also, ℓ(Q) = ℓ(P ). The maximal elements of Q were already maximalin P . Thus the maximal elements of lowest level in Q are at level i at least, thatis, ℓ⋆(Q) ≥ i.If |Li(P )| = 1 and i = ℓ(P ), one removes the unique element of maximal level.One has now D(Q) = D(P ) \ {Di(P )}, whih is still linearly ordered. Also, ℓ(Q) =
ℓ(P ) − 1. In partiular, i = ℓ(Q) + 1 > ℓ⋆(Q).Finally, if |Li(P )| = 1 and i < ℓ(P ), de�ne the set N as in Rem3. By onstrution,the set of sets of predeessors of Q is

D(Q) =
{
D0(P ), . . . , Di−1(P ), Di+1(P ) \ N , . . . , Dℓ(P )(P ) \ N

}
.To prove that D(Q) an be linearly ordered, it su�es to prove that Di−1(P ) ⊂

Di+1(P ) \ N . By de�nition, N = Di+1(P ) \Di(P ) and hene
Di+1(P ) \ N = Di+1(P ) \

(
Di+1(P ) \Di(P )

)

= Di+1(P ) ∩Di(P )

= Di(P )

⊃ Di−1(P ).It is also lear that ℓ(Q) = ℓ(P ) − 1. The elements of N are maximal in Q and lieat level < i. Hene ℓ⋆(Q) < i. �3.2. Adding an element to a (2 + 2)-free poset. Let us now de�ne the additionoperation, whih adds a maximal element to a (2 + 2)-free poset Q.Given Q ∈ Pn−1 and 0 ≤ i ≤ 1 + ℓ(Q), let ϕ(Q, i) be the poset P obtained from Qaording to the following:(Add1) If i ≤ ℓ⋆(Q) then introdue a new maximal element whih overs the sameelements as the elements of Li(Q).(Add2) If i = 1 + ℓ(Q), add a new element overing all maximal elements of Q.(Add3) If ℓ⋆(Q) < i ≤ ℓ(Q), add a new element overing the same elements asthe elements of Li(Q). Let M be the set of maximal elements of Q oflevel less than i. Add all relations x ≤ y where x ≤ z for some z ∈ M and
y ∈ Li(Q)∪· · ·∪Lℓ(Q)(Q). In partiular, every element ofM is now overedby every minimal element of the poset indued by Li(Q) ∪ · · · ∪ Lℓ(Q)(Q).Example 4. Starting from the one-element poset, we add suessively 7 pointsaording to the rules above, where the parameter i takes the following values:

i = 1, 2, 3, 1, 0, 1, 2. Note that the sequene (0, 1, 2, 3, 1, 0, 1, 2) is an asent sequene.



10 M. BOUSQUET-MÉLOU, A. CLAESSON, M. DUKES, AND S. KITAEVThis is of ourse not an aident. For eah step, the new element is irled.
0

i2=17−−−→Add2
0

1 i3=27−−−→Add2 1

2

0

i4=37−−−→Add2
0

1

2

3

i5=17−−−→Add1
0

1

2

3

i6=07−−−→Add1
0

1

2

3

i7=17−−−→Add3
0

1

2

3

4

i8=27−−−→Add3
0

1

2

3

4

5

In the �nal two steps, where the operation Add3 is used, we have inserted dashedlines indiating the overing of the elements of M. Observe that in a last step,the addition of these new overings makes two edges of the next-to-last diagramtransitive: they do not appear any more in the �nal diagram.Let us now hek that the addition operation gives a (2 + 2)-free poset, and estab-lish some elementary properties of this operation.Lemma 4. If n ≥ 2, Q ∈ Pn−1, 0 ≤ i ≤ 1 + ℓ(Q) and P = ϕ(Q, i), then P ∈ Pn.Also,
ℓ⋆(P ) = i and ℓ(P ) =

{
ℓ(Q) if i ≤ ℓ⋆(Q),

ℓ(Q) + 1 if i > ℓ⋆(Q).Proof. We examine separately the 3 ases desribed above.If i ≤ ℓ⋆(Q), then Add1 is used. We want to show that the set D(P ) = {D(x) :
x ∈ P} of sets of predeessors an be linearly ordered. This is however trivial: Byde�nition of Add1 we have D(P ) = D(Q) whih is linearly ordered. The set ofpredeessors of the new element is Di(Q), so it lies at level i. As this element ismaximal, and its level i is not larger than ℓ⋆(Q), we have ℓ⋆(P ) = i. Finally, itfollows from D(P ) = D(Q) that ℓ(P ) = ℓ(Q).If i = 1 + ℓ(Q), then Add2 is used. The set D(P ) is D(Q) ∪ {Q}, whih is stilllinearly ordered by inlusion. The highest level inreases by one: ℓ(P ) = ℓ(Q) + 1.Finally, the new element is the only maximal element of P , so that ℓ⋆(P ) = ℓ(P ) =
1 + ℓ(Q) = i.If ℓ⋆(Q) < i ≤ ℓ(Q), then Add3 is used. The new element has set of predeessors
Di(Q). The elements that had level i or more in Q now inlude the elements of Mamong their predeessors. Consequently,
D(P ) =

{
D0(Q), . . . , Di(Q), Di(Q)∪M, Di+1(Q)∪M, . . . , Dℓ(Q)(Q)∪M

}
, (3)whih is linearly ordered. From this expression for D(P ) we also see that ℓ(P ) =

ℓ(Q) + 1, as laimed. Moreover, as all elements of level less than i in Q are now



POSETS, SEQUENCES AND PERMUTATIONS 11overed, the new element is the only maximal element of minimal level, so that
ℓ⋆(P ) = i. �Let us now prove the ompatibility of our removal and addition operations.Lemma 5. For any (2 + 2)-free poset Q and integer i suh that 0 ≤ i ≤ 1 + ℓ(Q)we have ψ(ϕ(Q, i)) = (Q, i). And if Q has more than one element we also have
ϕ(ψ(Q)) = Q.Proof. Let us begin with the �rst statement, and denote P = ϕ(Q, i). Reall that
ℓ⋆(P ) = i, so that the removal operation applied to P takes out an element of level
i and gives ψ(P ) = (R, i). We want to prove that R = Q.Assume that i ≤ ℓ⋆(Q) so that Add1 is used to onstrut P from Q. The newelement is introdued at level i and is not alone at this level. Thus the removaloperation Rem1 is applied to P , and simply removes one maximal element at level
i�either the one that was added, or another, order-equivalent, one. Thus Q and
R oinide, as unlabeled posets.Assume that i = 1 + ℓ(Q) so that Add2 is used. The new element is the onlymaximal element in P , so that the removal operation Rem2 is applied to P , andsimply removes this maximal element. Thus again, R = Q.Assume that ℓ⋆(Q) < i ≤ ℓ(Q) so that Add3 is used. The new element is maximal,and is the only element at level i < ℓ(P ) = 1+ ℓ(Q). Thus it will be removed usingRem3. Let M be the set of maximal elements of Q of level less than i. The set Nthat ours in the desription of Rem3 is Di+1(P ) \Di(P ). Aording to (3), thisset oinides with M. Hene the overing relations that were added to go from Qto P are now destroyed when going from P to R. Thus R = Q.A similar argument (with the two transformations interhanged) gives the seondstatement of the lemma. �3.3. From (2 + 2)-free posets to asent sequenes. Our bijetion Ψ between
(2 + 2)-free posets of ardinality n and asent sequenes of length n is de�nedreursively on n as follows. For n = 1, we assoiate with the one-element poset thesequene (0). Now let n ≥ 2, and suppose that the removal operation, applied to
P ∈ Pn, gives ψ(P ) = (Q, i). In other words, P is obtained from Q by adding a newmaximal element at level i, following our addition proedure. Then the sequeneassoiated with P is Ψ(P ) := (x1, . . . , xn−1, i), where (x1, . . . , xn−1) = Ψ(Q).For instane, the poset of Example 3 orresponds to the sequene (0, 1, 0, 1, 3, 1, 1, 2),while the poset of Example 4 orresponds to the sequene (0, 1, 2, 3, 1, 0, 1, 2).Theorem 6. The map Ψ is a one-to-one orrespondene between (2 + 2)-free posetsof size n and asent sequenes of length n.Proof. Sine the sequene Ψ(P ) enodes the onstrution of the poset P , the map
Ψ is injetive. We want to prove that the image of Pn is the set An of asentsequenes of length n. Our reursive desription of the map Ψ tells us that x =
(x1, . . . , xn) ∈ Ψ(Pn) if and only if

x′ = (x1, . . . , xn−1) ∈ Ψ(Pn−1) and 0 ≤ xn ≤ 1 + ℓ
(
Ψ−1(x′)

)
. (4)



12 M. BOUSQUET-MÉLOU, A. CLAESSON, M. DUKES, AND S. KITAEVWe will prove by indution on n that for all P ∈ Pn, with assoiated sequene
Ψ(P ) = x = (x1, . . . , xn), one has

ℓ(P ) = asc(x) and ℓ⋆(P ) = xn. (5)Clearly, this will onvert the above desription (4) of Ψ(Pn) into the de�nition ofasent sequenes, thus onluding the proof.So let us fous on the properties (5). They obviously hold for n = 1. Now assumethey hold for some n − 1, with n ≥ 2, and let P ∈ Pn be obtained by adding anew element at level i in Q ∈ Pn−1. Then Ψ(P ) = x = (x1, . . . , xn−1, i) where
Ψ(Q) = x′ = (x1, . . . , xn−1). By the indution hypothesis, ℓ(Q) = asc(x′) and
ℓ⋆(Q) = xn−1. Lemma 4 gives ℓ⋆(P ) = i and

ℓ(P ) =

{
asc(x′) if i ≤ xn−1,

asc(x′) + 1 if i > xn−1.The result follows. �4. Modified asent sequenes and their appliationsIn this setion we introdue a transformation on asent sequenes and show someappliations. For instane, this transformation an be used to give a non-reursivedesription of the bijetion Λ between permutations ofR and asent sequenes. It isalso useful to haraterize the image by Λ of a sublass ofR studied by Pudwell [16℄,whih we enumerate. We also desribe how to transform (2 + 2)-free posets intopermutations, without resorting to asent sequenes.4.1. Modi�ed asent sequenes. Let x = (x1, x2, . . . , xn) be any �nite sequeneof integers. We denote by asc(x) the (ordered) list of positions where an asentours:
asc(x) =

(
i : i ∈ [n− 1] and xi < xi+1

)
;so asc(x) = |asc(x)|. In terms of an algorithm we shall now desribe a funtionfrom integer sequenes to integer sequenes. Let x = (x1, x2, . . . , xn) be the inputsequene and suppose that asc(x) = (a1, . . . , ak). Dofor i = a1, . . . , ak:for j = 1, . . . , i− 1:if xj ≥ xi+1 then xj := xj + 1and denote the resulting sequene by x̂. Assuming that x is an asent sequene weall x̂ the modi�ed asent sequene. As an example, onsider the asent sequene

x = (0, 1, 0, 1, 3, 1, 1, 2). We have asc(x) = (1, 3, 4, 7) and the algorithm omputesthe modi�ed asent sequene x̂ in the following steps:
x = 0 1 0 1 3 1 1 20 1 0 1 3 1 1 20 2 0 1 3 1 1 20 2 0 1 3 1 1 20 3 0 1 4 1 1 2 = x̂In eah step every element stritly to the left of and weakly larger than the boldfaeletter is inremented by one. Observe that the positions of asents in x and x̂oinide, and that the number of asents in x (or x̂) is asc(x) = asc(x̂) = max(x̂).



POSETS, SEQUENCES AND PERMUTATIONS 13The above proedure is easy to invert:for i = ak, . . . , a1:for j = 1, . . . , i− 1:if xj > xi+1 then xj := xj − 1Thus the map x 7→ x̂ is injetive.We an also onstrut modi�ed asent sequenes reursively as follows: the onlysuh sequene of length 1 is (0). For n ≥ 2, (y1, . . . , yn) is a modi�ed asentsequene if, and only if,
• 0 ≤ yn ≤ yn−1 and (y1, . . . , yn−1) is a modi�ed asent sequene, or
• yn−1 < yn ≤ 1 + asc(y1, . . . , yn−1), yj 6= yn for all j < n, and

( y1 − ǫ1, . . . , yn−1 − ǫn−1 )is a modi�ed asent sequene, where ǫj = 1 if yj ≥ yn, and ǫj = 0 otherwise.The modi�ed asent sequene x̂ is related to the level distribution of the poset Passoiated with x. First, observe that the removal operation of Setion 3.1 induesa anonial labelling of the size n poset P by elements of [n]: the �rst element thatis removed gets label n, and so on. Applying this to the poset of Example 3 we getthe following labelling:
0

1

2

3

4

8

7

2

5

46

1 3The following lemma is easily proved by indution, by ombining the desriptionsof the map x 7→ x̂ and of the reursive bijetion between asent sequenes and
(2 + 2)-free posets.Lemma 7. Let P be a (2 + 2)-free poset equipped with its anonial labelling. Let xbe the assoiated asent sequene, and x̂ = (x̂1, . . . , x̂n) the orresponding modi�edasent sequene. Then for all i ≤ n, the element i of the poset lies at level x̂i.For instane, listing the elements of the poset above and their respetive levels gives1 2 3 4 5 6 7 80 3 0 1 4 1 1 2 = x̂,where we reognize the modi�ed asent sequene of (0, 1, 0, 1, 3, 1, 1, 2) = Ψ(P ).4.2. From posets to permutations. The anonial labelling of the poset P analso be used to set up the bijetion from (2 + 2)-free posets to permutations of Rwithout using asent sequenes. We read the elements of the poset by inreasinglevel, and, for a �xed level, in desending order of their labels. This gives a per-mutation f(P ). In our example we get 31764825, whih is the permutation of R8assoiated with the asent sequene (0, 1, 0, 1, 3, 1, 1, 2) = Ψ(P ). Let us prove thatthis works in general.



14 M. BOUSQUET-MÉLOU, A. CLAESSON, M. DUKES, AND S. KITAEVProposition 8. For any (2 + 2)-free poset P equipped with its anonial labelling,the permutation f(P ) desribed above is the permutation of R orresponding to theasent sequene Ψ(P ). In other words,
Λ−1 ◦ Ψ(P ) = L̂0L̂1 . . . L̂ℓ(P ) := π,where L̂j is the word obtained by reading the elements of Lj(P ) in dereasing order.Moreover, the ative sites of the above permutation are those preeding and following

π, as well as the sites separating two onseutive fators L̂j .Proof. We proeed by indution on the size of P . The base ase n = 1 is easy tohek. So let n ≥ 2, and assume the proposition holds for n − 1. Let P ∈ Pnbe obtained by inserting a new maximal element at level i in Q ∈ Pn−1. By theindution hypothesis, the permutation orresponding to Q is
τ = L̂′

0L̂
′
1 . . . L̂

′
ℓ(Q),where L̂′

j is obtained by reading in dereasing order the elements of Lj(Q). Re-turning to the desription of the addition operation, we see that, if i ≤ ℓ⋆(Q),
L̂j =

{
L̂′

j if j 6= i,

{n} ∪ L̂′
i if j = i,while if i > ℓ⋆(Q),

L̂j =






L̂′
j if j < i,

{n} if j = i,

L̂′
j−1 if j > i.In both ases, the word obtained by reading the elements of P is

f(P ) = L̂′
0 . . . L̂

′
i−1 n L̂

′
iL̂

′
i+1 . . . L̂

′
ℓ(Q),whih is obtained by inserting n in the ative site labeled i of τ . Hene f(P ) =

Λ−1 ◦ Ψ(P ). It is then easy to hek that the ative sites of f(P ) are indeed thoseseparating the fators L̂j, and those preeding and following f(P ). �4.3. From asent sequenes to permutations, and vie-versa. By ombiningLemma 7 and Proposition 8, we obtain a non-reursive desription of the bijetionbetween asent sequenes and permutations of R. Let x be an asent sequene, and
x̂ its modi�ed sequene. Take the sequene x̂ and write the numbers 1 through nbelow it. In our running example, x = (0, 1, 0, 1, 3, 1, 1, 2), this gives

x̂ = 0 3 0 1 4 1 1 21 2 3 4 5 6 7 8 .Let P be the poset assoiated with x. By Lemma 7, the element labeled i in P liesat level x̂i. This information is not su�ient to reonstrut the poset P but it issu�ient to reonstrut the word f(P ) obtained by reading the elements of P byinreasing level: Sort the pairs (bxi

i

) in asending order with respet to the top entryand break ties by sorting in desending order with respet to the bottom entry. Inthe above example, this gives 0 0 1 1 1 2 3 43 1 7 6 4 8 2 5 .



POSETS, SEQUENCES AND PERMUTATIONS 15By Proposition 8, the bottom row, here 31764825, is the permutation Λ−1(x). Wehave thus established the following diret desription of Λ−1.Corollary 9. Let x be an asent sequene. Sorting the pairs (bxi

i

) in the orderdesribed above gives the permutation π = Λ−1(x). Moreover, the number of entriesof π between the ative sites i and i+ 1 is the number of entries of x̂ equal to i, forall i ≥ 0.The seond statement gives a non-reursive way of deriving x = Λ(π) (or, rather,
x̂) from π. Take a permutation π ∈ Rn, and indiate its atives sites. For instane,
π =0 3117642832455. Write the letter i below all entries πj that lie between theative site labeled i and the ative site labeled i+ 1:3 1 7 6 4 8 2 50 0 1 1 1 2 3 4 .Then sort the pairs (πj

i

) by inreasing order of the πj :1 2 3 4 5 6 7 80 3 0 1 4 1 1 2 .We have reovered, on the bottom row, the modi�ed asent sequene x̂ orrespond-ing to π.4.4. Permutations avoiding 31̄524̄ and self modi�ed asent sequenes. Apermutation π avoids the barred pattern 31̄524̄ if every ourrene of the (lassial)pattern 231 plays the role of 352 in an ourrene of the (lassial) pattern 31524.In other words, for every i < j < k suh that πk < πi < πj , there exists ℓ ∈
(i, j) and m > k suh that πiπℓπjπkπm is an ourrene of 31524. Note thatevery suh permutation avoids the pattern , and thus belongs to the set R.Permutations avoiding 31̄524̄ were onsidered by Pudwell, who gave a onjeture fortheir enumeration [16, p. 84℄. Here, we desribe the asent sequenes orrespondingto these permutations via the bijetion Λ. Then, we use this desription to settlePudwell's onjeture.An asent sequene x is self modi�ed if it is �xed by the map x 7→ x̂ de�ned above.For instane, (0, 0, 1, 0, 2, 2, 0, 3, 1, 1) is self modi�ed. In view of the de�nition of themap x 7→ x̂, this means that, if xi+1 > xi, then xj < xi+1 for all j ≤ i. Reall that
asc(x) = max(x̂). Combining this with the ondition de�ning asent sequenes, wesee that (x1, . . . , xn) is a self modi�ed asent sequene if and only if x1 = 0 and,for all i ≥ 1, either xi+1 ≤ xi or xi+1 = 1 + max{xj : j ≤ i}. Consequently, amodi�ed asent sequene x with max(x) = k reads 0A01A12A2 . . . k Ak, where Aiis a (possibly empty) weakly dereasing fator, and eah element of Ai is less thanor equal to i.Proposition 10. The asent sequene x is self modi�ed if and only if the orre-sponding permutation π avoids 31̄524̄. In this ase, max(x) = asc(π) = rmin(π)−1,where rmin(π) is the number of right-to-left minima of π, that is, the number of isuh that πi < πj for all j > i.Proof. We proeed by indution on the size n of the permutations. The statement isobvious for n = 1, so let n ≥ 2, and assume it holds for n−1. Let π ∈ Rn be obtained



16 M. BOUSQUET-MÉLOU, A. CLAESSON, M. DUKES, AND S. KITAEVby inserting n in the ative site labeled i of τ ∈ Rn−1. Let x′ = (x1, . . . , xn−1) bethe asent sequene Λ(τ). The asent sequene Λ(π) is x = (x1, . . . , xn−1, i).First, assume π avoids 31̄524̄, and let us prove that x is self modi�ed. Note that
τ avoids 31̄524̄, beause the largest entry in this pattern is not barred. By theindution hypothesis, the asent sequene x′ = Λ(τ) is self modi�ed. Assume, ababsurdo, that x is not self modi�ed. This means that xn−1 < i < 1 + asc(x′). Thatis, n is inserted to the right of n− 1, but not to the extreme right of τ . Then theentries n− 1, n, πn form an ourrene of 231 whih does not play the role of 352in an ourrene of 31524 (the 4 is missing). This ontradits the assumption that
π avoids 31̄524̄. Hene x is self modi�ed.Conversely, assume that x is self modi�ed (so that x′ itself is self modi�ed), andlet us prove that π avoids 31̄524̄. By the indution hypothesis, τ avoids 31̄524̄.Assume, ab absurdo, that π ontains an ourrene of 31̄524̄. Then this ourrenemust ontain the entry n, playing the role of 3 in 231. Let πjπkπℓ be suh anourrene, with n = πk. Obviously, n is not inserted to the extreme right of τ ,so that i ≤ xn−1. Moreover, either there is no entry smaller than πℓ between πjand n (the entry 1 is missing), or there is no entry larger than πj to the right of
πℓ (the entry 4 is missing). In the �rst ase, πk−1πkπℓ is another ourrene of
31̄524̄. Sine n is inserted in an ative site, πk−1 − 1 ours before πk−1, but then
(πk−1 − 1)πkπℓ forms an ourrene of 31̄524̄ in τ , a ontradition. In the seondase, πj(n − 1)πℓ forms an ourrene of 31̄524̄ in τ , beause n − 1 is to the rightof n. This gives a ontradition again. Hene π avoids 31̄524̄.Still under the assumption that x is self modi�ed, observe that the number ofasents, and the number of right-to-left minima, inrease by one when going from
τ to π if i = 1+asc(x′). If i ≤ xn−1, then n is inserted in an asent of τ (otherwisethe insertion would reate a forbidden pattern), so that the number of asents isleft unhanged. The same holds for the number of right-to-left minima. �Proposition 11. The length generating funtion of 31̄524̄-avoiding permutationsis

∑

k≥1

tk

(1 − t)(
k+1

2 )
.Equivalently, the number of suh permutations of length n is

n∑

k=1

((k
2

)
+ n− 1

n− k

)
.Moreover, the k-th term of this sum ounts those permutations that have k right-to-left minima, or, equivalently, k−1 asents. This is also the number of self modi�edasent sequenes of length n with largest element k − 1.The orresponding numbers form Sequene A098569 in the OEIS [15℄.Proof. By Proposition 10, permutations of length n avoiding 31̄524̄ and having k−1asents are in bijetion with self modi�ed asent sequenes of length n and largestentry k − 1. As disussed above, suh sequenes read

x = 0A01A12A2 . . . (k − 1)Ak−1,



POSETS, SEQUENCES AND PERMUTATIONS 17where Ai is a (possibly empty) weakly dereasing fator, and eah element of Ai isless than or equal to i. That is,
Ai = A

(i)
i A

(i−1)
i . . . A

(0)
i ,where the fator A(j)

i , for j ≤ i, onsists of letters j only. Let ℓ(j)i be the length ofthis fator. Clearly, there are 1 + 2 + · · · + k =
(
k+1
2

) fators A(j)
i in x, whih maybe empty. The list (ℓ

(0)
0 , ℓ

(1)
1 , ℓ

(0)
1 , . . . , ℓ

(0)
k−1) determines x ompletely, and forms aomposition of n − k in (k+1

2

) (possibly empty) parts. Thus the number of suhsequenes x is (
n− k +

(
k+1
2

)
− 1

n− k

)
=

((k
2

)
+ n− 1

n− k

)as laimed. �5. StatistisWe shall now look at statistis on asent sequenes, permutations and posets�statistis that we an translate between using our bijetions.Let x = (x1, x2, . . . , xn) be any sequene of nonnegative integers. Let last(x) = xn.De�ne zeros(x) as the number of zeros in x. A right-to-left maximum of x isa letter with no larger letter to its right; the number of right-to-left maxima isdenoted rmax(x). For example,
rmax(0, 1, 0,2,2, 0,1) = 3;the right-to-left maxima are in bold. The statistis right-to-left minima (rmin),left-to-right maxima (lmax), and left-to-right minima (lmin) are de�ned similarly.For sequenes x and y of nonnegative integers, let x⊕ y = xy′, where y′ is obtainedfrom y by adding 1 + max(x) to eah of its letters, and juxtaposition denotesonatenation. For example, (0, 2, 0, 1) ⊕ (0, 0) = (0, 2, 0, 1, 3, 3). We say thata sequene x has k omponents if it is the sum of k, but not k + 1, nonemptynonnegative sequenes. Note that y ⊕ z is a modi�ed asent sequene (as de�nedin Setion 4) if and only if y and z are themselves modi�ed asent sequenes. Thisis the ase in the above example.For permutations π and σ, let π⊕ σ = πσ′, where σ′ is obtained from σ by adding

|π| to eah of its letters. We say that π has k omponents if it is the sum of k, butnot k + 1, nonempty permutations. Observe that π ⊕ σ avoids if and only ifboth π and σ avoid it. This is the ase for instane for 314265 = 3142 ⊕ 21, whihorresponds to the above modi�ed asent sequene (0, 2, 0, 1, 3, 3) = (0, 2, 0, 1) ⊕
(0, 0).We also reall the de�nitions of s(π) and b(π). The number of ative sites of π is
s(π). Label these ative sites with 0, 1, 2, et. Then b(π) is the label immediatelyto the left of the maximal entry of π.The number of minimal (resp. maximal) elements of a poset P is denoted min(P )(resp. max(P )). The ordinal sum [18, p. 100℄ of two posets P and Q is the poset
P ⊕Q on the union P ∪Q suh that x ≤P⊕Q y if x ≤P y, or x ≤Q y, or x ∈ P and
y ∈ Q. The de�nition applies to labeled or unlabeled posets. Let us say that P has
k omponents if it is the ordinal sum of k, but not k+1, nonempty posets. Observe



18 M. BOUSQUET-MÉLOU, A. CLAESSON, M. DUKES, AND S. KITAEVthat P⊕Q is (2 + 2)-free if and only if both P and Q are (2 + 2)-free. For instane,orresponding to the modi�ed asent sequene (0, 2, 0, 1, 3, 3) = (0, 2, 0, 1) ⊕ (0, 0),above, we have
= ⊕For a (2 + 2)-free poset P , a sequene x and a permutation π ∈ R, we de�ne thefollowing polynomials in the indeterminate q:

λ(P, q) =
∑

v∈P

qℓ(v), χ(x, q) =

|x|∑

i=1

qxi , δ(π, q) =

s(π)∑

i=0

diq
i,where di is the number of entries of π between the ative site labeled i and the ativesite labeled i+1. Note also that an alternative way of writing the polynomial λ(P, q)is ∑ℓ(P )

i=0 |Li(P )|qi. Similarly, de�ne the polynomials
λ(P, q) =

∑

v∈Pmax

qℓ(v), χ(x, q) =
∑

xi rl-max

qxi , δ(π, q) =

s(π)∑

i=0

diq
i,where Pmax is the set of maximal elements of P , the sum de�ning χ(x, q) is restritedto right-to-left maxima of x, and di is the number of right-to-left maxima of πbetween the ative site labeled i and the ative site labeled i+ 1.Theorem 12. Given an asent sequene x = (x1, . . . , xn) with modi�ed asentsequene x̂, let P and π be the poset and permutation orresponding to x under thebijetions desribed in Setions 2 and 3. Then

min(P ) = zeros(x) = lmin(π);

ℓ⋆(P ) = last(x) = b(π);

ℓ(P ) = asc(x) = asc(π−1);

max(P ) = rmax(x̂) = rmax(π);

comp(P ) = comp(x̂) = comp(π);

λ(P, q) = χ(x̂, q) = δ(π, q);

λ(P, q) = χ(x̂, q) = δ(π, q).Example 5. Let P be the poset from Example 3 and let x and π be the orre-sponding asent sequene and permutation:
P =

0

1

2

3

4

;
x = (0, 1, 0, 1, 3, 1, 1, 2);

x̂ = (0, 3, 0, 1, 4, 1, 1, 2);

π =0 3117642832455,

π−1 = 27158436.Theorem 12 holds, with min(P ) = 2, ℓ⋆(P ) = 2, ℓ(P ) = 4, max(P ) = 2, comp(P ) =

1, λ(P, q) = q4 + q3 + q2 + 3q + 2, and λ(P, q) = q4 + q2.



POSETS, SEQUENCES AND PERMUTATIONS 19Proof of Theorem 12. The polynomial identity λ(P, q) = χ(x̂, q) = δ(π, q) is aonsequene of Lemma 7 for the �rst part, and of Corollary 9 for the seondpart. Setting q = 0 in λ(P, q) = χ(x̂, q) gives min(P ) = zeros(x) (note that
zeros(x) = zeros(x̂)). Setting q = 0 in the identity χ(x̂, q) = δ(π, q) shows that
zeros(x) is the number of entries of π between the �rst two ative sites. Let usprove that these are the entries π1, π2, . . . , πk, where k is the largest integer suhthat π1 > π2 > · · · > πk. Note that this means that lmin(π) = k. For 1 ≤ i < k,the entry πi is followed by an inative site, beause πi − 1 appears to the right of
πi. Assume πk > 1. Then πk − 1 appears to the right of πk, but πk+1 > πk, sothat πkπk+1(πk − 1) is an ourrene of the forbidden pattern, a ontradition. So
πk = 1, the site following πk is ative, and the result is proved.The result dealing with last(x) has already been proved, when we established that
Λ and Ψ were indeed bijetions. See (2) and (5). The same holds for the onnetionbetween asc(x) and ℓ(P ) (see (5) again). We also know that asc(x) = s(π)− 2, butwe wish to relate this number to asc(π−1).The next identities will be proved by indution on n. These are easy to hek when
n = 1, so we take n ≥ 2. Denote i = xn, (Q, i) = ψ(P ), and let τ be obtained bydeleting the entry n from π. Let x′ = (x1, . . . , xn−1) = Λ(τ) = Ψ(Q).Let us start with the onnetion between asc(x) and asc(π−1). The number ofasents inreases (by one) when going from τ−1 to π−1 if and only if n is inserted,in τ , to the right of n − 1: as shown in the proof of Theorem 1, this means that
asc(x) = 1 + asc(x′) (Case 2 of the proof).The identity that involves max(P ) is just the ase q = 1 of the identity that involvesthe polynomial λ(P, q), whih we now prove. Let us now study how the polynomi-als λ(·, q), χ(̂·, q) and δ(·, q) evolve as the size of the poset/sequene/permutationinreases. For posets,

λ(P, q) =






λ(Q, q) + qi if i ≤ ℓ⋆(Q),

qi +

ℓ(Q)∑

j=i

|Lj(Q)|qj+1 if i > ℓ⋆(Q),where Lj(Q) is the set of maximal elements of Q at level j. Similar relationshold for χ(x̂, q) and δ(π, q). Denoting the modi�ed asent sequene of x′ by x̂′ =
(x̂′1, . . . , x̂

′
n−1), we have

χ(x̂, q) =






χ(x̂′, q) + qi if i ≤ xn−1,

qi +
∑

rl-max bx′

j
≥i

qbx′

j+1 if i > xn−1,

δ(π, q) =






δ(τ, q) + qi if i ≤ b(τ),

qi +
∑

j≥i

dj q
j+1 if i > b(τ),and the statement λ(P, q) = χ(x̂, q) = δ(π, q) follows by indution.



20 M. BOUSQUET-MÉLOU, A. CLAESSON, M. DUKES, AND S. KITAEVWe shall �nally prove that comp(P ) = comp(x̂) = comp(π). First, observe that itsu�es to prove that
x̂ = ŷ ⊕ ẑ with |y| = ℓ and |z| = m

⇔ π = σ ⊕ τ with |σ| = ℓ and |τ | = m

⇔ P = Py ⊕ Pz with |Py | = ℓ and |Pz | = m,and that σ and Py (resp. τ and Pz) are respetively the permutation and the posetassoiated with the asent sequene y (resp. z). It then follows by indution onthe number of omponents, not only that x̂, π and P have the same number ofomponents, but also that the sizes of the omponents are the same.From Corollary 9, it is easily seen that π = σ ⊕ τ if and only if x̂ = ŷ ⊕ ẑ, with
Λ(σ) = y and Λ(τ) = z. Assume this holds. Let us write ℓ = |y| and m = |z|. Let
Py and Pz be the posets orresponding to y and z, respetively. Let us prove thatthe anonially labeled versions of P, Py and Pz satisfy P = Py ⊕ Pz . Clearly, the
ℓ �rst steps of the reursive onstrution of P (starting from the asent sequene
x) give the (labeled) poset Py, whih satis�es ℓ(Py) = max(ŷ) by Lemma 7. Thenomes the letter xℓ+1. As x̂ℓ+1 = 1+max{x̂j : j ≤ ℓ}, the element ℓ+1 ends up, inthe �nal poset P , at a higher level than the elements 1, 2, . . . , ℓ. This implies thatthe element ℓ+ 1 is added using the operation Add2, and hene overs all maximalelements of Py . Consequently, the set of predeessors of ℓ + 1 is Py, and the posetobtained at this stage is Py ⊕ {ℓ+ 1}. One then proeeds by indution of the sizeof z. We do not give the details. One heks indutively that the relative order ofthe elements labeled ℓ+ 1 to n = ℓ+m in P oinides with their order in Pz , andthat every element of Py is smaller than every element of Pz.Conversely, assume P = Py ⊕ Pz , with ℓ = |Py|, m = |Pz | and ℓ + m = n. Wewill prove that in the anonial labelling of P , the largest m letters are those of
Pz. Again, this follows from an indution on m. As usual, we write (Q, i) = ψ(P ).If m = 1, then n is the unique maximal element of P , and Q = Py. Otherwise,the element n is in Pz (as Py ontains no maximal element), and one has to hekthat Q = Py ⊕ P ′

z where P ′
z is obtained by applying the removal proedure to Pz.We do not give all the details. The key point is that, when Rem3 is used, the set

N = Di+1\Di of elements that beome maximal in Q does not ontain any elementof Py . Indeed, every element of Py is smaller than every element of Pz , so that itbelongs to Di. One it is proved that the m largest elements of P are those of Pz,one applies Proposition 8 to onlude that the orresponding permutation π reads
σ ⊕ τ , where σ (resp. τ) orresponds to Py (resp. Pz). �6. The number of (2 + 2)-free posetsThe aim of this setion is to obtain a losed form expression for the generatingfuntion P (t) of unlabeled (2 + 2)-free posets:

P (t) =
∑

n≥0

pn t
n

= 1 + t+ 2t2 + 5t3 + 15t4 + 53t5 + 217t6 + 1014t7 + 5335t8 +O(t9),where pn is the number of (2 + 2)-free posets of ardinality n. The sequene (pn)n≥0is Sequene A022493 in the OEIS [15℄.



POSETS, SEQUENCES AND PERMUTATIONS 21Theorem 13. The generating funtion of unlabeled (2 + 2)-free posets is
P (t) =

∑

n≥0

n∏

i=1

(
1 − (1 − t)i

)
.Of ourse, the series P (t) also ounts permutations of R, or asent sequenes, bylength. To our knowledge, this result is new. El-Zahar [8℄ and Khamis [13℄ useda reursive desription of (2 + 2)-free posets, di�erent from that of Setion 3, toderive a pair of funtional equations that de�ne the series P (t). However, theydid not solve these equations. Haxell, MDonald and Thomasson [12℄ provided analgorithm, based on a ompliated reurrene relation, to produe the �rst numbers

pn. However, the above series has already appeared in the literature: it was provedby Zagier [23℄ to ount ertain involutions introdued by Stoimenow [20℄. (Theonnetion between these involutions and (2 + 2)-free posets is the topi of thenext setion.) Moreover, Zagier derived a number of interesting properties of theseries P (t). In partiular, he gave the following asymptoti estimate:
pn

n!
∼ κ

(
6

π2

)n√
n, where κ =

12
√

3

π5/2
eπ2/12.Note that sine the growth onstant 6/π2 is transendental it follows that thegenerating funtion is not D-�nite [19, 22℄. Zagier also proved that the series P (t)satis�es the following remarkable formula:

P (1 − e−24x) = ex
∑

n≥0

Tn

n!
xn,where

∑

n≥0

Tn

(2n+ 1)!
x2n+1 =

sin 2x

2 cos 3x
.Our proof of Theorem 13 exploits the reursive struture of asent sequenes. Thisstruture translates into a funtional equation for the generating funtion of thesesequenes, whih is solved by the so-alled kernel method. This gives a losed formexpression of a bivariate generating funtion, whih ounts asent sequenes by theirlength and asent number. However, one still needs to transform this expression toobtain the above expression for the length generating funtion.6.1. The funtional equation. Let F (t;u, v) ≡ F (u, v) be the generating fun-tion of asent sequenes, ounted by length (variable t), number of asents (variable

u) and last entry (variable v). This is a formal power series in t with oe�ients in
Q[u, v]. The �rst few terms of F (t;u, v) are

F (t;u, v) = 1 + t+ (1 + uv)t2 + (1 + 2uv + u+ u2v2)t3 +O(t4).Let G(t;u, v) = F (t;u, v) − 1 ≡ G(u, v) ount non-empty asent sequenes. Wewrite
G(t;u, v) =

∑

a,ℓ≥0

Ga,ℓ(t)u
avℓ,so that Ga,ℓ(t) is the length generating funtion of sequenes having a asents andending with the value ℓ.



22 M. BOUSQUET-MÉLOU, A. CLAESSON, M. DUKES, AND S. KITAEVLemma 14. The generating funtion G(t;u, v) satis�es
(v − 1 − tv(1 − u))G(u, v) = t(v − 1) − tG(u, 1) + tuv2G(uv, 1).Equivalently, F (t;u, v) = 1 +G(t;u, v) satis�es

(v − 1 − tv(1 − u))F (u, v) = (v − 1)(1 − tuv) − tF (u, 1) + tuv2F (uv, 1).Proof. Let x′ = (x1, . . . , xn−1) be a non-empty asent sequene with a asents,ending with the value xn−1 = ℓ. Then x = (x1, . . . , xn−1, i) is an asent sequeneif and only if i ∈ [0, a + 1]. Moreover, the sequene x has a asents if i ≤ ℓ, and
a+1 asents otherwise. Given that (0) is the only asent sequene of length 1, thisgives:

G(u, v) = t+ t
∑

a,ℓ≥0

Ga,ℓ(t)

(
ℓ∑

i=0

uavi +

a+1∑

i=ℓ+1

ua+1vi

)

= t+ t
∑

a,ℓ≥0

Ga,ℓ(t)u
a

(
vℓ+1 − 1

v − 1
+ u

va+2 − vℓ+1

v − 1

)

= t+ t
vG(u, v) −G(u, 1)

v − 1
+ tuv

vG(uv, 1) −G(u, v)

v − 1
.The result follows. �Remark. The variables u and v are needed to transform our reursive desriptionof asent sequenes into a funtional equation, and are thus atalyti, in the senseof [24℄. Setting v = 1 in the equation gives a tautology. Setting u = 1 gives arelation between G(1, v), G(1, 1) and G(v, 1) whih does not su�e to haraterizethese series.6.2. The kernel method. Consider the funtional equation satis�ed by F (t;u, v)given by Lemma 14. The oe�ient of F (u, v), alled the kernel, vanishes when

v = V (u), with V (u) = 1/(1 − t + tu). Reall that F (t;u, v) is a series in t withoe�ients in Q[u, v]. Hene F (u, V (u)) is a well-de�ned series in t with oe�ientsif Q[u]. Replaing v by V (u) in the funtional equation anels the left-hand side,and results in:
F (u, 1) =

(1 − u)(1 − t)

(1 − t+ tu)2
+

u

(1 − t+ tu)2
F

(
u

1 − t+ tu
, 1

)
.Iterating this equation gives

F (u, 1) =
(1 − u)(1 − t)

(1 − t+ tu)2
+

u(1 − t)2(1 − u)

(1 − t+ tu)(1 − 2t+ 2tu+ t2 − t2u)2

+
u2

(1 − t+ tu)(1 − 2t+ 2tu+ t2 − t2u)2
F

(
u

1 − 2t+ 2tu+ t2 − t2u
, 1

)

=

n∑

k=1

(1 − u)uk−1(1 − t)k

(u− (u − 1)(1 − t)k)
∏k

i=1(u− (u− 1)(1 − t)i)

+
un

(u− (u − 1)(1 − t)n)
∏n

i=1(u − (u− 1)(1 − t)i)
F

(
u

u− (u − 1)(1 − t)n
, 1

)
.Letting n → ∞, we obtain a �rst expression of F (t;u, 1), as a formal series in uwith rational oe�ients in t.



POSETS, SEQUENCES AND PERMUTATIONS 23Proposition 15. The series F (t;u, 1) ounting asent sequenes by their lengthand asent number, seen as a series in u, has rational oe�ients in t, and satis�es
F (t;u, 1) =

∑

k≥1

(1 − u)uk−1(1 − t)k

(u − (u− 1)(1 − t)k)
∏k

i=1(u − (u− 1)(1 − t)i)
.Alas, the above expression is only onvergent as a series in u. In partiular, if weset u = 1, the result seems to be zero (beause of the fator (1 − u)). If we ignorethis fator, what remains reads

∑

k≥1

(1 − t)k,whih is not a onvergent series in the formal variable t. We will now work out an-other series expression of F (t;u, 1), whih onverges as a series in t with oe�ientsin Q[u]. In this expression we an set u = 1, and this will give Theorem 13.6.3. Transforming the solution. Our �rst lemma tells us that ertain series,whih look like the one in Proposition 15, are atually polynomials in u and t.Lemma 16. Let m ≥ 1 be an integer. Let S(t;u) be the following series in u, withrational oe�ients in t:
S(t;u) =

∑

k≥1

(u− 1)m uk−1(1 − t)mk

∏k
i=1(u− (u − 1)(1 − t)i)

.Then S(t;u) is atually a polynomial in u and t:
S(t;u) = −

m−1∑

j=0

(u − 1)jum−1−j(1 − t)j
m−1∏

i=j+1

(
1 − (1 − t)i

)
.Proof. Consider the following equation in Φ(t;u) ≡ Φ(u):

Φ(u) =
(u− 1)m(1 − t)m

1 − t+ tu
+ u(1 − t+ tu)m−2 Φ

(
u

1 − t+ tu

)
.By iterating it, we see that it has a unique solution in the spae of series in u withrational oe�ients in t, and that this solution is the �rst expression of S(t;u) givenabove. Moreover, by writing the equation as follows:

(1 − t+ tu)Φ(u) = (u− 1)m(1 − t)m + u(1 − t+ tu)m−1 Φ

(
u

1 − t+ tu

)
,one heks easily that the seond expression of S(t;u) (a polynomial in t and u) isalso a solution. Sine a polynomial in t and u is (also) a series in u with rationaloe�ients in t, the identity is established. �From the above lemma, we are going to derive another expression of the series

F (t;u, 1), in whih the substitution u = 1 raises no di�ulty.Theorem 17. Let n ≥ 0, and onsider the following polynomial in t and u:
Fn(t;u) =

n∑

ℓ=0

(u− 1)n−ℓuℓ
n∑

m=ℓ

(−1)n−m

(
n

m

)
(1 − t)m−ℓ

m∏

i=m−ℓ+1

(
1 − (1 − t)i

)
.



24 M. BOUSQUET-MÉLOU, A. CLAESSON, M. DUKES, AND S. KITAEVThen Fn(t;u) is a multiple of tn. Moreover, the generating funtion of asentsequenes, ounted by the length and the asent number, is
F (t;u, 1) =

∑

n≥0

Fn(t;u).When u = 1,
Fn(t; 1) =

n∏

i=1

(
1 − (1 − t)i

)
,and Theorem 13 follows.Proof. We return to the expression of F (t;u, 1) given in Proposition 15. The ex-pansion

1

u− (u − 1)(1 − tk)
=

1

1 − (u − 1)((1 − t)k − 1)
=
∑

n≥0

(u− 1)n((1 − t)k − 1)nis valid in the spae of series in t with polynomial oe�ients in u, as (1− t)k −1 =
O(t). It holds as well in the larger spae of formal power series in t and u. Moreover,the nth term is O(tn). Hene, in the spae of series in t and u,
F (t;u, 1) =

∑

k≥1

(1 − u)uk−1(1 − t)k

∏k
i=1(u− (u − 1)(1 − t)i)

∑

n≥0

(u− 1)n((1− t)k − 1)n =
∑

n≥0

Fn(t;u)where
Fn(t;u) = −

∑

k≥1

(u− 1)n+1 uk−1(1 − t)k

∏k
i=1(u− (u− 1)(1 − t)i)

((1 − t)k − 1)n

= −
∑

k≥1

(u− 1)n+1 uk−1(1 − t)k

∏k
i=1(u− (u− 1)(1 − t)i)

n∑

m=0

(
n

m

)
(1 − t)km(−1)n−m

= −
n∑

m=0

(
n

m

)
(−1)n−m(u− 1)n−m

∑

k≥1

(u− 1)m+1 uk−1(1 − t)k(m+1)

∏k
i=1(u − (u− 1)(1 − t)i)

.It remains to apply Lemma 16, with m replaed by m+ 1:
Fn(t;u) =

n∑

m=0

(−1)n−m

(
n

m

)
(u−1)n−m

m∑

j=0

(u−1)jum−j(1−t)j
m∏

i=j+1

(
1 − (1 − t)i

)
.The expeted expression of Fn(t;u) follows, upon writing j = m− ℓ. �7. Involutions with no neighbour nestingAs disussed above, the series of Theorem 13 is known to ount ertain involutionson 2n points, alled regular linearized hord diagrams (RLCD) by Stoimenow [20℄.This result was proved by Zagier [23℄, following Stoimenow's paper. In this setion,we give a new proof of Zagier's result, by onstruting a bijetion between RLCDson 2n points and unlabeled (2 + 2)-free posets of size n.Let I2n be the olletion of involutions π in S2n that have no �xed points and forwhih every desent rosses the main diagonal in its dot diagram. Equivalently, if

πi > πi+1 then πi > i ≥ πi+1. An alternative desription an be given in terms ofthe hord diagram of π, whih is obtained by joining the points i and πi by a hord



POSETS, SEQUENCES AND PERMUTATIONS 25(Figure 2, top left). Indeed, π ∈ I2n if and only if, for any i, the hords attahedto i and i + 1 are not nested, in the terminology used reently for partitions andinvolutions (or mathings) [6, 14℄. That is, the on�gurations shown on the left ofthe rules of Figure 3 are forbidden (but a hord linking i to i+ 1 is allowed). Suhinvolutions were alled regular linearized hord diagrams by Stoimenow. We preferto say that they have no neighbour nesting.Reall that a poset P is (2 + 2)-free if and only if it is an interval order [10℄. Thismeans that there exists a olletion of intervals on the real line whose relative orderis P , under the relation:
[a1, a2] < [a3, a4] ⇐⇒ a2 < a3. (6)Let π be a �xed point free involution with transpositions {(αi, βi)}n

i=1 where αi < βifor all i. De�ne Ω(π) to be the interval order (or equivalently, (2 + 2)-free poset)assoiated with the olletion of intervals {[αi, βi]}n
i=1. The transformation Ω has asymmetry property that will be important: the poset assoiated with the mirror of

π (obtained by re�eting the hord diagram of π aross a vertial line) is the dualof Ω(π).
b

a d e

c

1 2 3 4 5 6 7

a b c

d

e
8 9 10

Figure 2. The involution π = 4 5 7 1 2 8 3 6 10 9 ∈ I10, the or-responding olletion of intervals and the assoiated (2 + 2)-freeposet.Example 6. Consider π = 4 5 7 1 2 8 3 6 10 9 ∈ I10. The transpositions of π areshown in the hord diagram of Figure 2. Beneath the hord diagram is the olletionof intervals that orresponds to π, and the (2 + 2)-free poset Ω(π) is shown on theright-hand side. We have added labels to highlight the orrespondene betweenintervals and poset elements.Theorem 18. The map Ω, restrited to involutions with no neighbour nesting,indues a bijetion between involutions of I2n and (2 + 2)-free posets on n elements.Proof. Let us �rst prove that the restrition of Ω is a surjetion. That is, for everyposet P ∈ Pn, one an �nd an involution π ∈ I2n suh that Ω(π) = P . Let P ∈ Pn.As P is an interval order, there exists a olletion of n intervals on the real line whoserelative order is P , under the order relation (6). We an assume that the (rightand left) endpoints of these n intervals are 2n distint points. Indeed, if some point
x ours k times as an endpoint, then the intervals ending at x are inomparable,and one an replae x by k distint points and obtain a new olletion of intervalswhose order is still P , as shown below.



26 M. BOUSQUET-MÉLOU, A. CLAESSON, M. DUKES, AND S. KITAEV
Note that in this �gure, intervals are represented by hords rather than segmentsfor the sake of larity. In partiular, an interval redued to one point is representedby a loop.

i + 1

πiπi+1 i i + 1 πi+1πi i + 1i

πi πi+1i + 1ii πi+1 πiFigure 3. Two operations on hord diagrams.Clearly, we an then assume that the 2n distint endpoints of our n intervals areexatly 1, 2, . . . , 2n. These intervals thus form a hord diagram, and there existsa �xed point free involution π ∈ S2n suh that Ω(π) = P . However, π may haveneighbour nestings. Transform reursively every suh nesting as shown in Figure 3.The orresponding poset does not hange with these transformations, while thenumber of rossings in the hord diagram inreases. Hene the sequene of trans-formations must stop, and when it stops we have obtained an involution π′ with noneighbour nesting suh that Ω(π′) = P . An example is shown in Figure 4, wherewe have indiated by a white dot whih nesting is transformed.
1 2 3 4 6 7 85 109 1 2 3 4 6 7 85 109

1 2 3 4 6 7 85 109 1 2 3 4 6 7 85 109

1 2 3 4 6 7 85 109Figure 4. Deleting neighbour nestings from an involution.Let us now prove that Ω, restrited to I2n, is injetive. Assume π ∈ I2n and
Ω(π) = P . We will prove that one an reonstrut the hord diagram of π from P .



POSETS, SEQUENCES AND PERMUTATIONS 27We assoiate with π a word u = u1u2 · · ·u2n over the alphabet {o, c} as follows:
ui = o (resp. c) if there is an opening (resp. losing) hord at i. That is, if πi > i(resp. πi < i). We de�ne an opening run to be a maximal fator of u ontainingonly the letter o. We de�ne similarly losing runs. For instane, the involution inFigure 2 has 3 opening runs (and onsequently 3 losing runs).The order P = Ω(π) an be seen as an order on the hords of π: given a hord
a = (i, j), with i < j, the hords that are smaller than a (the predeessors of a) arethose that lose before i, and the hords that are larger than a are those that openafter j. From this observation, it follows easily, by indution on i, that the level of
a in P (as de�ned in Setion 3) is the number of losing runs found before i in u.Let k = ℓ(P ) be the highest level of an element of P , and for 0 ≤ i ≤ k, denote by
mi the number of elements at level i in P . Then the preeding disussion impliesthat the word u assoiated with π is of the form om0cnkom1cnk−1 · · · omkcn0 where
ni > 0 for all i. But by symmetry, ni must be the number of elements at level i in
P ∗ (and moreover, ℓ(P ) = ℓ(P ∗)). Thus the word u an be reonstruted from Pand its dual. We represent u by a sequene of 2n half-hords, some opening, somelosing. For instane, we show below the sequene of half-hords obtained from theposet P of Figure 2 and its dual P ∗. It is onvenient to assign with eah opening(resp. losing) half-hord a label, equal to the level of the orresponding elementof P (resp. P ∗).

10 0 0 012 2 21|L0(P
∗)| = 1, |L1(P

∗)| = 2, |L2(P
∗)| = 2|L0(P )| = 3, |L1(P )| = 1, |L2(P )| = 1

P P ∗

It remains to see that the mathing between opening and losing half-hords thatharaterizes π is fored by P . We will prove this reursively, by mathing openinghords run by run, from left to right. That is, we math the m0 opening hordslabelled 0, then the m1 opening hords labelled 1, and so on. Assume we havemathed the �rst m0 +m1 + · · · +mi−1 opening hords. For 0 ≤ j ≤ k, let mi,jbe the number of elements of P that have level i in P and level j in P ∗. Thisis the number of hords of π with opening label i and losing label j. Of ourse,
mi,0 + · · · +mi,k = mi.Observe the following property:(⋆) An involution π avoids neighbour nestings if and only if, forevery opening run found at positions i, i + 1, . . . , i + ℓ, one has

πi < πi+1 < · · · < πi+ℓ, and symmetrially, for every losing runfound at positions i− ℓ, . . . , i−1, i, one has πi−ℓ < · · · < πi−1 < πi.This property implies that the mi,k �rst (i.e., leftmost) opening hords labelled imust be mathed with losing hords labelled k, the mi,k−1 next opening hords



28 M. BOUSQUET-MÉLOU, A. CLAESSON, M. DUKES, AND S. KITAEVlabelled i must be mathed with losing hords labelled k − 1, and so on. Theseond part of property (⋆) then fores the hoie of the mi,j losing hords thatwill be mathed with opening hords labelled i: they are the leftmost unmathedlosing hords labelled j. The mathing of half-arhes is thus fored, and π an beompletely reonstruted from P . Hene the restrition of Ω to I2n is injetive.Let us illustrate the mathing proedure by ompleting our running example. Forthe above poset P , we �nd m0,2 = 2, m0,1 = 1, m0,0 = 0, whih allows us to maththe hords of the �rst opening run (equivalently, the opening hords labelled 0):
10 0 0 012 2 21Then, m1,2 = 0, m1,1 = 1, m1,0 = 0, whih fores the mathing of the (unique)opening hord labelled 1:
10 0 0 012 2 21Finally, m2,2 = 0, m2,1 = 0, m2,0 = 1, and we reover the involution with noneighbour nesting shown in Figure 2:
10 0 0 012 2 21

�Remarks1. It follows from the proof of Theorem 18 that, given any olletion of intervalswith distint endpoints whose relative order is P , the transformations in Figure 3,applied in any order, will yield ultimately the hord diagram of the involution
Ω−1(P ). Note that these transformations boil down to onjugating a �xed pointfree involution by the elementary transposition (i, i+ 1).2. We have worked out the reursive desription of involutions of I2n that or-responds, via the transformation Ω, to the reursive onstrution of (2 + 2)-freeposets desribed in Setion 3, but it is rather involved [7℄.3. The orrespondeneΩ allows one to read from an involution π ∈ I2n the statistisde�ned in Setion 5 for the poset P = Ω(π). For instane, the number of minimalelements in P is the length of the �rst opening run of π. Symmetrially, the numberof maximal elements of P is the length of the last losing run of π. We have alreadydisussed how the distribution of levels of the elements of P an be read from π.Finally, there is a natural analogue on involutions for the number of omponentsof a poset. 8. Final questions and remarksQuestion 1. Is there a simple graphial onstrution on the dot diagram of apermutation in Rn that gives bijetively an unlabeled (2 + 2)-free poset on n ele-ments?



POSETS, SEQUENCES AND PERMUTATIONS 29A simple idea would be to view the dots of the diagram as a poset under thestandard produt order on N2, as is done in [5℄. For n ≤ 4 the posets assoiatedwith permutations of Rn are exatly the unlabeled (2 + 2)-free posets of size n.However, for n = 5 the poset orresponding to the permutation π = 41523 ∈ R5ontains an indued opy of 2 + 2. This is illustrated in the diagram below.
1 2 3 4 5

1

2

3

4

5

Question 2. Asent sequenes are speial inversion tables. Turn these inversiontables into permutations in the two standard ways (see [18, p. 20-21℄). Is there asimple haraterisation of those sets of permutations?Question 3. A simple involution ats on the set of (2 + 2)-free posets: duality, ororder-reversion. In terms of hord diagrams, this orresponds to taking the mirrorimage of a diagram. What is the orresponding transformation on permutationsof R? For instane, the permutation assoiated with the poset P of Example 3 is
31746825, while the permutation assoiated with the dual poset P ∗ is 41726583.Aknowledgment. Thanks to Henning Úlfarsson for pointing out that bivinularpermutations form a quasigroup, rather than a group as we inorretly laimed inan earlier draft. Referenes[1℄ M. H. Albert, M. D. Atkinson, and R. Brignall, Permutation lasses of polynomial growth,Ann. Comb. 11 (2007) 249�264.[2℄ M. D. Atkinson and T. Stitt, Restrited permutations and the wreath produt, DisreteMath. 259 (2002) 19�36.[3℄ E. Babson and E. Steingrímsson, Generalized permutation patterns and a lassi�ation ofthe Mahonian statistis, Sém. Lothar. Combin. 44 (2000) Art. B44b, 18 pp.[4℄ K. P. Bogart, An obvious proof of Fishburn's interval order theorem, Disrete Math. 118(1993) 239�242.[5℄ M. Bousquet-Mélou and S. Butler, Forest-like permutations, Ann. Comb. 11 (2007) 335�354.[6℄ W. Y. C. Chen, E. Y. Deng, R. R. Du, R. P. Stanley, C. H. Yan, Crossings and nestings ofmathings and partitions, Trans. Amer. Math. So. 359 (2007) 1555�1575.[7℄ A. Claesson, M. Dukes and S. Kitaev, A diret enoding of Stoimenow's mathings as asentsequenes, arXiv:0910.1619.[8℄ M. H. El-Zahar, Enumeration of ordered sets, in: I. Rival (Ed.), Algorithms and Order,Kluwer Aademi Publishers, Dordreht, 1989, 327�352.[9℄ P. C. Fishburn, Interval Graphs and Interval Orders, Wiley, New York, 1985.[10℄ P. C. Fishburn, Intransitive indi�erene in preferene theory: a survey, Oper. Res. 18 (1970)207�208.[11℄ P. C. Fishburn, Intransitive indi�erene with unequal indi�erene intervals, J. Math. Psyh.7 (1970) 144�149.[12℄ P. E. Haxell, J. J. MDonald and S. K. Thomasson, Counting interval orders, Order 4 (1987)269�272.[13℄ S. M. Khamis, Height ounting of unlabeled interval and N-free posets, Disrete Math. 275(2004) 165�175.[14℄ C. Krattenthaler, Growth diagrams, and inreasing and dereasing hains in �llings of Ferrersshapes, Adv. Appl. Math. 37 (2006) 404�431.
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