
ar
X

iv
:0

80
8.

09
63

v1
 [

co
nd

-m
at

.s
ta

t-
m

ec
h]

 7
 A

ug
 2

00
8 A parallel algorithm for the enumeration of benzenoid

hydrocarbons

Iwan Jensen

Department of Mathematics and Statistics
The University of Melbourne, Vic. 3010, Australia

August 7, 2008

Abstract

We present an improved parallel algorithm for the enumeration of fixed benzenoids
Bh containing h hexagonal cells. We can thus extend the enumeration of Bh from the
previous best h = 35 up to h = 50. Analysis of the associated generating function
confirms to a very high degree of certainty that Bh ∼ Aκh/h and we estimate that the
growth constant κ = 5.161930154(8) and the amplitude A = 0.2808499(1).

Keywords: Benzenoids, hexagonal polygons, exact enumerations, parallel processing,
series analysis

1 Introduction

A benzenoid or planar polyhex is a special type of hydrocarbon molecule. Its hexagonal
system is obtained by deleting all carbon-hydrogen bonds, leaving clusters of hexagons joined
at an edge (a carbon-carbon bond). They thus appear as clusters of identical hexagons in
the plane. The interior of the clusters are filled with hexagons so there are no internal holes.
These structures have appeared independently in the chemical and mathematical literature.
In the mathematics literature they are discussed as self-avoiding polygons on the hexagonal
lattice [1] and a distinction is made between fixed and free embeddings. Fixed polygons
are considered distinct up to a translation while free polygons are considered equivalent
under translations, rotations and reflections. Polygons are typically enumerated according
to their perimeter or area. In the chemistry literature the number of free polygons [2] has
been universally considered. The number of benzenoids or planar polyhexes is equal to the
number of free hexagonal self-avoiding polygons enumerated by area.

The enumeration of the number bh of benzenoids of h cells remains an important topic
in computational and theoretical chemistry. The monograph by Gutman and Cyvin [2]
provides a comprehensive review of all aspects. Until a few years ago progress was slow and
incremental as calculations were based on direct counting of benzenoids. As the number of
these grows as bh ∼ κh, where the growth constant κ ≃ 5.16, it is clear that, to obtain one
further term one needs more than 5 times the computing power. Up to 1989, the number of
benzenoids up to h = 12 was known [2]. Ten years later this had been improved to h = 21

1

http://arXiv.org/abs/0808.0963v1

[3], while more recently, the number of benzenoids up to h = 24 was obtained [4]. Thus
one extra term per year was found on average, reflecting a steady 5-fold increase per annum
in a combination of processor speed and resources. In 2002 [5] a major break-through was
obtained using a different type of algorithm that enabled the number of fixed benzenoids
Bh to be enumerated for h ≤ 35 and bh was then obtained to the same size by using direct
counting algorithms to enumerate benzenoids possessing certain symmetries, e.g. they may
be symmetric with respect to an axis of reflection or certain rotations. The algorithm for
enumerating Bh is in fact exponentially faster than direct counting, with both time and
memory growing approximately as 1.65h. Its drawbacks are that it is much more memory
intensive than direct counting, for which memory requirements are negligible, as well as
being much more difficult to implement.

In [5] it was shown that there exists a growth constant κ such that

lim
h→∞

B
1/h
h = κ (1)

and the universally accepted, but as yet unproved, conjecture

Bh ∼ Aκhhθ as h → ∞ (2)

for the asymptotic form for Bh was confirmed to a high degree of certainty. It is widely
accepted that for models such as benzenoids, other self-avoiding polygon models enumerated
by area and polyominoes (or lattice animals) the exponent θ is given by the Lee-Yang edge
singularity exponent [6] and thus θ = −1 for benzenoids. Numerical analysis [5] confirmed
this conjecture to a very high degree of certitude and yielded the estimate κ = 5.16193016(8)
for the growth constant and A = 0.2808491(1) for the critical amplitude.

In this paper we describe an efficient parallel version of the algorithm used in [5] and
extend the count for fixed benzenoids up to h = 50. We do not attempt to count bh since
asymptotically Bh = 12bh so any results regarding the asymptotic behaviour of Bh and bh

are essentially the same (and the ratio of the two sequences Bh/bh converge rapidly to its
asymptotic limit as evidenced by the fact that 12−B35/b35 ≃ 1.355×10−10). Furthermore the
direct counting algorithms for benzenoids with a symmetry have computational complexity
λh where λ = κ1/k if enumerating benzenoids with a k-fold symmetry so that in the worst
case we have λ =

√
κ ≃ 2.27, which is a much worse asymptotic growth than that achieved

with the algorithm for fixed benzenoids. Our analysis of the extended data yields the even
more precise estimates κ = 5.161930154(8) and a revised estimate for the critical amplitude
A = 0.2808499(1).

2 Computer algorithm

A detailed description of the original computer algorithm can be found in [5]. For this work
we use a slightly different algorithm and we have therefore chosen to describe it in some
detail below before specifying how it can be turned into an efficient parallel algorithm.

2.1 Finite lattice algorithm

We count the number of fixed benzenoids using the so-called finite lattice method pioneered
by Enting [7]. In this method the number of benzenoids are obtained by calculating the

2

Figure 1: A snapshot of the boundary line (dashed line) during the transfer matrix calculation
on the brick-work lattice. Benzenoids are enumerated by successive moves of the kink in the
boundary line, as exemplified by the position given by the dotted line, so that two vertices
at a time is added to the rectangle. To the left of the boundary line we have drawn (shaded
cells) an example of a partially completed benzenoid.

contributions from benzenoids contained within finite sub-lattices. As in [1, 5] we embed the
hexagonal lattice in the square lattice as the brick-work lattice (see Fig. 1) and our finite
lattices are rectangles of width W and length L. The minimum number of cells needed to
span a rectangle from top to bottom and left to right is essentially W +max(0, L−(W +1)/2)
(simply note that a single ‘line’ of cells starting in the top-left corner and going down the
diagonal contains W cells and extends (W + 1)/2 cells to the right). So benzenoids up to
a maximal size hmax can be counted be combining the counts from all finite W × L lattices
with W + max(0, L − (W + 1)/2 ≤ hmax.

The number of benzenoids in a given rectangle is calculated using transfer-matrix tech-
niques. The transfer matrix (TM) technique involves drawing a boundary line through the
rectangle intersecting a set of up to W + 1 edges. Benzenoids in a given rectangle are enu-
merated by moving the boundary line so as to add two vertices (or a single cell) at a time
as shown in Fig. 1. In this fashion we build up the rectangle column by column with each
column built up cell by cell. As we move the boundary line it intersects partially completed
benzenoids consisting of disjoint loops that must all be connected to form a single benzenoid.
This TM algorithm is used for rectangles where L ≥ W . Note that the hexagonal lattice (or
bricklayer lattice) is not symmetric with respect to rotation. So for rectangles with L < W
we choose instead to let the boundary line cut across L+1 edges in the length wise direction
and we then move the boundary line from the bottom to the top of the rectangle. This
ensures that the number of edges cut by the boundary line is minimal and at most 2hmax/3.
The TM algorithm in the two cases are essentially identical and differ only in ‘surface’ effects.
Below we give some further details of the TM algorithm.

To avoid situations leading to graphs with more than a single component we have to forbid
a loop to close on itself if the boundary line intersects any other loops. So two loop ends can

3

Case 0 Case 1

Figure 2: The two different update cases encountered in the move of the TM boundary line.
Red (blue) edges indicate the kink edges before (after) the move.

only be joined if they belong to different loops or all other edges are empty. To exclude loops
which close on themselves we need to label the occupied edges in such a way that we can
easily determine whether or not two loop ends belong to the same loop. The most obvious
choice would be to give each loop a unique label. However, on two-dimensional lattices there
is a more compact scheme relying on the fact that two loops can never intertwine. Each end
of a loop is assigned one of two labels depending on whether it is the lower end or the upper
end of a loop. Each configuration along the boundary line can thus be represented by a set
of edge states or a state vector s = {σi}, where

σi =







0 empty edge,
1 lower end of a loop,
2 upper end of a loop.

(3)

With this encoding the state along the boundary line in Fig. 1 is s = {01010002212}. It is
easy to see that this encoding uniquely describes which loop-ends are connected. In order
to find the upper loop-end, matching a given lower end, we start at the lower end and work
upwards in the configuration counting the number of ‘1’s and ‘2’s we pass (the ‘1’ of the
initial lower end is not included in the count). We stop when the number of ‘2’s exceeds the
number of ‘1’s. This ‘2’ marks the matching upper end of the loop.

When the boundary line is moved we encounter two different cases as we add a new
cell as illustrated in Fig. 2. When building up a new column we alternate between the two
cases. For each configuration of occupied or empty edges along the boundary, we maintain
a generating function for partially completed benzenoids. The generating function is a
(truncated) polynomial ps(q), where s is the state vector specifying the ‘source’ configuration.
When the boundary line is moved, a given state vector s is transformed into two new state
‘target’ vectors t1 and t2 and qk1ps(q) is added to pt1(q) and qk2ps(q) is added to pt2(q), where
k1 and k2 are 1 or 0 depending on whether the new cell is part of the benzenoid or not. It
is quite simple to determine whether a newly added unit cell belongs to a benzenoid or not.
Moving through a configuration we note that as we reach the first occupied edge we pass
from the outside to the inside of a benzenoid, the next occupied edge takes us to the outside
again, and so on. In this fashion all unit cells intersected by the boundary line are uniquely
assigned to the interior or exterior of a benzenoid.

In Fig. 3 and 4 we illustrate the possible new configurations of the edges in the kink of
the boundary line as we add a new cell. The actual update rules will depend not only on the

4

Figure 3: The possible updates in Case 0 when the input state (left-most column) has 0, 1
or 2 occupied edges. The right-most columns shows the possible outputs.

number of occupied kink edges in the input configuration but on their states as well. The
update rules are summarised in Table I and a few comments are in order. The first five rows
should be self-explanatory. In rows six and nine over-lining of the output state means that
we have connected two lower (upper) loop-ends and we therefore have to relabel one of the
matching upper (lower) loop-ends in the target state as a lower (upper) state. The matching
loop-ends are easily located as explained below (3). In row seven Acc means accumulate
into final count for Bh if valid. Here we are forming a closed loop and this is only allowed
if there are no other occupied edges in the state (otherwise we either produce graphs with
several separate components or interior holes neither of which are permissible benzenoids).
In Case 1 row seven the second output can never occur. Finally in row eight we connect
upper and lower loop-ends from two different loops. This is always allowed and the outputs
states need no further comments.

A major improvement to the basic method can be obtained by using the approach first
adopted in [8]. As stated earlier we require valid benzenoids to span the rectangle in both

directions. In other words we directly enumerate benzenoids of width exactly W and length
L. To implement the TM algorithm efficiently we use several memory and time saving
methods. The most important is what we call pruning. This procedure, details of which are
given in [8], allows us to discard most of the possible configurations for large W because they
only contribute to benzenoids of size greater than hmax. Briefly this works as follows. Firstly,

5

Figure 4: Similar to Fig. 3 but for Case 1.

for each configuration we keep track of the current minimum number of cells hcur already
inserted to the left of the boundary line. Secondly, we calculate the minimum number of
additional cells hadd required to produce a valid benzenoid. There are three contributions,
namely the number of cells required to close the benzenoid, the number of cells needed (if
any) to ensure that the benzenoid touches both the lower and upper border, and finally
the number of cells needed (if any) to extend at least W cells in the length-wise direction
(remember we are looking at rectangles with L ≥ W). If the sum hcur + hadd > hmax we can
discard the partial generating function for that configuration, and of course the configuration
itself, because it won’t make a contribution to the benzenoid count up to the size we are
trying to obtain.

Those familiar with algebraic languages will recognize that each configuration of labeled
loop-ends forms a Motzkin word [9]. It is known that the number of Motzkin words of length
m grows like 3m. The maximal number of bonds intersected by the boundary line grows as
2hmax/3. This implies that the complexity of enumerating benzenoids of size h grows as
32h/3 ≃ 2.08h, multiplied by some polynomial in h. Thus the basic transfer-matrix approach
already provides a dramatic improvement over direct enumeration algorithms, which have
complexity 5.16h. With the further improvements outlined above, it is not possible to give
a theoretical analysis of the computational complexity of the algorithm, but an empirical
analysis in [5] suggested that the improvements reduce the complexity to λh with λ ≃ 1.65.
For this work a slight further improvement has been obtained reducing λ to 1.56 or so. In

6

Table I: Update rules for Case 0 and Case 1

Case 0 Case 1

Input Output Input Output

‘00’ ‘00’ ‘12’ ’00’ ‘00’ ‘’12’
‘01’ ‘01’ ‘10’ ‘01’ ‘01’ ‘10’
‘02’ ‘02’ ‘20’ ‘02’ ‘02’ ‘20’
‘10’ ‘01’ ‘10’ ‘10’ ‘01’ ‘10’
‘20’ ‘02’ ‘20’ ‘20’ ‘02‘ ‘20’
‘11’ ‘00’ ‘11’ ‘11’ ‘00’ ‘12’
‘12’ Acc ‘12’ ‘12’ Acc —–
‘21’ ‘00’ ‘21’ ‘21‘ ‘00’ ‘12’
‘22’ ‘00’ ‘22’ ‘22‘ ‘00’ ‘12’

addition some further memory saving strategies were adopted. The effectiveness of these
can be gauged by noting that in [5] the calculation of Bh up to h = 35 required some 5Gb
of memory and we can now achieve a similar task using only some 250Mb of memory.

The integers Bh become very large and exceed 264 which causes overflow when using 64-
bit integers. The solution to this problem is use modular arithmetic and do the calculation
modulo several numbers pi and then reconstruct the true Bh using the Chinese remainder
theorem [10]. In our case it sufficed to do the calculations modulo p0 = 262 and p1 = 262 −1.
It should be noted that the computationally expensive part of our algorithm is pruning.
Compared to this the time taken to perform the modular calculations updating the partial
generating functions is insignificant. Since the calculations were done on a shared facility
CPU time was more of a premium than memory and we did the calculation using both p0

and p1 in a single run. Total CPU time expended on the calculations was approximately
22000 CPU hours.

In Table II we list the additional 15 terms for Bh with h ≥ 36 obtained in this work, the
original 35 terms can be found in [5] or down-loaded from our web-site [13].

2.2 Parallelisation

The computational complexity of the FLM grows exponentially with the number of terms
one wishes to calculate. It is therefore little wonder that implementations of the algorithms
have always been geared towards using the most powerful computers available. By now
parallel computing is well established as the paradigm for high performance computing
and in particular cluster computing has emerged as the dominant platform for large scale
computing facilities. The transfer-matrix algorithms used in the calculations of the finite
lattice contributions are eminently suited for parallel computations.

The most basic concerns in any efficient parallel algorithm is to minimise the commu-
nication between processors and ensure that each processor does roughly the same amount
of work and use similar amounts of memory. In practice one naturally has to strike some
compromise and accept a certain degree of variation across the processors.

7

Table II: Number of fixed benzenoids Bh of size h ≥ 36.

h Bh

36 352506828543839738006802
37 1771125269041561567830953
38 8905113919188230264955009
39 44804571829235959198699855
40 225570974088699920561748746
41 1136340745302289809680018862
42 5727773558054438208070950886
43 28887056504374868913302241736
44 145763914212751560334802981991
45 735894997233174457602406978869
46 3716988842355112053567240722854
47 18783102592560998779533576292617
48 94958908613774943408509332060260
49 480273434248924455452231252618009
50 2430068453031180290203185942420933

One of the main ways of achieving a good parallel algorithm using data decomposition
is to try to find an invariant under the operation of the updating rules. That is we seek to
find some property about the configurations along the boundary line which does not alter
in a single iteration. The algorithm for the enumeration of benzenoids is quite complicated
since not all possible configurations occur due to pruning and an update at a given set of
edges might change the state of an edge far removed, e.g., when two lower loop-ends are
joined we have to relabel one of the associated upper loop-ends as a lower loop-end in the
new configuration. However, there still is an invariant since any edge not directly involved
in the update cannot change from being empty to being occupied and vice versa. That is
only the edges at the kink of the boundary line can change their occupation status. This
invariant allows us to parallelise the algorithm in such a way that we can do the calculation
completely independently on each processor with just two redistributions of the data set
each time an extra column is added to the lattice.

The main points of the algorithm are summarized below:

1. With the boundary line straight (having no kinks) distribute the configurations and
their generating functions across processors so that configurations with the same oc-
cupation pattern along the lower half of the boundary line are placed on the same
processor.

2. Do the TM update inserting the top-half of a new column. This can be done inde-

pendently by each processor because the occupation pattern in the lower half remains
unchanged.

3. Upon reaching the half-way mark redistribute the data so that configurations with the
same occupation pattern along the upper half of the boundary line are placed on the
same processor.

8

Table III: CPU-time and memory use for the parallel algorithm for enumerating benzenoids
of maximal size 43 at width 22.

Proc. Total time Run time Max Conf Min Conf Max Term Min Term

1 60:13 60:20:16 107350066 207111142
2 61:53 30:59:09 52982622 52435395 102711198 102666398
4 62:28 15:38:07 26389619 26183924 51559593 51025667
8 63:17 7:55:17 13289367 13078219 26179885 25492182

16 69:28 4:21:40 6725270 6486246 13245615 12717598
32 69:05 2:10:17 3440269 3274193 6871820 6347966
64 71:33 1:07:51 1768626 1616220 3839775 3191842

4. Do the TM update inserting the bottom-half of a new column.

5. Go back to 1.

The redistribution among processors was done as follows:

1. On each processor run through the configurations to establish the occupation pattern
(in the lower or upper half of the boundary) c of each configuration and calculate, n(c),
the number of configurations with a given pattern.

2. Calculate the global sum of n(c).

3. Sort the global sum n(c).

4. Assign each pattern to a processor pi as follows:

(a) Set pi = 0.

(b) Assign the most frequent unassigned pattern c to processor pi.

(c) If the number of configurations assigned to pi is less than the number of configu-
rations assigned to processor 0 then assign the least frequent unassigned patterns
to pi until the desired inequality is achieved.

(d) Set pi = (pi + 1) mod Np, where Np is the number of processors.

(e) Repeat from (b) until all patterns have been assigned.

5. On each processor run through the configurations sending each configuration to its
assigned processor.

The bulk of the calculations were performed on the facilities of the Australian Partnership
for Advanced Computing (APAC). The APAC facility is an SGI Altix cluster with 1920 1.6
Ghz Itanium2 processors grouped into 30 partitions with 64 processors each. The cluster has
a total peak speed over 11Tflops. Nodes are connected via a SGI’s NUMAlink with a latency
< 2 us (MPI) and bandwidth of 3.2 Gb/sec bidirectional. We used up to 128 processors per
run using a maximum of 230Gb of memory and 22000 CPU hours.

9

In Table III we have listed the time and memory use of the algorithm for hmax = 43
at W = 22 using from 1 to 64 processors. The memory use of the single processor job
was about 3Gb. Firstly, we look at the issue of balancing the memory use of the parallel
algorithm. By design we are attempting to balance this to the greatest extend possible
since in a cluster environment memory is often the most crucially constrained resource. This
aspect is examined via the numbers in columns 4–7. At any given time during the calculation
each processor handles a subset of the total number of configurations. For each processor
we monitor the maximal number of configurations and terms retained in the generating
functions. The balancing can be roughly gauged by looking at the largest (Max Conf) and
smallest (Min Conf) maximum number of configurations handled by individual processors
during the execution of the program. In columns 6 and 7 are listed the largest (Max Term)
and smallest (Min Term) number of terms retained in the generating functions associated
with the subset of configurations. As can be seen the algorithm is quite well balanced. Even
with 64 processors, where each processor uses only about 50Mb of memory, the difference
between the processor handling the maximal and minimal number of configurations is less
than 10%. For the total number of terms retained in the generating functions the difference
is less than 20%. So our aim of balancing memory use has clearly been met.

The next issue is that of balancing the CPU time used by the algorithm. As can be
seen the algorithm scales reasonable well from 1 to 64 processors since the total combined
CPU time (column 2, format is hours:minutes) used by all processors increase only by about
10%. Likewise the run time (column 3, format is hours:minutes:seconds) of the program
is approximately halved when the number of processors is doubled. This is not quite as
good a scaling as achieved for some previous algorithms [11, 12] where the total CPU time
stayed constant. The main reason for the discrepancy is that the time consuming part of our
algorithm is the pruning. For “simpler” problems on the square lattice it turned out that
the time consumption was fairly constant irrespective of the occupation pattern. Pruning
benzenoid configurations is more complicated1. In our previous work [11, 12] the CPU time
used in communication tasks never exceeded 10% of the total. However, for benzenoids a
simple timing of the various routines show that as much as 30% of the time was used in
communication task. We believe most of the additional time use is due to ‘latency’. That is
the task of redistributing the data among processors must complete before further processing
can be done. The redistribution is thus blocking. If certain subsets of configurations sitting
on processor pj take long to process they can thus lead to imbalances where other processors
must wait for the completion of the calculation on processor pj. Unfortunately it is not
possible to determine a priory if a certain set of configurations with a particular occupation
pattern are ‘slow’. However, it does suggest that there is some room for improvement to
the redistribution, perhaps by including additional information (say which borders have
been touched or the total number of occupied edges) so as to further sub-divide the set of
configurations thus making it easier to balance the workload. Another option would be to
monitor the time used to process each configuration and use this as part of the information
used in the redistribution. However, this should not come at the cost of unbalanced memory
use. These possibilities remain to be explored in future work.

1We won’t give details here but just note that on the square lattice the three contributions to hadd

essentially de-couple and can be determined more or less independently. This is no longer the case on the
hexagonal lattice vastly complicating the pruning.

10

Table IV: Estimates for the critical point qc = 1/κ and critical exponent −1 − θ as ob-
tained from 2nd and 3rd order differential approximants with L being the degree of the
inhomogeneous polynomial.

2nd order approximants 3rd order approximants

L qc = 1/κ −1 − θ qc = 1/κ −1 − θ

0 0.19372598474(16) -0.00000136(87) 0.19372598440(23) -0.00000055(37)
2 0.19372598448(24) -0.00000077(43) 0.193725984286(90) -0.00000036(16)
4 0.19372598440(11) -0.00000056(42) 0.19372598436(22) -0.00000051(39)
6 0.19372598443(27) -0.00000068(51) 0.19372598416(16) -0.00000009(41)
8 0.19372598441(32) -0.00000052(93) 0.193725984182(83) -0.00000013(21)

10 0.19372598444(19) -0.00000069(38) 0.193725984205(94) -0.00000020(23)

3 Numerical analysis

From the coefficients Bh we have the first 50 terms in the respective generating function,

G(q) =
∑

h

Bhq
h ∼ A(q) log(1 − κq) (4)

where the leading asymptotic behaviour follows from (2) with the radius of convergence of
the generating function given by qc = 1/κ . In order to obtain the singularity structure of the
generating function we used the numerical method of differential approximants [14]. Very
briefly, in this method we approximate the generating function by the solution of a linear,
inhomogeneous, ordinary differential equation (ODE) with polynomial coefficients. That is
to say, we insist that the power series expansion of the solution of the ODE agrees, term by
term, with the known coefficients of the generating function. One can increase the degree
of the polynomials and the order of the underlying differential equation until there are no
more known coefficients. One then solves the ODE in the standard manner, the critical
point being given by the first zero on the positive real axis of the polynomial multiplying
the highest derivative, while the corresponding exponent is obtained from the solution of the
appropriate indicial equation [15]. A substantial number of such differential approximants
are constructed, and a statistical procedure is used to estimate the critical point and critical
exponent.

In Table IV we have listed estimates for the critical point qc = 1/κ and critical exponent
−1−θ obtained from a differential approximant analysis [14]. The estimates were obtained by
averaging over many individual approximants using a procedure (see [16] for details) which
automatically discard any spurious outlying approximants. Each approximant used at least
42 terms of the series and the degree of the inhomogeneous polynomial was varied from
L = 0 to 10. Taken together the estimates are consistent with the conjectured exact value
θ = −1 for the critical exponent, while for the critical point we obtain qc = 0.1937259843(3)
or for the growth constant κ = 5.161930154(8).

While the estimates listed in Table IV are very accurate one issue which always arises
in a differential approximant analysis is the possibility of systematic bias. In particular it is
possible that the estimates have not yet converged to their true asymptotic values. In order
to address this possibility we plot in Fig. 5 individual estimates for the critical point qc and

11

20 30 40 50

h

0.1937255

0.1937260

0.1937265

0.1937270

qc

25 30 35 40 45 50

h

0.193725980

0.193725982

0.193725984

0.193725986

0.193725988

0.193725990

qc

20 30 40 50

h

-0.0010

-0.0005

0.0000

0.0005

-1-θ

25 30 35 40 45 50

h

-0.00002

-0.00001

0.00000

0.00001

0.00002

-1-θ

Figure 5: Estimates for the critical point qc (top panels) and critical exponent −1−θ (bottom
panels) vs the maximal size h (or number of terms) used in the differential approximant
analysis. Each dot represents a data point obtained from a 3rd order approximant with
L = 0, 2, . . . , 10. The left panels show a view of most approximants while the right panels
are a more detailed view at the data for high values of h.

12

critical exponent −1 − θ as a function of the maximal size or number of terms h used to
form the differential approximant. From this figure it is clear that the estimates do settle
down to very well defined values. There is no sign of any systematic drift in the estimates
for h > 40 or so. In particular the conclusion that θ = −1 exactly appear to be completely
safe. Likewise the estimates for qc settle down to a value in full agreement with the estimate
qc = 0.1937259843(3) from above.

0 0.01 0.02 0.03 0.04 0.05
1/h

0.2808480

0.2808485

0.2808490

0.2808495

0.2808500

0.2808505

a1
m=4
m=5
m=6
m=7
m=8
m=9
m=10

0 0.01 0.02 0.03 0.04
1/h

0.2808495

0.2808496

0.2808497

0.2808498

0.2808499

0.2808500

a1
m=5
m=6
m=7
m=8
m=9
m=10

Figure 6: Estimates for the leading amplitude a1 vs 1/h where h is the maximal size used in
the fit to the asymptotic for () for the coefficients Bh. The plot in the right panel is a more
detailed view of the data in the left panel.

Now that the exact value of θ has been confirmed and an accurate estimate for κ obtained
we turn our attention to the “fine structure” of the asymptotic form of the coefficients. In
particular we are interested in obtaining accurate estimates for the leading critical amplitude
A. Our method of analysis consists in fitting the coefficients to an assumed asymptotic form.
The asymptotic form (2) for the coefficients Bh only explicitly gives the leading contribution.
In general one would expect corrections to scaling given by a set of correction-to-scaling
exponents. However, as argued elsewhere [17] and confirmed in the previous study [5] there
is no sign of non-analytic correction-to-scaling exponents. The up shot of this is that Bh

follows the asymptotic form

Bh = κh
[

a1/h + a2/h
2 + a3/h

3 + · · ·+ O(exp(−h))
]

. (5)

We then obtain estimates for a1 = A by fitting Bh to this form. That is we truncate (5) after
m terms, take a sub-sequence of coefficients {Bh, Bh−1, . . . , Bh−m+1}, plug into the formula
above and solve the resulting m linear equations to obtain estimates for the amplitudes. It
is then advantageous to plot estimates for the leading amplitude a1 against 1/h for several
values of m. The results are plotted in the left panel of figure 6. We clearly have very well
behaved estimates. In the right panel we take a more detailed look at the data and from
the plot we estimate that a1 = 0.2808499(1). We notice that as more and more correction
terms are added (m is increased) the plots of the amplitude estimates exhibits less curvature
and the slope become less steep. This is very strong evidence that (5) indeed is the correct
asymptotic form for Bh.

13

Acknowledgments

The calculations presented in this paper would not have been possible without a generous
grant of computer time on the server cluster of the Australian Partnership for Advanced
Computing (APAC). We also used the computational resources of the Victorian Partnership
for Advanced Computing (VPAC). We gratefully acknowledge financial support from the
Australian Research Council.

References

[1] Enting, I. G. and Guttmann, A. J., J. Phys. A, 1989, 22, 1371–1384.

[2] Gutman, I. and Cyvin, S., Introduction to the theory of benzenoid hydrocarbons,
Springer-Verlag, Berlin, 1989.

[3] Caporossi, G. and Hansen, P., J. Chem. Inf. Comput. Science, 1998, 38, 610–619.

[4] Brinkmann, G.; Caporossi, G. and Hansen, P., Commun. Math. Chem., 2001, 43, 133–
134.

[5] Vöge, M.; Guttmann, A. J. and Jensen, I., J. Chem. Inf. Comput. Science, 2002, 42,
456–466.

[6] Parisi, G. and Sourlas, N., Phys. Rev. Lett., 1981, 46, 871–874.

[7] Enting, I. G., J. Phys. A, 1980, 13, 3713–3722.

[8] Jensen, I. and Guttmann, A. J., J. Phys. A, 1999, 32, 4867–4876.

[9] Delest, M. P. and Viennot, G., Theor. Comput. Scie., 1984, 34, 169–206.

[10] Knuth, D. E., Seminumerical Algorithms. The Art of Computer Programming, Vol. 2,
Addison Wesley, Reading, Mass, 3 ed., 1997.

[11] Jensen, I., J. Phys. A, 2003, 36, 5731–5745.

[12] Jensen, I. In Sloot, P. M. A.; Abramson, D.; Bogdanov, A. V.; Dongarra, J. J.; Zomaya,
A. Y. and Gorbachev, Y. E., Eds., Computational Science – ICCS 2003, Vol. 2659 of
Lecture Notes in Computer Science, pages 203–212, Berlin, 2003. Springer.

[13] Jensen, I. Homepage: http://www.ms.unimelb.edu.au/˜iwan/

[14] Guttmann, A. J. In Phase Transitions and Critical Phenomena, Domb, C. and Lebowitz,
J. L., Eds., Vol. 13; Academic, New York, 1989; pages 1–234.

[15] Ince, E. L., Ordinary differential equations, Longmans, Green and Co. Ltd., London,
1927.

[16] Jensen, I., J. Phys.: Conf. Ser., 2006, 42, 163–178.

[17] Jensen, I. and Guttmann, A. J., J. Phys. A, 2000, 33, L257–L263.

14

http://www.ms.unimelb.edu.au/~iwan/

	Introduction
	Computer algorithm
	Finite lattice algorithm
	Parallelisation

	Numerical analysis

